Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Recently, bimetallic metal-organic frameworks (MOFs) have gained significant attention for their potential in treating industrial wastewater. The rapid increase in industrialization worldwide has resulted in the continual discharge of organic dyes in aquatic ecosystems. These dyes disrupt aquatic ecosystems and are hazardous for human beings. Thus, there is a considerable demand to design a framework for the removal of contaminants from wastewater. For this purpose, this study focuses on synthesizing BM-MOF@PC and investigating its efficacy in removing methyl orange (MO) and congo red (CR).

Methods

A novel, low-cost, eco-friendly Zn and Co-based bimetallic MOF (BM-MOF) modified polyaniline and cellulose acetate (PC) were synthesized based on electrospun (BM-MOF@PC) nanofibers. The prepared BM-MOF@PC was characterized by SEM, XRD, FTIR, and N adsorption-desorption isotherm. The smooth formation of BM-MOF@PC nanofibers generates high adsorption capability by exposing the maximal active site for the adsorption at the entire surface. The adsorption capability of synthesized BM-MOF@PC nanofibers was evaluated against MO and CR dyes from an aqueous phase.

Results

The maximum adsorption capacity of MO and CR at the surface of BM-MOF@PC nanofibers were 636.9 and 313.05 mg/g, respectively. Several adsorption parameters, including initial dye concentration, contact time, temperature, the adsorbent's doses, and pH's effect on adsorption kinetics, were investigated. The ability of BM-MOF@PC nanofibers to adsorb MO and CR at various pHs indicated that several attraction forces, including electrostatic interaction, hydrogen bonding, and π-π interactions, could be involved in the dye removal.

Conclusion

The fabricated material BM-MOF@PC nanofibers have a large surface area compared to BM-MOF, which indicates the more active sites for the adsorption of MO and CR dyes. Moreover, the BM-MOF@PC nanofibers demonstrated robust reusability towards MO and CR adsorption across five cycles, which suggested that our fabricated material is more stable and economically reliable in real-time applications.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110318608240603144306
2024-06-13
2025-09-02
Loading full text...

Full text loading...

References

  1. OnuohaF.C. Environmental degradation, livelihood and conflicts: A focus on the implications of the diminishing water resources of Lake Chad for north-eastern Nigeria.Afr. J. Confl. Resolut.2008823561
    [Google Scholar]
  2. Tag El-DinA.F. El-KhoulyM.E. ElshehyE.A. AtiaA.A. El-SaidW.A. Cellulose acetate assisted synthesis of worm-shaped mesopores of MgP ion-exchanger for cesium ions removal from seawater.Microporous Mesoporous Mater.201826521121810.1016/j.micromeso.2018.02.014
    [Google Scholar]
  3. YousifA.M. ZaidO.F. El-SaidW.A. ElshehyE.A. IbrahimI.A. Silica nanospheres-coated nanofibrillated cellulose for removal and detection of copper(II) ions in aqueous solutions.Ind. Eng. Chem. Res.201958124828483710.1021/acs.iecr.8b06343
    [Google Scholar]
  4. ZaidO.F. El-SaidW.A. YousifA.M. GalhoumA.A. ElshehyE.A. IbrahimI.A. GuibalE. Synthesis of microporous nano-composite (hollow spheres) for fast detection and removal of As(V) from contaminated water.Chem. Eng. J.202039012443910.1016/j.cej.2020.124439
    [Google Scholar]
  5. AbdelmageedN. El-SaidW.A. YounesA.A. AtreesM.S. FaragA.B. ElshehyE.A. AbdelkaderA.M. Facile synthesis of SILICA‐POLYMER monoliths using nonionic triblock copolymer surfactant for efficient removal of radioactive pollutants from contaminated seawater.J. Appl. Polym. Sci.2021138435126310.1002/app.51263
    [Google Scholar]
  6. TolanD.A. ElshehyE.A. El-SaidW.A. TaketsuguT. YoshizawaK. El-NahasA.M. KamaliA.R. AbdelkaderA.M. Cubically cage-shaped mesoporous ordered silica for simultaneous visual detection and removal of uranium ions from contaminated seawater.Mikrochim. Acta20221891310.1007/s00604‑021‑05083‑7 34855016
    [Google Scholar]
  7. AlsulamiQ.A. HusseinM.A. AlsheheriS.Z. ElshehyE.A. El-SaidW.A. Unexpected ultrafast and high adsorption performance of Ag(I) and Hg(II) ions from multiple aqueous solutions using microporous functional silica-polymer sponge-like composite.J. Mater. Res. Technol.2022172000201310.1016/j.jmrt.2022.01.048
    [Google Scholar]
  8. BakhotmahD.A. HusseinM.A. El-SaidW. IsmaelM.H. ElshehyE. Efficient removal of cesium and strontium from an aqueous solution using a zirconosilicate/vanadium oxide nanocomposite.J. Dispers. Sci. Technol.202344101842185210.1080/01932691.2022.2048005
    [Google Scholar]
  9. AlhindawyI.G. TolanD.A. ElshehyE.A. El-SaidW.A. AbdelwahabS.M. MiraH.I. TaketsuguT. UtgikarV.P. El-NahasA.M. YoussefA.O. A novel pH-Dependent sensor for recognition of strontium ions in water: A hierarchically structured mesoporous architectonics.Talanta202325312406410.1016/j.talanta.2022.124064
    [Google Scholar]
  10. TolanD. HenieshA. IsmaelM. ElshehyE. AlqahtaniN.F. El-SaidW.A. El-NahasA. El-SawafA. Removal of mercury ions from aqueous solutions using dithiooxamide-glutaraldehyde resin.Solvent Extr. Ion Exch.202341795897310.1080/07366299.2023.2259951
    [Google Scholar]
  11. Lindholm-LehtoP.C. KnuutinenJ.S. AhkolaH.S.J. HerveS.H. Refractory organic pollutants and toxicity in pulp and paper mill wastewaters.Environ. Sci. Pollut. Res. Int.20152296473649910.1007/s11356‑015‑4163‑x 25647495
    [Google Scholar]
  12. Al-TohamyR. AliS.S. LiF. OkashaK.M. MahmoudY.A.G. ElsamahyT. JiaoH. FuY. SunJ. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety.Ecotoxicol. Environ. Saf.202223111316010.1016/j.ecoenv.2021.113160 35026583
    [Google Scholar]
  13. SelvarajV. Swarna KarthikaT. MansiyaC. AlagarM. An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications.J. Mol. Struct.2021122412919510.1016/j.molstruc.2020.129195
    [Google Scholar]
  14. Baena-BaldirisD. Montes-RobledoA. Baldiris-AvilaR. Franconibacter sp., 1MS: A new strain in decolorization and degradation of azo dyes ponceau s red and methyl orange.ACS Omega2020543281462815710.1021/acsomega.0c03786 33163797
    [Google Scholar]
  15. MokarramM. SaberA. SheykhiV. Effects of heavy metal contamination on river water quality due to release of industrial effluents.J. Clean. Prod.202027712338010.1016/j.jclepro.2020.123380
    [Google Scholar]
  16. LiL. LiJ. WangX. LiuC. LiL. Preparation of high-performance zeolite membrane on a macroporous support by novel intermittent hydrothermal synthesis.Microporous Mesoporous Mater.202336011273410.1016/j.micromeso.2023.112734
    [Google Scholar]
  17. LiL. LiJ. ChengL. WangJ. YangJ. Microwave synthesis of high-quality mordenite membrane by a two-stage varying heating-rate procedure.J. Membr. Sci.202061211847910.1016/j.memsci.2020.118479
    [Google Scholar]
  18. RashidR. ShafiqI. AkhterP. IqbalM.J. HussainM. A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method.Environ. Sci. Pollut. Res. Int.20212889050906610.1007/s11356‑021‑12395‑x 33483933
    [Google Scholar]
  19. LiX.L. ZhangW. HuangY.Q. WangQ. YangJ.M. Superior adsorptive removal of azo dyes from aqueous solution by a Ni(II)-doped metal–organic framework.Colloids Surf. A Physicochem. Eng. Asp.202161912654910.1016/j.colsurfa.2021.126549
    [Google Scholar]
  20. YangX. WanY. ZhengY. HeF. YuZ. HuangJ. WangH. OkY.S. JiangY. GaoB. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review.Chem. Eng. J.201936660862110.1016/j.cej.2019.02.119 34522159
    [Google Scholar]
  21. SmithS.C. RodriguesD.F. Carbon-based nanomaterials for removal of chemical and biological contaminants from water: A review of mechanisms and applications.Carbon20159112214310.1016/j.carbon.2015.04.043
    [Google Scholar]
  22. SajidM. AsifM. BaigN. KabeerM. IhsanullahI. MohammadA.W. Carbon nanotubes-based adsorbents: Properties, functionalization, interaction mechanisms, and applications in water purification.J. Water Process Eng.20224710281510.1016/j.jwpe.2022.102815
    [Google Scholar]
  23. GusainR. KumarN. RayS.S. Recent advances in carbon nanomaterial-based adsorbents for water purification.Coord. Chem. Rev.202040521311110.1016/j.ccr.2019.213111
    [Google Scholar]
  24. SayyedA.J. PinjariD.V. SonawaneS.H. BhanvaseB.A. SheikhJ. SillanpääM. Cellulose-based nanomaterials for water and wastewater treatments: A review.J. Environ. Chem. Eng.20219610662610.1016/j.jece.2021.106626
    [Google Scholar]
  25. HaoZ. WangC. YanZ. JiangH. XuH. Magnetic particles modification of coconut shell-derived activated carbon and biochar for effective removal of phenol from water.Chemosphere201821196296910.1016/j.chemosphere.2018.08.038 30119027
    [Google Scholar]
  26. HussainS.N. RobertsE.P.L. AsgharH.M.A. CampenA.K. BrownN.W. Oxidation of phenol and the adsorption of breakdown products using a graphite adsorbent with electrochemical regeneration.Electrochim. Acta201392203010.1016/j.electacta.2013.01.020
    [Google Scholar]
  27. SherF. MalikA. LiuH. Industrial polymer effluent treatment by chemical coagulation and flocculation.J. Environ. Chem. Eng.20131468468910.1016/j.jece.2013.07.003
    [Google Scholar]
  28. ZagklisD.P. VavourakiA.I. KornarosM.E. ParaskevaC.A. Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption.J. Hazard. Mater.2015285697610.1016/j.jhazmat.2014.11.038 25497019
    [Google Scholar]
  29. KarriR.R. JayakumarN.S. SahuJ.N. Modelling of fluidised-bed reactor by differential evolution optimization for phenol removal using coconut shells based activated carbon.J. Mol. Liq.201723124926210.1016/j.molliq.2017.02.003
    [Google Scholar]
  30. ModiS. YadavV.K. GacemA. AliI.H. DaveD. KhanS.H. YadavK.K. RatherS. AhnY. SonC.T. JeonB-H. Recent and emerging trends in remediation of methylene blue dye from wastewater by using zinc oxide nanoparticles.Water20221411174910.3390/w14111749
    [Google Scholar]
  31. YadavV.K. ChoudharyN. AliD. KumarG. GnanamoorthyG. KhanA.U. KumarP. Hari KumarS. TizazuB.Z. Determination of adsorption of methylene blue dye by incense stick ash waste and its toxicity on RTG-2 Cells.Adsorpt. Sci. Technol.20222022856515110.1155/2022/8565151
    [Google Scholar]
  32. WuS. LiK. ShiW. CaiJ. Preparation and performance evaluation of chitosan/polyvinylpyrrolidone/polyvinyl alcohol electrospun nanofiber membrane for heavy metal ions and organic pollutants removal.Int. J. Biol. Macromol.2022210768410.1016/j.ijbiomac.2022.05.017 35533844
    [Google Scholar]
  33. RehmanR. RazaA. YasmeenF. DarA. Al-thagafiZ.T. MerafZ. Recent literature review of significance of polypyrrole and its biocomposites in adsorption of dyes from aqueous solution.Adsorpt. Sci. Technol.20222022704783210.1155/2022/7047832
    [Google Scholar]
  34. AliA.S.M. El-AassarM.R. HashemF.S. MoussaN.A. Surface modified of cellulose acetate electrospun nanofibers by polyaniline/β-cyclodextrin composite for removal of cationic dye from aqueous medium.Fibers Polym.201920102057206910.1007/s12221‑019‑9162‑y
    [Google Scholar]
  35. ZhambolovaA. VocaturoA.L. TileuberdiY. OngarbayevY. CaputoP. AielloI. Oliviero RossiC. GodbertN. Functionalization and modification of bitumen by silica nanoparticles.Appl. Sci.20201017606510.3390/app10176065
    [Google Scholar]
  36. LütkeS.F. IgansiA.V. PegoraroL. DottoG.L. PintoL.A.A. CadavalT.R.S.Jr Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption.J. Environ. Chem. Eng.20197510339610.1016/j.jece.2019.103396
    [Google Scholar]
  37. Ramezanipour PenchahH. GhaemiA. JafariF. Piperazine-modified activated carbon as a novel adsorbent for CO2 capture: Modeling and characterization.Environ. Sci. Pollut. Res. Int.20222945134514310.1007/s11356‑021‑16040‑5 34417695
    [Google Scholar]
  38. GallettiC. DosaM. RussoN. FinoD. Zn2+ and Cd2+ removal from wastewater using clinoptilolite as adsorbent.Environ. Sci. Pollut. Res. Int.20212819243552436110.1007/s11356‑020‑08483‑z 32212074
    [Google Scholar]
  39. IslamF. ShohagS. UddinM.J. IslamM.R. NafadyM.H. AkterA. MitraS. RoyA. EmranT.B. CavaluS. Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications.Materials2022156216010.3390/ma15062160 35329610
    [Google Scholar]
  40. FazalM.W. ZafarF. AsadM. MohammadH. Al SulamiF. KhalidH. AbdelwahabA.A. Ur RehmanM.U. AkhtarN. El-SaidW.A. HussainS. Zn and Co loaded porous C decorated electrospun nanofibers as efficient oxygen evolution reaction for water splitting.ACS Appl. Energy Mater.2023652739274610.1021/acsaem.2c03439
    [Google Scholar]
  41. El-AswarE.I. RamadanH. ElkikH. TahaA.G. A comprehensive review on preparation, functionalization and recent applications of nanofiber membranes in wastewater treatment.J. Environ. Manage.202230111390810.1016/j.jenvman.2021.113908 34626949
    [Google Scholar]
  42. CuiJ. LiF. WangY. ZhangQ. MaW. HuangC. Electrospun nanofiber membranes for wastewater treatment applications.Separ. Purif. Tech.202025011711610.1016/j.seppur.2020.117116
    [Google Scholar]
  43. Al-SulamiA.I. FatimaA. Al-SulamiF.M.H. SamiA. AldahiriR.H. KhanM. Al-GhamdiA.A. AkhtarN. El SaidW.A. C-entrapped Cu nanoparticles-infused polyaniline-modified cellulose nanofibers for the precise monitoring of xanthine in urine samples.New J. Chem.20244862817282410.1039/D3NJ05380F
    [Google Scholar]
  44. WangL. WuX.L. XuW.H. HuangX.J. LiuJ.H. XuA.W. Stable organic-inorganic hybrid of polyaniline/α-zirconium phosphate for efficient removal of organic pollutants in water environment.ACS Appl. Mater. Interfaces2012452686269210.1021/am300335e 22545781
    [Google Scholar]
  45. García-MateosF.J. Ruiz-RosasR. MarquésM.D. CotorueloL.M. Rodríguez-MirasolJ. CorderoT. Removal of paracetamol on biomass-derived activated carbon: Modeling the fixed bed breakthrough curves using batch adsorption experiments.Chem. Eng. J.2015279183010.1016/j.cej.2015.04.144
    [Google Scholar]
  46. DuQ. RaoR. BiF. YangY. ZhangW. YangY. LiuN. ZhangX. Preparation of modified zirconium-based metal-organic frameworks (Zr-MOFs) supported metals and recent application in environment: A review and perspectives.Surf. Interfaces20222810164710.1016/j.surfin.2021.101647
    [Google Scholar]
  47. ShoukatN. AnzarS. AsadM. Al-SulamiA.I. KhalidH. ChoudharyA.A. SherinL. AkhtarN. Fabrication of CuO–NiO wrapped cellulose acetate/polyaniline electrospun nanofibers for sensitive monitoring of bisphenol-A.ACS Sustain. Chem. Eng.202311114299430710.1021/acssuschemeng.2c04482
    [Google Scholar]
  48. SpiersM.E. NielsenD.J. PaveyK.D. TruongY.B. RutledgeG.C. KingshottP. EldridgeD.S. Conductive, acid-doped polyaniline electrospun nanofiber gas sensing substrates made using a facile dissolution method.ACS Appl. Mater. Interfaces20211344529505295910.1021/acsami.1c08136 34723480
    [Google Scholar]
  49. LiuW. ZhongT. LiuT. ZhangJ. LiuH. Preparation and characterization of electrospun conductive janus nanofibers with polyaniline.ACS Appl. Polym. Mater.2020272819282910.1021/acsapm.0c00364
    [Google Scholar]
  50. LiH. AnN. LiuG. LiJ. LiuN. JiaM. ZhangW. YuanX. Adsorption behaviors of methyl orange dye on nitrogen-doped mesoporous carbon materials.J. Colloid Interface Sci.201646634335110.1016/j.jcis.2015.12.048 26748066
    [Google Scholar]
  51. JabirL. El-HammiH. MohammedN. JilalI. El IdrissiA. AmhamdiH. Abou-SalamaM. El OuardiY. El BarkanyS. LaatikainenK. Cellulose based pH-sensitive hydrogel for highly efficient dye removal in water treatment: kinetic, thermodynamic, theoretical and computational studies.Cellulose20222984539456410.1007/s10570‑022‑04564‑z
    [Google Scholar]
  52. LiuL. CuiW. LuC. ZainA. ZhangW. ShenG. HuS. QianX. Analyzing the adsorptive behavior of Amoxicillin on four Zr-MOFs nanoparticles: Functional groups dependence of adsorption performance and mechanisms.J. Environ. Manage.202026811063010.1016/j.jenvman.2020.110630 32510425
    [Google Scholar]
  53. Abdel MaksoudM.I.A. ElgarahyA.M. FarrellC. Al-MuhtasebA.H. RooneyD.W. OsmanA.I. Insight on water remediation application using magnetic nanomaterials and biosorbents.Coord. Chem. Rev.202040321309610.1016/j.ccr.2019.213096
    [Google Scholar]
  54. ZubairM. Mu’azuN.D. JarrahN. BlaisiN.I. AzizH.A. Al-HarthiM.A. Adsorption behavior and mechanism of methylene blue, crystal violet, eriochrome black T, and methyl orange dyes onto biochar-derived date palm fronds waste produced at different pyrolysis conditions.Water Air Soil Pollut.202023111910.1007/s11270‑020‑04595‑x
    [Google Scholar]
  55. AlamzebM. TullahM. AliS. Ihsanullah; Khan, B.; Setzer, W.N.; Al-Zaqri, N.; Ibrahim, M.N.M. Kinetic, thermodynamic and adsorption isotherm studies of detoxification of eriochrome black t dye from wastewater by native and washed garlic peel.Water20221422371310.3390/w14223713
    [Google Scholar]
  56. KouZ. ZhaoZ. LiH. GaoX. A review of adsorption intensified by microwave irradiation from absorbent preparation to separation processes.Chem. Eng. Process.202318410930010.1016/j.cep.2023.109300
    [Google Scholar]
  57. AbualnajaK.M. AlprolA.E. Abu-SaiedM.A. MansourA.T. AshourM. Studying the adsorptive behavior of poly(acrylonitrile-co-styrene) and carbon nanotubes (nanocomposites) impregnated with adsorbent materials towards methyl orange dye.Nanomaterials2021115114410.3390/nano11051144 33924975
    [Google Scholar]
  58. OldalD.G. TopuzF. HoltzlT. SzekelyG. Green electrospinning of biodegradable cellulose acetate nanofibrous membranes with tunable porosity.ACS Sustain. Chem.& Eng.2023113994100510.1021/acssuschemeng.2c05676
    [Google Scholar]
  59. GünayA. ArslankayaE. Tosunİ. Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics.J. Hazard. Mater.20071461-236237110.1016/j.jhazmat.2006.12.034 17261347
    [Google Scholar]
  60. LeiC. WangC. ChenW. HeM. HuangB. Polyaniline@magnetic chitosan nanomaterials for highly efficient simultaneous adsorption and in-situ chemical reduction of hexavalent chromium: Removal efficacy and mechanisms.Sci. Total Environ.202073313931610.1016/j.scitotenv.2020.139316 32447080
    [Google Scholar]
  61. LiuQ. LiuQ. WuZ. WuY. GaoT. YaoJ. Efficient removal of methyl orange and alizarin red S from pH-unregulated aqueous solution by the catechol–amine resin composite using hydrocellulose as precursor.ACS Sustain. Chem.& Eng.2017521871188010.1021/acssuschemeng.6b02593
    [Google Scholar]
  62. GuptaS.A. VisheshY. SarvshresthaN. BhardwajA.S. KumarP.A. TopareN.S. Raut-JadhavS. BokilS.A. KhanA. Adsorption isotherm studies of Methylene blue using activated carbon of waste fruit peel as an adsorbent.Mater. Today Proc.2022571500150810.1016/j.matpr.2021.12.044
    [Google Scholar]
  63. JorgettoAde. O. PereiraS.P. SilvaR.I. SaekiM.J. MartinesM.A. PedrosaVde.A. CastroG.R. Application of mesoporous SBA-15 silica functionalized with 4-amino-2-mercaptopyrimidine for the adsorption of Cu(II), Zn(II), Cd(II), Ni(II), and Pb(II) from water.Acta Chim. Slov.2015621111121 25830967
    [Google Scholar]
  64. RawatA.P. SinghD.P. Kinetic and thermodynamic study on adsorption characteristics of ash derived from distilled waste of aromatic crop Mentha piperita: A low-cost efficient adsorbent for crystal violet removal.Desalination Water Treat.20178422523610.5004/dwt.2017.21072
    [Google Scholar]
  65. ShakeelM. MahmoodK. Thermodynamic and solution properties of sodium valporate in aqueous solution and its interaction with cetyl trimethylammonium bromide (CTAB).J. Mol. Liq.201928515816410.1016/j.molliq.2019.04.079
    [Google Scholar]
  66. VishalK. AruchamyK. SriramG. ChingY.C. OhT.H. HegdeG. AjeyaK.V. JoshiS. SowriraajanA.V. JungH.Y. KurkuriM. Engineering a low-cost diatomite with Zn-Mg-Al Layered triple hydroxide (LTH) adsorbents for the effectual removal of Congo red: Studies on batch adsorption, mechanism, high selectivity, and desorption.Colloids Surf. A Physicochem. Eng. Asp.202366113092210.1016/j.colsurfa.2023.130922
    [Google Scholar]
  67. ZghalS. JedidiI. CretinM. CerneauxS. AbdelmoulehM. Adsorptive removal of Rhodamine B dye using carbon graphite/cnt composites as adsorbents: Kinetics, isotherms and thermodynamic study.Materials2023163101510.3390/ma16031015 36770024
    [Google Scholar]
  68. Farooq KhanM. AhmedH. Abdulkareem AlmashhadaniH. Al-BahraniM. Ullah KhanA. AliS. GulN. HassanT. IsmailA. ZahidM. Sustainable adsorptive removal of high concentration organic contaminants from water using biodegradable Gum-Acacia integrated magnetite nanoparticles hydrogel adsorbent.Inorg. Chem. Commun.202214511005710.1016/j.inoche.2022.110057
    [Google Scholar]
/content/journals/cac/10.2174/0115734110318608240603144306
Loading
/content/journals/cac/10.2174/0115734110318608240603144306
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test