Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Aptamer-based strategies have emerged as promising tools for the detection and treatment of COVID-19, offering advantages such as high specificity, sensitivity, and versatility. This systematic review aims to evaluate the effectiveness and innovation of aptamer-based approaches for COVID-19 detection and treatment.

Methods

Following the guidelines of the Cochrane Handbook for Systematic Reviews and the PRISMA 2020 guidelines, a systematic search was conducted across multiple databases up to 2024. The search included studies that utilized aptamers for the diagnosis or therapy of COVID-19. Screening and selection of studies were performed independently by two reviewers, with any disagreements resolved by a third reviewer. Data were extracted regarding study characteristics, aptamer details, and outcomes.

Results

In our systematic review, 98 studies from an initial pool of 1541 records met the inclusion criteria for analysis. Aptamers, single-stranded DNA or RNA molecules with unique three-dimensional (3D) structures, were extensively explored for COVID-19 detection and treatment. Various aptamer-based assays, including electrochemical sensors, surface plasmon resonance (SPR) biosensors, and lateral flow assays, demonstrated high sensitivity and specificity in detecting SARS-CoV-2 in clinical samples such as saliva, nasal swabs, and wastewater. Several aptamer structures targeting viral proteins like the spike and nucleocapsid proteins were employed. Nucleic Acid Amplification Techniques (NAATs) utilizing aptamers, such as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based and Loop-mediated Isothermal Amplification (LAMP) assays, showed exceptional sensitivity in detecting viral genetic material. Aptamer-based therapeutic approaches showed potential by blocking viral protein activity or serving as delivery vehicles for therapeutic agents like small interfering RNAs (siRNAs). Despite their advantages, aptamer technologies face limitations such as susceptibility to nuclease degradation and rapid renal clearance, highlighting the need for further optimization.

Conclusion

Aptamer-based strategies present promising avenues for COVID-19 detection and treatment. These approaches offer advantages such as high sensitivity, specificity, and rapid detection, making them valuable tools in combating the COVID-19 pandemic. Further research and development are warranted to optimize aptamer-based strategies for widespread application in clinical settings.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110318858240903063224
2024-09-10
2025-10-31
Loading full text...

Full text loading...

References

  1. ArefiniaN. GhoreshiZ-S. AlipourA.H. Reza MolaeiH. SamieM. SarvariJ. Gastrointestinal manifestations in patients infected with SARS-CoV-2.Iran. J. Med. Microbiol.202216427128110.30699/ijmm.16.4.271
    [Google Scholar]
  2. ShafieipourS. Rezaei Zadeh RukerdM. Shamsizadeh MeymandiT. SinaeiR. SarafzadehF. Abu SaeediH. FarokhniaM. YousefiM. GhasemzadehI. SaeedporA. AhmadiB. LashkarizadehM.M. PishgooieN. NakhaieM. The effect of intravenous tocilizumab therapy on the prognosis of patients with COVID-19: A case-control study.Iran. J. Med. Microbiol.202317224325010.30699/ijmm.17.2.243
    [Google Scholar]
  3. ArefiniaN. YaghoubiR. RamezaniA. FarokhniaM. ZadehA. SarvariJ. Association of IFITM1 promoter methylation with severity of sars-cov-2 infection.Clin. Lab.202369046910.7754/Clin.Lab.2022.220622 37057950
    [Google Scholar]
  4. NakhaeiM. GhoreshiZ.A. Rezaei Zadeh RukerdM. AskarpourH. Novel mutations in the non-structure protein 2 OF SARS-CoV-2.Mediterr. J. Hematol. Infect. Dis.2023151e202305910.4084/MJHID.2023.059 38028396
    [Google Scholar]
  5. PadhanR. PrabheeshK.P. The economics of COVID-19 pandemic: A survey.Econ. Anal. Policy20217022023710.1016/j.eap.2021.02.012 33658744
    [Google Scholar]
  6. PascarellaG. StrumiaA. PiliegoC. BrunoF. Del BuonoR. CostaF. ScarlataS. AgròF.E. COVID‐19 diagnosis and management: A comprehensive review.J. Intern. Med.2020288219220610.1111/joim.13091 32348588
    [Google Scholar]
  7. ArefiniaN. YaghobiR. RamezaniA. FarokhniaM. SarvariJ. Sequence analysis of hot spot regions of spike and RNA dependent RNA polymerase (RdRp) genes of SARS-CoV-2 in Kerman, Iran.Mediterr. J. Hematol. Infect. Dis.2023151e2023042
    [Google Scholar]
  8. ArefiniaN. RamezaniA. FarokhniaM. Arab ZadehA.M. YaghobiR. SarvariJ. Association between expression of ZBP1, AIM2, and MDA5 genes and severity of COVID-19.EXCLI J.20222111711183 36320810
    [Google Scholar]
  9. StadlbauerD. AmanatF. ChromikovaV. JiangK. StrohmeierS. ArunkumarG.A. TanJ. BhavsarD. CapuanoC. KirkpatrickE. MeadeP. BritoR.N. TeoC. McMahonM. SimonV. KrammerF. SARS‐CoV‐2 seroconversion in humans: A Detailed protocol for a serological assay, antigen production, and test setup.Curr. Protoc. Microbiol.2020571e10010.1002/cpmc.100 32302069
    [Google Scholar]
  10. LiJ. ZhangZ. GuJ. StaceyH.D. AngJ.C. CaprettaA. FilipeC.D. MossmanK.L. BalionC. SalenaB.J. YamamuraD. SoleymaniL. MillerM.S. BrennanJ.D. LiY. Diverse high-affinity DNA aptamers for wild-type and B.1.1.7 SARS-CoV-2 spike proteins from a pre-structured DNA library.Nucleic Acids Res.202149137267727910.1093/nar/gkab574 34232998
    [Google Scholar]
  11. LiuX. WangY. WuJ. QiJ. ZengZ. WanQ. ChenZ. ManandharP. CavenerV.S. BoyleN.R. FuX. SalazarE. KuchipudiS.V. KapurV. ZhangX. UmetaniM. SenM. WillsonR.C. ChenS. ZuY. Neutralizing aptamers block s/rbd‐ace2 interactions and prevent host cell infection.Angew. Chem. Int. Ed.20216018102731027810.1002/anie.202100345 33684258
    [Google Scholar]
  12. AdachiT. NakamuraY. Aptamers: A review of their chemical properties and modifications for therapeutic application.Molecules20192423422910.3390/molecules24234229 31766318
    [Google Scholar]
  13. GaoZ.A. GaoL.B. ChenX.J. XuY. Fourty-nine years old woman co-infected with SARS-COV-2 and Mycoplasma: A case report.World J. Clin. Cases20208236080608510.12998/wjcc.v8.i23.6080 33344608
    [Google Scholar]
  14. ChangZ.Y. AlhamamiF.A. ChinK.L. Aptamer-based strategies to address challenges in covid-19 diagnosis and treatments.Interdiscip. Perspect. Infect. Dis.2023202311610.1155/2023/9224815 37554129
    [Google Scholar]
  15. ȘtefanG. HosuO. De WaelK. Lobo-CastañónM.J. CristeaC. Aptamers in biomedicine: Selection strategies and recent advances.Electrochim. Acta202137613799410.1016/j.electacta.2021.137994
    [Google Scholar]
  16. WandtkeT. WędrowskaE. SzczurM. PrzybylskiG. LiburaM. KopińskiP. Aptamers—diagnostic and therapeutic solution in SARS-CoV-2.Int. J. Mol. Sci.2022233141210.3390/ijms23031412 35163338
    [Google Scholar]
  17. XingW. LiQ. HanC. SunD. ZhangZ. FangX. GuoY. GeF. DingW. LuoZ. ZhangL. Customization of aptamer to develop CRISPR/Cas12a-derived ultrasensitive biosensor.Talanta202325612431210.1016/j.talanta.2023.124312 36738621
    [Google Scholar]
  18. WuH.B. WangC.H. ChungY.D. ShanY.S. LinY.J. TsaiH.P. LeeG.B. Highly-specific aptamer targeting SARS-CoV-2 S1 protein screened on an automatic integrated microfluidic system for COVID-19 diagnosis.Anal. Chim. Acta2023127434153110.1016/j.aca.2023.341531 37455073
    [Google Scholar]
  19. WangD. ZhangJ. huang, Z.; Yang, Y.; Fu, T.; Yang, Y.; Lyu, Y.; Jiang, J.; Qiu, L.; Cao, Z.; Zhang, X.; You, Q.; Lin, Y.; Zhao, Z.; Tan, W. Robust covalent aptamer strategy enables sensitive detection and enhanced inhibition of SARS-CoV-2 proteins.ACS Cent. Sci.202391728310.1021/acscentsci.2c01263 36712483
    [Google Scholar]
  20. TorunH. BilginB. IlguM. BaturN. OzturkM. BarlasT. Rapid nanoplasmonic-enhanced detection of sars-cov-2 and variants on dna aptamer metasurfaces.Adv. Devices Instrum.202340008
    [Google Scholar]
  21. SullivanM.V. AllabushF. FlynnH. BalansethupathyB. ReedJ.A. BarnesE.T. RobsonC. O’HaraP. MilburnL.J. BunkaD. TolleyA. MendesP.M. TuckerJ.H. TurnerN.W. Highly selective aptamer‐molecularly imprinted polymer hybrids for recognition of SARS‐CoV‐2 spike protein variants.Glob. Chall.202376220021510.1002/gch2.202200215 37287590
    [Google Scholar]
  22. SenP. ZhangZ. LiP. AdhikariB.R. GuoT. GuJ. MacIntoshA.R. van der KuurC. LiY. SoleymaniL. Integrating water purification with electrochemical aptamer sensing for detecting SARS-CoV-2 in Wastewater.ACS Sens.2023841558156710.1021/acssensors.2c02655 36926840
    [Google Scholar]
  23. RizviA.S. MurtazaG. XuX. GaoP. QiuL. MengZ. Aptamer-linked photonic crystal assay for high-throughput screening of HIV and SARS-CoV-2.Anal. Chem.2023952917923 36578103
    [Google Scholar]
  24. PoolsupS. ZaripovE. HüttmannN. MinicZ. ArtyushenkoP.V. ShchugorevaI.A. TomilinF.N. KichkailoA.S. BerezovskiM.V. Discovery of DNA aptamers targeting SARS-CoV-2 nucleocapsid protein and protein-binding epitopes for label-free COVID-19 diagnostics.Mol. Ther. Nucleic Acids20233173174310.1016/j.omtn.2023.02.010 36816615
    [Google Scholar]
  25. ParkK.S. ChoiA. KimH.J. ParkI. EomM.S. YeoS.G. SonR.G. ParkT.I. LeeG. SohH.T. HongY. PackS.P. Ultra-sensitive label-free SERS biosensor with high-throughput screened DNA aptamer for universal detection of SARS-CoV-2 variants from clinical samples.Biosens. Bioelectron.202322811520210.1016/j.bios.2023.115202 36940632
    [Google Scholar]
  26. NeffC.P. CikaraM. GeissB.J. Thomas CaltagironeG. LiaoA. AtifS.M. MacdonaldB. SchadenR. Nucleocapsid protein binding DNA aptamers for detection of SARS-COV-2.Curr. Res. Biotechnol.2023510013210.1016/j.crbiot.2023.100132 37275459
    [Google Scholar]
  27. MoshrefZ.S. JalaliT. Rezaei AdrianiR. SoltatiE. Mousavi GargariS.L. Aptamer-based diagnosis of various SARS-CoV2 strains isolated from clinical specimens.Heliyon202396e1645810.1016/j.heliyon.2023.e16458 37251485
    [Google Scholar]
  28. MoreiraG. QianH. DattaS.P. BliznyukN. CarpenterJ. DeanD. McLamoreE. VanegasD. A capacitive laser-induced graphene based aptasensor for SARS-CoV-2 detection in human saliva.PLoS One2023188e029025610.1371/journal.pone.0290256 37590297
    [Google Scholar]
  29. LuoZ. ChengY. HeL. FengY. TianY. ChenZ. FengY. LiY. XieW. HuangW. MengJ. LiY. HeF. WangX. DuanY. T-shaped aptamer-based lspr biosensor using ω-shaped fiber optic for rapid detection of SARS-CoV-2.Anal. Chem.202395215991607 36580626
    [Google Scholar]
  30. LuoY. JiangX. ZhangR. ShenC. LiM. ZhaoZ. LvM. SunS. SunX. YingB. Mxene‐based aptameric fluorosensor for sensitive and rapid detection of COVID‐19.Small20231923230114610.1002/smll.202301146 36879476
    [Google Scholar]
  31. LeT.T. BentonD.J. WrobelA.G. GamblinS.J. Development of high affinity broadly reactive aptamers for spike protein of multiple SARS-CoV-2 variants.RSC Advances20231322153221532610.1039/D3RA01382K 37213341
    [Google Scholar]
  32. Design and Development of Nanoscale Aptasensors for Viral DiagnosticsLett. Appl. NanoBioSci.20221223410.33263/LIANBS122.034
    [Google Scholar]
  33. HanC. XingW. LiW. FangX. ZhaoJ. GeF. DingW. QuP. LuoZ. ZhangL. Aptamers dimerization inspired biomimetic clamp assay towards impedimetric SARS-CoV-2 antigen detection.Sens. Actuators B Chem.202338013338710.1016/j.snb.2023.133387 36694572
    [Google Scholar]
  34. GuM.M. GuanP.C. XuS.S. LiH.M. KouY.C. LinX.D. KathiresanM. SongY. ZhangY.J. JinS.Z. LiJ.F. Ultrasensitive detection of SARS-CoV-2 S protein with aptamers biosensor based on surface-enhanced Raman scattering.J. Chem. Phys.2023158202420310.1063/5.0130011 36641419
    [Google Scholar]
  35. ChenC. SongX. YuY. WangX. XuH. JiW. MaJ. ZhaoC. FengS. WangY. SuX. WangW. Aptamer-based nanointerferometer enables amplification-free ultrasensitive detection and differentiation of SARS-CoV-2 variants.Anal. Chim. Acta2023126034120710.1016/j.aca.2023.341207 37121656
    [Google Scholar]
  36. CaballosI. ArandaM.N. López-PalaciosA. PlaL. Santiago-FelipeS. Hernández-MontotoA. Tormo-MasM.Á. PemánJ. Gómez-RuizM.D. CalabuigE. Sánchez-SendraB. Francés-GómezC. GellerR. AznarE. Martínez-MáñezR. Aptamer‐capped nanoporous anodic alumina for sars‐cov‐2 spike protein detection.Adv. Mater. Technol.2023811220191310.1002/admt.202201913
    [Google Scholar]
  37. YuM. ZhangX. ZhangX. ZahraQ. HuangZ. ChenY. SongC. SongM. JiangH. LuoZ. LuY. An electrochemical aptasensor with N protein binding aptamer-complementary oligonucleotide as probe for ultra-sensitive detection of COVID-19.Biosens. Bioelectron.202221311443610.1016/j.bios.2022.114436 35716641
    [Google Scholar]
  38. XueJ. LiY. LiuJ. ZhangZ. YuR. HuangY. LiC. ChenA. QiuJ. Highly sensitive electrochemical aptasensor for SARS-CoV-2 antigen detection based on aptamer-binding induced multiple hairpin assembly signal amplification.Talanta202224812360510.1016/j.talanta.2022.123605 35671548
    [Google Scholar]
  39. VarnBuhler, B.S.; Moon, J.; Dey, S.K.; Wu, J.; Jaffrey, S.R. Detection of SARS-CoV-2 RNA Using a DNA aptamer mimic of green fluorescent protein.ACS Chem. Biol.202217484085310.1021/acschembio.1c00893 35341244
    [Google Scholar]
  40. RahmatiZ. RoushaniM. HosseiniH. ChoobinH. Label-free electrochemical aptasensor for rapid detection of SARS-CoV-2 spike glycoprotein based on the composite of Cu(OH)2 nanorods arrays as a high-performance surface substrate.Bioelectrochemistry202214610810610.1016/j.bioelechem.2022.108106 35339949
    [Google Scholar]
  41. Martínez-RoqueM.A. Franco-UrquijoP.A. García-VelásquezV.M. ChoukeifeM. MayerG. Molina-RamírezS.R. Figueroa-MirandaG. MayerD. Alvarez-SalasL.M. DNA aptamer selection for SARS-CoV-2 spike glycoprotein detection.Anal. Biochem.202264511463310.1016/j.ab.2022.114633 35247355
    [Google Scholar]
  42. LiuN. LiuR. ZhangJ. CRISPR-Cas12a-mediated label-free electrochemical aptamer-based sensor for SARS-CoV-2 antigen detection.Bioelectrochemistry202214610810510.1016/j.bioelechem.2022.108105 35367933
    [Google Scholar]
  43. GeC. FengJ. ZhangJ. HuK. WangD. ZhaL. HuX. LiR. Aptamer/antibody sandwich method for digital detection of SARS-CoV2 nucleocapsid protein.Talanta202223612284710.1016/j.talanta.2021.122847 34635237
    [Google Scholar]
  44. Kiruba DanielS.C. PaiP.S. SabbellaH.R. SinghK. RangaiahA. Gowdara BasawarajappaS. ThakurC.S. Handheld, low-cost, aptamer-based sensing device for rapid sars-cov-2 rna detection using novelly synthesized gold nanoparticles.IEEE Sens. J.20222219184371844510.1109/JSEN.2022.3196598 36416744
    [Google Scholar]
  45. AithalS. MishrikiS. GuptaR. SahuR.P. BotosG. TanvirS. HansonR.W. PuriI.K. SARS-CoV-2 detection with aptamer-functionalized gold nanoparticles.Talanta202223612284110.1016/j.talanta.2021.122841 34635231
    [Google Scholar]
  46. KacherovskyN. YangL.F. DangH.V. ChengE.L. CardleI.I. WallsA.C. McCallumM. SellersD.L. DiMaioF. SalipanteS.J. CortiD. VeeslerD. PunS.H. Discovery and characterization of spike n‐terminal domain‐binding aptamers for rapid SARS‐CoV‐2 detection.Angew. Chem. Int. Ed.20216039212112121510.1002/anie.202107730 34328683
    [Google Scholar]
  47. Abrego-MartinezJ.C. JafariM. CherguiS. PavelC. CheD. SiajM. Aptamer-based electrochemical biosensor for rapid detection of SARS-CoV-2: Nanoscale electrode-aptamer-SARS-CoV-2 imaging by photo-induced force microscopy.Biosens. Bioelectron.202219511359510.1016/j.bios.2021.113595 34571481
    [Google Scholar]
  48. QiuG. GaiZ. TaoY. SchmittJ. Kullak-UblickG.A. WangJ. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection.ACS Nano20201455268527710.1021/acsnano.0c02439 32281785
    [Google Scholar]
  49. ZhangL. FangX. LiuX. OuH. ZhangH. WangJ. LiQ. ChengH. ZhangW. LuoZ. Discovery of sandwich type COVID-19 nucleocapsid protein DNA aptamers.Chem. Commun.20205670102351023810.1039/D0CC03993D 32756614
    [Google Scholar]
  50. ChenH. ParkS.G. ChoiN. KwonH.J. KangT. LeeM.K. ChooJ. Sensitive detection of SARS-CoV-2 using a SERS-based aptasensor.ACS Sens.2021662378238510.1021/acssensors.1c00596 34019385
    [Google Scholar]
  51. CennamoN. PasquardiniL. ArcadioF. LunelliL. VanzettiL. CarafaV. AltucciL. ZeniL. SARS-CoV-2 spike protein detection through a plasmonic D-shaped plastic optical fiber aptasensor.Talanta202123312253210.1016/j.talanta.2021.122532 34215035
    [Google Scholar]
  52. ChenZ. WuQ. ChenJ. NiX. DaiJ. A DNA aptamer based method for detection of SARS-CoV-2 nucleocapsid protein.Virol. Sin.202035335135410.1007/s12250‑020‑00236‑z 32451881
    [Google Scholar]
  53. SongY. SongJ. WeiX. HuangM. SunM. ZhuL. LinB. ShenH. ZhuZ. YangC. Discovery of aptamers targeting the receptor-binding domain of the sars-cov-2 spike glycoprotein.Anal. Chem.202092149895990010.1021/acs.analchem.0c01394 32551560
    [Google Scholar]
  54. GuptaA. AnandA. JainN. GoswamiS. AnantharajA. PatilS. SinghR. KumarA. ShrivastavaT. BhatnagarS. MedigeshiG.R. SharmaT.K. A novel G-quadruplex aptamer-based spike trimeric antigen test for the detection of SARS-CoV-2.Mol. Ther. Nucleic Acids20212632133210.1016/j.omtn.2021.06.014 34188971
    [Google Scholar]
  55. IdiliA. ParoloC. Alvarez-DidukR. MerkoçiA. Rapid and efficient detection of the sars-cov-2 spike protein using an electrochemical aptamer-based sensor.ACS Sens.2021683093310110.1021/acssensors.1c01222 34375076
    [Google Scholar]
  56. SchmitzA. WeberA. BayinM. BreuersS. FiebergV. FamulokM. MayerG.A. SARS‐CoV‐2 spike binding dna aptamer that inhibits pseudovirus infection by an rbd‐independent mechanism.Angew. Chem. Int. Ed.20216018102791028510.1002/anie.202100316 33683787
    [Google Scholar]
  57. ShiL. WangL. MaX. FangX. XiangL. YiY. LiJ. LuoZ. LiG. Aptamer-functionalized nanochannels for one-step detection of sars-cov-2 in samples from COVID-19 patients.Anal. Chem.20219349166461665410.1021/acs.analchem.1c04156 34847324
    [Google Scholar]
  58. SvobodovaM. SkouridouV. Jauset-RubioM. ViéitezI. Fernández-VillarA. Cabrera AlvargonzalezJ.J. PovedaE. BofillC.B. SansT. BashammakhA. AlyoubiA.O. O’SullivanC.K. Aptamer sandwich assay for the detection of sars-cov-2 spike protein antigen.ACS Omega2021651356573566610.1021/acsomega.1c05521 34957366
    [Google Scholar]
  59. ZhangZ. PandeyR. LiJ. GuJ. WhiteD. StaceyH.D. AngJ.C. SteinbergC.J. CaprettaA. FilipeC.D.M. MossmanK. BalionC. MillerM.S. SalenaB.J. YamamuraD. SoleymaniL. BrennanJ.D. LiY. High‐affinity dimeric aptamers enable the rapid electrochemical detection of wild‐type and B.1.1.7 SARS‐CoV‐2 in unprocessed saliva.Angew. Chem. Int. Ed.20216045242662427410.1002/anie.202110819 34464491
    [Google Scholar]
  60. SongT. SunM. ZhangJ. LuY. WanS. YangC. SongY. Molecular crowding modulates SARS‐CoV‐2 aptamer affinity.Small Struct.202349230008910.1002/sstr.202300089
    [Google Scholar]
  61. YangG. ZhangS. SongW. BaiX. LiL. LuoF. ChengY. WangD. WangY. ChenJ. ZhaoJ. ZhaoY. Efficient targeted delivery of bifunctional circular aptamer‐aso chimera to suppress the SARS‐CoV‐2 proliferation and inflammation.Small20231916220706610.1002/smll.202207066 36683236
    [Google Scholar]
  62. VillaA. BrunialtiE. DellavedovaJ. MedaC. RebecchiM. ContiM. DonniciL. De FrancescoR. ReggianiA. LionettiV. CianaP. DNA aptamers masking angiotensin converting enzyme 2 as an innovative way to treat SARS-CoV-2 pandemic.Pharmacol. Res.202217510598210.1016/j.phrs.2021.105982 34798263
    [Google Scholar]
  63. RahmanM.S. HanM.J. KimS.W. KangS.M. KimB.R. KimH. LeeC.J. NohJ.E. KimH. LeeJ.O. JangS.K. Structure-guided development of bivalent aptamers blocking sars-cov-2 infection.Molecules20232812464510.3390/molecules28124645 37375202
    [Google Scholar]
  64. GelinasA.D. TanT.K. LiuS. JaramilloJ.G. ChadwickJ. HardingA.C. ZhangC. ReamB.E. ChaseC.N. OtisM.R. LeeT. SchneiderD.J. JamesW.S. JanjicN. Broadly neutralizing aptamers to SARS-CoV-2: A diverse panel of modified DNA antiviral agents.Mol. Ther. Nucleic Acids20233137038210.1016/j.omtn.2023.01.008 36714461
    [Google Scholar]
  65. SunM. WuZ. ZhangJ. ChenM. LuY. YangC. SongY. Spherical neutralizing aptamer suppresses SARS-CoV-2 Omicron escape.Nano Today20224410149910.1016/j.nantod.2022.101499 35542182
    [Google Scholar]
  66. LinY.C. ChenW.Y. HwuE.T. HuW.P. In-silico selection of aptamer targeting sars-cov-2 spike protein.Int. J. Mol. Sci.20222310581010.3390/ijms23105810 35628622
    [Google Scholar]
  67. ValeroJ. CivitL. DupontD.M. SelnihhinD. ReinertL.S. IdornM. IsraelsB.A. BednarzA.M. BusC. AsbachB. PeterhoffD. PedersenF.S. BirkedalV. WagnerR. PaludanS.R. KjemsJ. A serum-stable RNA aptamer specific for SARSCoV-2 neutralizes viral entry.Proc. Natl. Acad. Sci.202111850e211294211810.1073/pnas.2112942118 34876524
    [Google Scholar]
  68. HaberlandA. KrylovaO. NikolenkoH. GöttelP. DallmannA. MüllerJ. WeisshoffH. Aptamer bc 007’s affinity to specific and less-specific anti-sars-cov-2 neutralizing antibodies.Viruses202113593210.3390/v13050932 34069827
    [Google Scholar]
  69. Saify NabiabadH. AminiM. DemirdasS. Specific delivering of RNAi using Spike’s aptamer‐functionalized lipid nanoparticles for targeting SARS‐CoV‐2: A strong anti‐Covid drug in a clinical case study.Chem. Biol. Drug Des.202299223324610.1111/cbdd.13978 34714580
    [Google Scholar]
  70. IdrisA. DavisA. SupramaniamA. AcharyaD. KellyG. TayyarY. WestN. ZhangP. McMillanC.L. SoemardyC. RayR. O’MeallyD. ScottT.A. McMillanN.A. MorrisK.V.A. SARS-CoV-2 targeted siRNA-nanoparticle therapy for COVID-19.Mol. Ther.20212972219222610.1016/j.ymthe.2021.05.004 33992805
    [Google Scholar]
  71. YuX. WangY. WangK. ZhuZ. XiaoL. HuangY. SongY. LiuD. Enhanced portable detection for Sars-CoV-2 utilizing DNA tetrahedron-tethered aptamers and a pressure meter.Anal. Methods202416463964410.1039/D3AY02100A 38205650
    [Google Scholar]
  72. YangM. LiC. YeG. ShenC. ShiH. ZhongL. TianY. ZhaoM. WuP. HussainA. ZhangT. YangH. YangJ. WengY. LiuX. WangZ. GanL. ZhangQ. LiuY. YangG. HuangY. ZhaoY. Aptamers targeting SARS-CoV-2 nucleocapsid protein exhibit potential anti pan-coronavirus activity.Sig. Transduct. Target. Ther.2024914010.1038/s41392‑024‑01748‑w 38355661
    [Google Scholar]
  73. WangZ. HeS. ZhangC. XuD. A label-free aptasensing method for detecting SARS-CoV-2 virus antigen by using dumbbell probe-mediated circle-to-circle amplification.Anal. Bioanal. Chem.202441681961197010.1007/s00216‑024‑05195‑y 38349532
    [Google Scholar]
  74. SunR. ZhouY. FangY. QinY. ZhengY. JiangL. DNA aptamer-linked sandwich structure enhanced SPRi sensor for rapid, sensitive, and quantitative detection of SARS-CoV-2 spike protein.Anal. Bioanal. Chem.202441671667167710.1007/s00216‑024‑05172‑5 38342787
    [Google Scholar]
  75. KhanR. DeshpandeA.S. ProteasaG. AndreescuS. Aptamer-based electrochemical biosensor with S protein binding affinity for COVID-19 detection: Integrating computational design with experimental validation of S protein binding affinity.Sens. Actuators B Chem.202439913477510.1016/j.snb.2023.134775
    [Google Scholar]
  76. Çam DerinD. GültekinE. GündüzE. OtluB. Comparison of six aptamer-aptamer pairs on rapid detection of SARS-CoV-2 by lateral flow assay.J. AOAC Int.2024107346447010.1093/jaoacint/qsae004 38218729
    [Google Scholar]
  77. AnuthumS. WiratchanS. SemakulN. JakmuneeJ. OunnunkadK. Signaling redox probe/DNA aptamer complexes on a new POP/2D WSe2 composite-based immunosensor towards the simultaneous detection of three-protein overexpression as an alternative severe SARS-COV-2 infection diagnosis.Sens. Actuators B Chem.202440413519610.1016/j.snb.2023.135196
    [Google Scholar]
  78. ZhangZ. LiJ. AminiR. MansfieldA. GuJ. XiaJ. BrennanJ.D. LiY. Comparative characterization of diverse dna aptamers for recognition of spike proteins of multiple SARS‐CoV‐2 variants.Anal. Sens.202335e20230000110.1002/anse.202300001
    [Google Scholar]
  79. ZhangH. ZhangC. WangZ. CaoW. YuM. SunY. Antibody- and aptamer-free SERS substrate for ultrasensitive and anti-interference detection of SARS-CoV-2 spike protein in untreated saliva.Biosens. Bioelectron.202323711545710.1016/j.bios.2023.115457 37321043
    [Google Scholar]
  80. AhnD.G. JeonI.J. KimJ.D. SongM.S. HanS.R. LeeS.W. JungH. OhJ.W. RNA aptamer-based sensitive detection of SARS coronavirus nucleocapsid protein.Analyst200913491896190110.1039/b906788d 19684916
    [Google Scholar]
  81. NegahdaryM. HirataM.H. SakataS.K. CiconelliR.M. BastosG.M. BorgesJ.B. ThurowH.S. JuniorA.T.S. SampaioM.F. GuimarãesL.B. MaedaB.S. AngnesL. Sandwich-like electrochemical aptasensing of heat shock protein 70 kDa (HSP70): Application in diagnosis/prognosis of coronavirus disease 2019 (COVID-19).Anal. Chim. Acta2023124234071610.1016/j.aca.2022.340716 36657883
    [Google Scholar]
  82. MaW. XieW. TianR. ZengX. LiangL. HouC. HuoD. WangD. An ultrasensitive aptasensor of SARS-CoV-2 N protein based on ion current rectification with nanopipettes.Sens. Actuators B Chem.202337713307510.1016/j.snb.2022.133075 36467330
    [Google Scholar]
  83. JiangW. MaZ. CaoF. HuL. BaoL. ChangP. XuC. LvX. XieY. Label-free integrated microfluidic plasmonic biosensor from vertical-cavity surface-emitting lasers for SARS-CoV-2 receptor binding domain protein detection.Opt. Express2023318121381214910.1364/OE.486605 37157379
    [Google Scholar]
  84. HaoX. St-PierreJ.P. ZouS. CaoX. Localized surface plasmon resonance biosensor chip surface modification and signal amplifications toward rapid and sensitive detection of COVID-19 infections.Biosens. Bioelectron.202323611542110.1016/j.bios.2023.115421 37244083
    [Google Scholar]
  85. ChenY. YangX. LiuJ. ZhangD. HeJ. TangL. LiJ. XiangQ. In vitro selection of a single-strand DNA aptamer targeting the receptor-binding domain of SARS-CoV-2 spike protein.Nucleosi. Nucleotid. Nucle. Acids202342210511810.1080/15257770.2022.2109170 35949145
    [Google Scholar]
  86. FengS. YuY. MaJ. WangX. SongX. XuH. LiY. MoK. LiuP. SongX. XieZ. WangY. SuX. WangW. ChenC. High-affinity aptamers enable the rapid optical detection and differentiation of three SARS-CoV-2 VOCs.Microchem. J.202319510950810.1016/j.microc.2023.109508
    [Google Scholar]
  87. AloraijY.M. SuaifanG.A. ShiblA. Al-KattanK. ZourobM.M. Development of rapid aptamer-based screening assay for the detection of Covid-19 variants.ACS Omega2023836328773288310.1021/acsomega.3c04137 37720766
    [Google Scholar]
  88. ZhangZ. LiJ. GuJ. AminiR. StaceyH.D. AngJ.C. WhiteD. FilipeC.D. MossmanK. MillerM.S. SalenaB.J. YamamuraD. SenP. SoleymaniL. BrennanJ.D. LiY. A universal dna aptamer that recognizes spike proteins of diverse sars‐cov‐2 variants of concern.Chemistry20222815e20220007810.1002/chem.202200078 35084794
    [Google Scholar]
  89. XuL. RamadanS. RosaB.G. ZhangY. YinT. TorresE. On-chip integrated graphene aptasensor with portable readout for fast and label-free COVID-19 detection in virus transport medium.Sens. Diagn.202214719730
    [Google Scholar]
  90. Amouzadeh TabriziM. AcedoP. An electrochemical impedance spectroscopy-based aptasensor for the determination of SARS-CoV-2-RBD using a carbon nanofiber–gold nanocomposite modified screen-printed electrode.Biosensors202212314210.3390/bios12030142 35323412
    [Google Scholar]
  91. Kurnia SariA. GaffarS. AnshoriI. HidayatD. HidayatD. WiraswatiH.L. The optimization of an electrochemical aptasensor to detect RBD protein S SARS-CoV-2 as a biomarker of COVID-19 using screen-printed carbon electrode/AuNP.J. Elec. Sci. Eng.202212121923510.5599/jese.1206
    [Google Scholar]
  92. RahmatiZ. RoushaniM. SARS-CoV-2 virus label-free electrochemical nanohybrid MIP-aptasensor based on Ni3(BTC)2 MOF as a high-performance surface substrate.Mikrochim. Acta2022189828710.1007/s00604‑022‑05357‑8 35852630
    [Google Scholar]
  93. LasserreP. BalansethupathyB. VezzaV.J. ButterworthA. MacdonaldA. BlairE.O. McAteerL. HannahS. WardA.C. HoskissonP.A. LongmuirA. SetfordS. FarmerE.C. MurphyM.E. FlynnH. CorriganD.K. SARS-CoV-2 Aptasensors based on electrochemical impedance spectroscopy and low-cost gold electrode substrates.Anal. Chem.20229442126213310.1021/acs.analchem.1c04456 35043638
    [Google Scholar]
  94. KurmangaliA. DukenbayevK. KanayevaD. Sensitive detection of sars-cov-2 variants using an electrochemical impedance spectroscopy based aptasensor.Int. J. Mol. Sci.202223211313810.3390/ijms232113138 36361926
    [Google Scholar]
  95. KukushkinV. AmbartsumyanO. AstrakhantsevaA. GushchinV. NikonovaA. DorofeevaA. ZverevV. GambaryanA. TikhonovaD. SovetnikovT. AkhmetovaA. YaminskyI. ZavyalovaE. Lithographic SERS aptasensor for ultrasensitive detection of sars-cov-2 in biological fluids.Nanomaterials20221221385410.3390/nano12213854 36364630
    [Google Scholar]
  96. JiangF. XiaoZ. WangT. WangJ. BieL. SalehL. Rapid and sensitive multiplex detection of COVID-19 antigens and antibody using electrochemical immunosensor-/aptasensor-enabled biochips.Chem. Commun. Camb. Engl.2022585272857288
    [Google Scholar]
  97. CurtiF. FortunatiS. KnollW. GiannettoM. CorradiniR. BertucciA. CareriM. A folding-based electrochemical aptasensor for the single-step detection of the SARS-CoV-2 spike protein.ACS Appl. Mater. Interfaces20221417192041921110.1021/acsami.2c02405 35446532
    [Google Scholar]
  98. CuiJ. KanL. ChengF. LiuJ. HeL. XueY. FangS. ZhangZ. Construction of bifunctional electrochemical biosensors for the sensitive detection of the SARS-CoV-2 N-gene based on porphyrin porous organic polymers.Dalton Trans.20225152094210410.1039/D1DT03869A 35040456
    [Google Scholar]
  99. ChenH. ParkS.K. JoungY. KangT. LeeM.K. ChooJ. SERS-based dual-mode DNA aptasensors for rapid classification of SARS-CoV-2 and influenza A/H1N1 infection.Sens. Actuators B Chem.202235513132410.1016/j.snb.2021.131324 34987275
    [Google Scholar]
  100. Amouzadeh TabriziM. AcedoP. Highly sensitive aptasensor for the detection of SARS-CoV-2-RBD using aptamer-gated methylene blue@mesoporous silica film/laser engraved graphene electrode.Biosens. Bioelectron.202221511455610.1016/j.bios.2022.114556 35870337
    [Google Scholar]
  101. Amouzadeh TabriziM. AcedoP. An electrochemical membrane-based aptasensor for detection of severe acute respiratory syndrome coronavirus-2 receptor-binding domain.Appl. Surf. Sci.202259815386710.1016/j.apsusc.2022.153867 35669218
    [Google Scholar]
  102. AdeelM. AsifK. AlshabounaF. CanzonieriV. RahmanM.M. AnsariS.A. GüderF. RizzolioF. DanieleS. Label-free electrochemical aptasensor for the detection of SARS-CoV-2 spike protein based on carbon cloth sputtered gold nanoparticles.Biosen. Bioelect.20221210025610.1016/j.biosx.2022.100256 36187906
    [Google Scholar]
  103. ZavyalovaE. AmbartsumyanO. ZhdanovG. GribanyovD. GushchinV. TkachukA. RudakovaE. NikiforovaM. KuznetsovaN. PopovaL. VerdievB. AlatyrevA. BurtsevaE. IgnatievaA. IliukhinaA. DolzhikovaI. ArutyunyanA. GambaryanA. KukushkinV. SERS-based aptasensor for rapid quantitative detection of SARS-CoV-2.Nanomaterials2021116139410.3390/nano11061394 34070421
    [Google Scholar]
  104. Amouzadeh TabriziM. NazariL. AcedoP. A photo-electrochemical aptasensor for the determination of severe acute respiratory syndrome coronavirus 2 receptor-binding domain by using graphitic carbon nitride-cadmium sulfide quantum dots nanocomposite.Sens. Actuators B Chem.202134513037710.1016/j.snb.2021.130377 34219971
    [Google Scholar]
  105. GuptaR. SagarP. PriyadarshiN. KaulS. SandhirR. RishiV. SinghalN.K. Nanotechnology-based approaches for the detection of SARS-CoV-2.Front. Nanotechnol.2020258983210.3389/fnano.2020.589832
    [Google Scholar]
  106. HuangY. HuangC. ChenJ. ChenS. LiB. LiJ. JinZ. ZhangQ. PanP. DuW. LiuL. LiuZ. Inhibition of SARS-CoV-2 replication by a ssDNA aptamer targeting the nucleocapsid protein.Microbiol. Spectr.2024124e034102310.1128/spectrum.03410‑23 38376366
    [Google Scholar]
  107. SunM. LiuS. WeiX. WanS. HuangM. SongT. LuY. WengX. LinZ. ChenH. SongY. YangC. Aptamer blocking strategy inhibits SARS‐CoV‐2 virus infection.Angew. Chem. Int. Ed.20216018102661027210.1002/anie.202100225 33561300
    [Google Scholar]
  108. ZhangJ. ZhuA. MeiM. QuJ. HuangY. ShiY. XueM. ZhangJ. ZhangR. ZhouB. TanX. ZhaoJ. WangY. Repurposing CRISPR/Cas to discover SARS‐CoV‐2 detecting and neutralizing aptamers.Adv. Sci.20231022230065610.1002/advs.202300656 37204115
    [Google Scholar]
  109. Alves Ferreira-BravoI. DeStefanoJ.J. Xeno-nucleic acid (xna) 2′-fluoro-arabino nucleic acid (fana) aptamers to the receptor-binding domain of SARS-CoV-2 S protein block ACE2 binding.Viruses20211310198310.3390/v13101983 34696413
    [Google Scholar]
  110. YangG. LiZ. MohammedI. ZhaoL. WeiW. XiaoH. GuoW. ZhaoY. QuF. HuangY. Identification of SARS-CoV-2-against aptamer with high neutralization activity by blocking the RBD domain of spike protein 1.Signal Transduct. Target. Ther.20216122710.1038/s41392‑021‑00649‑6 34112756
    [Google Scholar]
  111. PeinettiA.S. LakeR.J. CongW. CooperL. WuY. MaY. PawelG.T. Toimil-MolaresM.E. TrautmannC. RongL. MariñasB. AzzaroniO. LuY. Direct detection of human adenovirus or SARS-CoV-2 with ability to inform infectivity using DNA aptamer-nanopore sensors.Sci. Adv.2021739eabh284810.1126/sciadv.abh2848 34550739
    [Google Scholar]
  112. YangG. ZhangS. WangY. LiL. LiY. YuanD. LuoF. ZhaoJ. SongX. ZhaoY. Aptamer blocking S-TLR4 interaction selectively inhibits SARS-CoV-2 induced inflammation.Signal Transduct. Target. Ther.20227112010.1038/s41392‑022‑00968‑2 35410404
    [Google Scholar]
  113. JiaH. ZhangA. YangY. CuiY. XuJ. JiangH. TaoS. ZhangD. ZengH. HouZ. FengJ. A graphene oxide coated tapered microfiber acting as a super-sensor for rapid detection of SARS-CoV-2.Lab Chip202121122398240610.1039/D0LC01231A 33960344
    [Google Scholar]
  114. ZhangY. JuhasM. KwokC.K. Aptamers targeting SARS-COV-2: A promising tool to fight against COVID-19.Trends Biotechnol.202341452854410.1016/j.tibtech.2022.07.012 35995601
    [Google Scholar]
/content/journals/cac/10.2174/0115734110318858240903063224
Loading
/content/journals/cac/10.2174/0115734110318858240903063224
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Review Article
Keyword(s): aptamer; COVID-19; detection; SARS-CoV-2; systematic review; treatment; viral infection
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test