Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

poir leaves are a widely distributed medicinal plant material in the Eastern Hemisphere. However, there has been no report regarding their chemistry until now.

Methods

Fresh leaves were treated using a set of experimental protocols to prepare a lyophilized aqueous extract. Subsequently, the extract was qualitative and quantitatively analyzed using the database-affinity ultra-high-performance liquid chromatography-quadrupole-Exactive-Orbitrap-tandem mass spectrometry (UHPLC-Q-Exactive-Orbitrap-MS/MS) technology.

Results

Based on MS/MS elucidation and comparison with the database in UHPLC-Q-Exactive-Orbitrap-MS/MS apparatus, 33 compounds were qualitatively identified. Especially, 12 isomers were strictly distinguished, including apigenin 2'-hydroxydaidzein, luteolin 7--glucuronide scutellarin, (+) catechin (-) epicatechin, 3caffeoylquinic acid 4caffeoylquinic acid 5caffeoylquinic acid, and 3,4dicaffeoylquinic acid 3,5dicaffeoylquinic acid 4,5--dicaffeoylquinic acid. In addition, 21 non-isomeric compounds, such as ellagic acid and gallic acid, were also found under negative or positive ion models. The quantitative analysis suggested that ellagic acid was found to be of the highest level (133.00 ± 3.50 µg/g), while (+)-4-cholesten-3-one was calculated to be of the lowest level (0.035 ± 0.0050 µg/g).

Conclusion

These findings will help to understand the substance basis of the traditional medicinal functions of leaves and to find their suitable quality markers.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110314497240819053300
2024-08-26
2025-10-25
Loading full text...

Full text loading...

References

  1. Plants of the world online.2023https://powo.science.kew.org/
    [Google Scholar]
  2. BaretS. NicoliniE. Le BourgeoisT. StrasbergD. Developmental patterns of the invasive bramble (Rubus alceifolius Poiret, Rosaceae) in Réunion island: An architectural and morphometric analysis.Ann. Bot. (Lond.)2003911394810.1093/aob/mcg006 12495918
    [Google Scholar]
  3. LinJ. ZhaoJ. LiT. ZhouJ. HuJ. HongZ. Hepatoprotection in a rat model of acute liver damage through inhibition of CY2E1 activity by total alkaloids extracted from Rubus alceifolius Poir.Int. J. Toxicol.201130223724310.1177/1091581810390711 21224420
    [Google Scholar]
  4. GeorgeB.P. AbrahamseH. Traditional uses and bioactivities of common rubus species with reference to cancer: A mini‐reviewIn book: PhytopharmaceuticalsWiley, Durgesh Nandini Chauhan, Kamal Shah2021259270
    [Google Scholar]
  5. BhuyanB. DuttaA. A review on the phytochemical, pharmacological and traditional profile on the rubus genus in north-eastern and western parts of india. Curr. Trends.Pharm. Res.202181
    [Google Scholar]
  6. WuJ. ZhongX.Y. ZhaoJ.Y. ZhengY.Q. ZhengH.Y. HongZ.F. Effects of total alkaloids of Rubus alceaefolius piron on lipid metabolism and cpt i expression in rats with NAELD.j. Changzhi. med. coll.201327417420
    [Google Scholar]
  7. Clarivate database2023http://www.webofknowledge.com
  8. TranC.H. NghiemM.T. DinhA.M.T. DangT.T.N. Van DoT.T. ChuT.N. MaiT.H. PhanV.M. Optimization conditions of ultrasound-assisted extraction for phenolic compounds and antioxidant activity from Rubus alceifolius Poir Leaves.Int. J. Food Sci.2023202311210.1155/2023/7576179 37854461
    [Google Scholar]
  9. GuoY.L. TangQ.T. ZhangF.R. ZhaoH.W. LiuT. ZhaoZ.M. Analysis of compounds in Rubus aleaefolius Poir. leaves by polyamide TLC-MS/MS.Lishizhen Med. Mater. Med. Res.20152613901392
    [Google Scholar]
  10. GuoY.L. TangT.X. YangD.P. CenS. ZhuL.P. XuX.J. Polyphenols and triterpenoids in rubus aleaefolius poir.leaves.Zhiwu Kexue Xuebao201331219119710.3724/SP.J.1142.2013.20191
    [Google Scholar]
  11. LiuS. LiX. CaiR. ChenB. ZengJ. LiC. ZhouX. LiY. UHPLC-Quadrupole-exactive-orbitrap-ms/ms-based putative identification for eucommiae folium (duzhongye) and its quality-marker candidate for pharmacopeia.J. Sep. Sci.20234622300041
    [Google Scholar]
  12. ZengJ. LiX. CaiR. LiC. ChenS. UHPLC-Q-extractive-Orbitrap-MS assay: Putative identification of 45 potential anti-Covid-19 constituents, confidential addition, and pharmacopoeia quality-markers recommendation.Yao Wu Shi Pin Fen Xi202331353455110.38212/2224‑6614.3466
    [Google Scholar]
  13. ChenS. LiX. ZengJ. CaiR. LiC. ChenC. Library-based UHPLC-Q-exactive-orbitrap-MS putative identification of isomeric and non-isomeric bioactives from Zibushengfa Tablet and pharmacopeia quality-marker chemistry.J. Liq. Chromatogr. Relat. Technol.2023466-1015316710.1080/10826076.2023.2223640
    [Google Scholar]
  14. LiC. LiX. ZengJ. CaiR. ChenS. ChenB. ZhaoX. Detection of adulterated naodesheng tablet (naodesheng pian) via in-depth chemical analysis and subsequent reconstruction of its pharmacopoeia q-markers.Molecules2024296139210.3390/molecules29061392 38543029
    [Google Scholar]
  15. LiX. ZengJ. CaiR. LiC. New UHPLC-Q-Orbitrap MS/MS-based Library-comparison method simultaneously distinguishes 22 phytophenol isomers from Desmodium styracifolium.Microchem. J.202319110893810.1016/j.microc.2023.108938
    [Google Scholar]
  16. LiX. Solvent effects and improvements in the deoxyribose degradation assay for hydroxyl radical-scavenging.Food Chem.201314132083208810.1016/j.foodchem.2013.05.084 23870931
    [Google Scholar]
  17. JiangQ. LiX. TianY. LinQ. XieH. LuW. ChiY. ChenD. Lyophilized aqueous extracts of Mori Fructus and Mori Ramulus protect Mesenchymal stem cells from •OH–treated damage: bioassay and antioxidant mechanism.BMC Complement. Altern. Med.201717124210.1186/s12906‑017‑1730‑3 28464859
    [Google Scholar]
  18. LiX. WangT. LiuJ. LiuY. ZhangJ. LinJ. ZhaoZ. ChenD. Effect and mechanism of wedelolactone as antioxidant-coumestan on OH -treated mesenchymal stem cells.Arab. J. Chem.202013118419210.1016/j.arabjc.2017.03.008
    [Google Scholar]
  19. CaiR. LiX. LiC. ZhuJ. ZengJ. LiJ. TangB. LiZ. LiuS. YanY. Standards-based uplc-q-exactive orbitrap ms systematically identifies 36 bioactive compounds in ampelopsis grossedentata (Vine Tea).Separations202291132910.3390/separations9110329
    [Google Scholar]
  20. LiX. ChenS. ZengJ. CaiR. LiangY. ChenC. ChenB. LiC. Database-aided UHPLC-Q-orbitrap MS/MS strategy putatively identifies 52 compounds from Wushicha Granule to propose anti-counterfeiting quality-markers for pharmacopoeia.Chin. Med.202318111610.1186/s13020‑023‑00829‑2 37689743
    [Google Scholar]
  21. QiP. ZhouQ. ChenG. LinZ. ZhaoJ. XuH. GaoH. LiuD. MaoX. Simultaneous qualitative and quantitative determination of 104 fat-soluble synthetic dyes in foods using disperse solid-phase extraction and UHPLC-Q-Orbitrap HRMS analysis.Food Chem.202342713666510.1016/j.foodchem.2023.136665 37437404
    [Google Scholar]
  22. ÖncüT. YükselB. BinayE. ŞenN. LC-MS/MS Investigation of nitrosamine impurities in certain Sartan group medicinal products available in Istanbul, Türkiye.Ann. Pharm. Fr.2024821728310.1016/j.pharma.2023.08.002 37567559
    [Google Scholar]
  23. YükselB. ÖncüT. ŞenN. Assessing caffeine levels in soft beverages available in Istanbul, Turkey: An LC-MS/MS application in food toxicology.Toxicologie Analytique et Clinique2023351334310.1016/j.toxac.2022.08.004
    [Google Scholar]
  24. ŞEN N. Development and validation of a GC-FID method for determination of cocaine in illicit drug samples.Marmara Pharm. J.201822511518
    [Google Scholar]
  25. HuaY. LiX. ZhangW. ChenB. LiuY. ZhaoX. XieH. ChenD. Antioxidant product analysis of Folium Hibisci Mutabilis.J. Saudi Chem. Soc.202125710127210.1016/j.jscs.2021.101272
    [Google Scholar]
  26. WuJ. CaiB. ZhangA. ZhaoP. DuY. LiuX. ZhaoD. YangL. LiuX. LiJ. Chemical identification and antioxidant screening of bufei yishen formula using an offline dpph ultrahigh-performance liquid chromatography q-extractive orbitrap MS/MS.Int. J. Anal. Chem.2022202211910.1155/2022/1423801 36284795
    [Google Scholar]
  27. SongS. ZhouH. LanX. YuanX. LiY. HuangS. WangZ. ZhangJ. Comprehensive characterization of narirutin metabolites in vitro and in vivo based on Analogous-Core recursion analysis strategy using UHPLC-Q-Exactive Orbitrap MS/MS.Arab. J. Chem.202316810494910.1016/j.arabjc.2023.104949
    [Google Scholar]
  28. LiuT. CaoX. CaoD. Combination of UHPLC‐Q Exactive‐Orbitrap MS and network pharmacology to reveal the mechanism of Eucommia ulmoides leaves in the treatment of osteoarthritis.J. Food Biochem.20224681420410.1111/jfbc.14204 35484881
    [Google Scholar]
  29. LiX. WuX. HuangL. Correlation between antioxidant activities and phenolic contents of radix Angelicae sinensis (Danggui).Molecules200914125349536110.3390/molecules14125349 20032898
    [Google Scholar]
  30. Baradaran RahimiV. GhadiriM. RamezaniM. AskariV.R. Antiinflammatory and anti‐cancer activities of pomegranate and its constituent, ellagic acid: Evidence from cellular, animal, and clinical studies.Phytother. Res.202034468572010.1002/ptr.6565 31908068
    [Google Scholar]
  31. ZengJ. LiX. CaiR. ChenB. LiC. HuQ. SunY. Proposing anti‐counterfeiting pharmacopoeia quality markers for Shenlingbaizhu granule based on UHPLC‐Q‐orbitrap‐MS identification.Phytochem. Anal.202435222023810.1002/pca.3284 37735858
    [Google Scholar]
  32. ArumugamM.K. PaalM.C. DonohueT.M.Jr GanesanM. OsnaN.A. KharbandaK.K. Beneficial effects of betaine: A comprehensive review.Biology (Basel)202110645610.3390/biology10060456 34067313
    [Google Scholar]
  33. HassanpourS. RezaeiH. RazaviS.M. Anti-nociceptive and antioxidant activity of betaine on formalin- and writhing tests induced pain in mice.Behav. Brain Res.202039011269910.1016/j.bbr.2020.112699 32417277
    [Google Scholar]
  34. XieH. LiX. RenZ. QiuW. ChenJ. JiangQ. ChenB. ChenD. Antioxidant and cytoprotective effects of tibetan tea and its phenolic components.Molecules201823217910.3390/molecules23020179 29364183
    [Google Scholar]
  35. HassaniS. GhanbariF. LotfiM. AlamW. AschnerM. Popović-DjordjevićJ. ShahcheraghiS.H. KhanH. How gallic acid regulates molecular signaling: Role in cancer drug resistance.Med. Oncol.2023401130810.1007/s12032‑023‑02178‑4 37755616
    [Google Scholar]
  36. VermaS. SinghA. MishraA. Gallic acid: Molecular rival of cancer.Environ. Toxicol. Pharmacol.201335347348510.1016/j.etap.2013.02.011 23501608
    [Google Scholar]
  37. LiJ. WangS.P. WangY.Q. ShiL. ZhangZ.K. DongF. LiH.R. ZhangJ.Y. ManY.Q. Comparative metabolism study on chlorogenic acid, cryptochlorogenic acid and neochlorogenic acid using UHPLC-Q-TOF MS coupled with network pharmacology.Chin. J. Nat. Med.202119321222410.1016/S1875‑5364(21)60023‑7 33781455
    [Google Scholar]
  38. LiX. 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-Oxide (PTIO •) Radical Scavenging: A New and Simple Antioxidant Assay In Vitro.J. Agric. Food Chem.201765306288629710.1021/acs.jafc.7b02247 28689421
    [Google Scholar]
  39. LiangH. HuangQ. ZouL. WeiP. LuJ. ZhangY. Methyl gallate: Review of pharmacological activity.Pharmacol. Res.202319410684910.1016/j.phrs.2023.106849 37429335
    [Google Scholar]
  40. LiX. Improved pyrogallol autoxidation method: A reliable and cheap superoxide-scavenging assay suitable for all antioxidants.J. Agric. Food Chem.201260256418642410.1021/jf204970r 22656066
    [Google Scholar]
  41. LiX. HuQ. JiangS. LiF. LinJ. HanL. HongY. LuW. GaoY. ChenD. Flos Chrysanthemi Indici protects against hydroxyl-induced damages to DNA and MSCs via antioxidant mechanism.J. Saudi Chem. Soc.201519445446010.1016/j.jscs.2014.06.004
    [Google Scholar]
  42. MaiW. ChenD. LiX. Antioxidant activity of rhizoma cibotii in vitro.adv. pharm. bull.201221107114 24312778
    [Google Scholar]
  43. MaX. OkyereS.K. HuL. WenJ. RenZ. DengJ. HuY. Anti-inflammatory activity and mechanism of cryptochlorogenic acid from Ageratina adenophora.Nutrients202214343910.3390/nu14030439 35276797
    [Google Scholar]
  44. YangH. XueX. LiH. ApandiS.N. Tay-ChanS.C. OngS.P. TianE.F. The relative antioxidant activity and steric structure of green tea catechins – A kinetic approach.Food Chem.201825739940510.1016/j.foodchem.2018.03.043 29622228
    [Google Scholar]
  45. Leyva-SotoA. Alejandra Chavez-SantoscoyR. PorrasO. Hidalgo-LedesmaM. Serrano-MedinaA. Alejandra Ramírez-RodríguezA. Alejandra Castillo-MartinezN. Epicatechin and quercetin exhibit in vitro antioxidant effect, improve biochemical parameters related to metabolic syndrome, and decrease cellular genotoxicity in humans.Food Res. Int.202114211010110.1016/j.foodres.2020.110101 33773697
    [Google Scholar]
  46. León-CarmonaJ.R. Alvarez-IdaboyJ.R. GalanoA. On the peroxyl scavenging activity of hydroxycinnamic acid derivatives: mechanisms, kinetics, and importance of the acid–base equilibrium.Phys. Chem. Chem. Phys.20121436125341254310.1039/c2cp40651a 22511179
    [Google Scholar]
  47. AmićA. MarkovićZ. Dimitrić MarkovićJ.M. MilenkovićD. StepanićV. Antioxidative potential of ferulic acid phenoxyl radical.Phytochemistry202017011221810.1016/j.phytochem.2019.112218 31812108
    [Google Scholar]
  48. WuY.H. HaoB.J. CaoH.C. XuW. LiY.J. LiL.J. Anti-hepatitis B virus effect and possible mechanism of action of 3,4-o-dicaffeoylquinic Acid in vitro and in vivo.Evid. Based Complement. Alternat. Med.201220121910.1155/2012/356806 22701506
    [Google Scholar]
  49. ShiJ.X. ChengC. RuanH.N. LiJ. LiuC.M. Isochlorogenic acid B alleviates lead-induced anxiety, depression and neuroinflammation in mice by the BDNF pathway.Neurotoxicology2023981810.1016/j.neuro.2023.06.007 37385299
    [Google Scholar]
  50. MohapatraP.K. ChopdarK.S. DashG.C. MohantyA.K. RavalM.K. In silico screening and covalent binding of phytochemicals of Ocimum sanctum against SARS-CoV-2 (COVID 19) main protease.J. Biomol. Struct. Dyn.202141243544410.1080/07391102.2021.20071701‑10 34821198
    [Google Scholar]
  51. ChoY.C. ParkJ. ChoS. Anti-inflammatory and anti-oxidative effects of luteolin-7-o-glucuronide in lps-stimulated murine macrophages through TAK1 inhibition and Nrf2 activation.Int. J. Mol. Sci.2020216200710.3390/ijms21062007 32187984
    [Google Scholar]
  52. WuY.B. ZhengL.J. WuJ.G. ChenT.Q. YiJ. WuJ.Z. Antioxidant activities of extract and fractions from receptaculum nelumbinis and related flavonol glycosides.Int. J. Mol. Sci.20121367163717310.3390/ijms13067163 22837685
    [Google Scholar]
  53. HaA.T. RahmawatiL. YouL. HossainM.A. KimJ.H. ChoJ.Y. Anti-inflammatory, antioxidant, moisturizing, and antimelanogenesis effects of quercetin 3-o-β-d-glucuronide in human keratinocytes and melanoma cells via activation of nf-κb and ap-1 pathways.Int. J. Mol. Sci.202123143310.3390/ijms23010433
    [Google Scholar]
  54. ChenW. WuZ.S. ZhangL. ZhaoJ.Y. PanW.S. HongZ.F. HuJ. Advances in the chemical composition and pharmacological effects of Rubus alceifolius Poir.Asia-Pacific Traditional Med20095141143
    [Google Scholar]
  55. WeiY.F. ZhenH.S. ZhenD.D. Advances in research on chemical constituents and pharmacological actions of rubus alceaefolius poir.Chin. J. Ethnomed. Ethnopharm.2017266366
    [Google Scholar]
  56. LiX. ChenB. ZhaoX. ChenD. 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide Radical (PTIO•) trapping activity and mechanisms of 16 phenolic xanthones.Molecules2018237169210.3390/molecules23071692 29997352
    [Google Scholar]
  57. ZebA. Ellagic acid in suppressing in vivo and in vitro oxidative stresses.Mol. Cell. Biochem.20184481-2274110.1007/s11010‑018‑3310‑3 29388153
    [Google Scholar]
  58. MohammadinejadA. MohajeriT. AleyaghoobG. HeidarianF. Kazemi OskueeR. Ellagic acid as a potent anticancer drug: A comprehensive review on in vitro, in vivo, in silico, and drug delivery studies.Biotechnol. Appl. Biochem.20226962323235610.1002/bab.2288 34846078
    [Google Scholar]
  59. ČižmárikováM. MichalkováR. MirossayL. MojžišováG. ZigováM. BardelčíkováA. MojžišJ. Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence.Biomolecules20231311165310.3390/biom13111653 38002335
    [Google Scholar]
  60. ShenY. ZhangQ. HuangZ. ZhuJ. QiuJ. MaW. YangX. DingF. SunH. Isoquercitrin delays denervated soleus muscle atrophy by inhibiting oxidative stress and inflammation.Front. Physiol.20201198810.3389/fphys.2020.00988 32903465
    [Google Scholar]
  61. JangG. LeeS. HongJ. ParkB. KimD. KimC. Anti-inflammatory effect of 4,5-dicaffeoylquinic acid on raw264.7 cells and a rat model of inflammation.Nutrients20211310353710.3390/nu13103537 34684537
    [Google Scholar]
  62. RakshitG. DagurP. SatpathyS. PatraA. JainA. GhoshM. Flavonoids as potential therapeutics against novel coronavirus disease-2019 (nCOVID-19).J. Biomol. Struct. Dyn.202240156989700110.1080/07391102.2021.1892529 33682606
    [Google Scholar]
  63. WenY. WangY. ZhaoC. ZhaoB. WangJ. The pharmacological efficacy of baicalin in inflammatory diseases.Int. J. Mol. Sci.20232411931710.3390/ijms24119317 37298268
    [Google Scholar]
  64. LiuQ. LiX. OuyangX. ChenD. Dual effect of glucuronidation of a pyrogallol-type phytophenol antioxidant: A comparison between scutellarein and scutellarin.Molecules20182312322510.3390/molecules23123225 30563286
    [Google Scholar]
  65. XieY. SunG. TaoY. ZhangW. YangS. ZhangL. LuY. DuG. Current advances on the therapeutic potential of scutellarin: an updated review.Nat. Prod. Bioprospect.20241412010.1007/s13659‑024‑00441‑3 38436812
    [Google Scholar]
  66. MinZ. TangY. HuX.T. ZhuB.L. MaY.L. ZhaJ.S. DengX.J. YanZ. ChenG.J. Cosmosiin increases adam10 expression via mechanisms involving 5’utr and pi3k signaling.Front. Mol. Neurosci.20181119810.3389/fnmol.2018.00198 29942252
    [Google Scholar]
  67. ZhangD. HamdounS. ChenR. YangL. IpC.K. QuY. LiR. JiangH. YangZ. ChungS.K. LiuL. WongV.K.W. Identification of natural compounds as SARS-CoV-2 entry inhibitors by molecular docking-based virtual screening with bio-layer interferometry.Pharmacol. Res.202117210582010.1016/j.phrs.2021.105820 34403732
    [Google Scholar]
  68. HaoB.J. WuY.H. WangJ.G. HuS.Q. KeilD.J. HuH.J. LouJ.D. ZhaoY. Hepatoprotective and antiviral properties of isochlorogenic acid A from Laggera alata against hepatitis B virus infection.J. Ethnopharmacol.20121441190194 22982394
    [Google Scholar]
  69. YangC.Z. WangS.H. ZhangR.H. LinJ.H. TianY.H. YangY.Q. LiuJ. MaY.X. Neuroprotective effect of astragalin via activating PI3K/Akt-mTOR-mediated autophagy on APP/PS1 mice.Cell Death Discov.2023911510.1038/s41420‑023‑01324‑1 36681681
    [Google Scholar]
  70. WangL. TanN. WangH. HuJ. DiwuW. WangX. A systematic analysis of natural α-glucosidase inhibitors from flavonoids of Radix scutellariae using ultrafiltration UPLC-TripleTOF-MS/MS and network pharmacology.BMC Complem. Med. Therap20202017210.1186/s12906‑020‑2871‑3 32143602
    [Google Scholar]
  71. LiX. TianY. WangT. LinQ. FengX. JiangQ. LiuY. ChenD. Role of the p-coumaroyl moiety in the antioxidant and cytoprotective effects of flavonoid glycosides: comparison of astragalin and tiliroside.Molecules2017227116510.3390/molecules22071165 28704976
    [Google Scholar]
  72. LuoE. ZhangD. LuoH. LiuB. ZhaoK. ZhaoY. BianY. WangY. Treatment efficacy analysis of traditional Chinese medicine for novel coronavirus pneumonia (COVID-19): An empirical study from Wuhan, Hubei Province, China.Chin. Med.20201513410.1186/s13020‑020‑00317‑x 32308732
    [Google Scholar]
  73. ImranM. SalehiB. Sharifi-RadJ. Aslam GondalT. SaeedF. ImranA. ShahbazM. Tsouh FokouP.V. Umair ArshadM. KhanH. GuerreiroS.G. MartinsN. EstevinhoL.M. Kaempferol: a key emphasis to its anticancer potential.Molecules20192412227710.3390/molecules24122277 31248102
    [Google Scholar]
  74. ImranM. Aslam GondalT. AtifM. ShahbazM. Batool QaisaraniT. Hanif MughalM. SalehiB. MartorellM. Sharifi-RadJ. Apigenin as an anticancer agent.Phytother. Res.20203481812182810.1002/ptr.6647 32059077
    [Google Scholar]
  75. LinJ. LiX. ChenL. LuW. ChenX. HanL. ChenD. Protective effect against hydroxyl radical-induced DNA damage and antioxidant mechanism of [6]-gingerol: A Chemical Study.Bull. Korean Chem. Soc.20143561633163810.5012/bkcs.2014.35.6.1633
    [Google Scholar]
  76. HuangJ. YiL. YangX. ZhengQ. ZhongJ. YeS. LiX. LiH. ChenD. LiC. >Neural stem cells transplantation combined with ethyl stearate improve PD rats motor behavior by promoting NSCs migration and differentiation.CNS Neurosci. Thera20232961571158410.1111/cns.14119
    [Google Scholar]
  77. EliaJ. CarbonnelleD. LogéC. OryL. HuvelinJ.M. TannouryM. Diab-AssafM. PetitK. NazihH. 4-cholesten-3-one decreases breast cancer cell viability and alters membrane raft-localized EGFR expression by reducing lipogenesis and enhancing LXR-dependent cholesterol transporters.Lipids Health Dis.201918116810.1186/s12944‑019‑1103‑7 31477154
    [Google Scholar]
/content/journals/cac/10.2174/0115734110314497240819053300
Loading
/content/journals/cac/10.2174/0115734110314497240819053300
Loading

Data & Media loading...

Supplements

Supplementary materials -: UHPLC-Q-Exactive-Orbitrap-MS/MS spectra and identification of . Supplementary material : Ellagic acid work curve. Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): caffeoylquinic acid; flavonoid; Isomers recognition; LC-MS; UPLC-Q-Orbitrap-MS/MS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test