Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Amidst the identification of numerous secondary chemicals from , there is a desperate need for the development of primary metabolite separation techniques.

Objectives

In order to do that, bioactive chemicals from (L.) leaf were extracted, isolated, and characterized. Subsequently, their antioxidant activity was evaluated.

Methods

In this study, the determination of linoleic acid (LA) in petroleum ether extract (PEE) of leaf (ENL) was carried out the first time by using thin-layer chromatography (TLC) and high-performance thin-layer chromatography (HPTLC) methods.

Results

The chromatographic analysis of the PEE of ENL shows better spots and well-separated peak of LA with 0.49 retention factor (R) value and 22.54 ng LA content. The linearity of the calibration curve ranges from 5-25 ng spot-1 with a high correlation coefficient. The proposed method was characterized by better accuracy close to 99.5%, well robustness, and good precision range from 0.183% (intra-day) to 0.242% (inter-day). The percentage (%) RSD, which determined the stability of standard LA, did not exceed 2% after time period of 12, 24, 36, 48, and 72 h. The GC-MS analysis revealed the presence of different types of low or high-molecular-weight phytocompounds of varying quantities from the fractions of ENL. The FT-IR spectrum of ICs showed various peaks that confirmed the presence of C=C bending, C-H stretching, O-H stretching, CH stretching, and a carboxyl group. The 1H-NMR spectrum of the ICs from ENL confirmed the presence of octadecanoic in IC, L-(+)-ascorbic acid dihexadecanoate in IC, hexadecanoic acid in IC, linoleic acid in IC, and oleic acid in IC, respectively. IC showed greater antioxidant activity in comparison to other compounds with an IC value of 3.9 ± 0.01 µg mL-1.

Conclusion

Thus, the present study identified five different phytocompounds that may be utilized as an effective option for the cure of different diseases.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110319220240718094750
2024-07-19
2025-09-02
Loading full text...

Full text loading...

References

  1. KagawadP. GhargeS. JivajeK. HiremathS.I. SuryawanshiS.S. Quality control and standardization of Quercetin in herbal medicines by spectroscopic and chromatographic techniques.Future J. Pharm. Sci.20217117610.1186/s43094‑021‑00327‑y
    [Google Scholar]
  2. ChaudharyP. JanmedaP. DoceaA.O. YeskaliyevaB. Abdull RazisA.F. ModuB. CalinaD. Sharifi-RadJ. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases.Front Chem.202311115819810.3389/fchem.2023.1158198 37234200
    [Google Scholar]
  3. JayalakshmiB. RaveeshaK.A. AmrutheshK.N. Isolation and characterization of bioactive compounds from Euphorbia cotinifolia.Future J. Pharm. Sci.202171910.1186/s43094‑020‑00160‑9
    [Google Scholar]
  4. SharmaV. JanmedaP. Extraction, isolation and identification of flavonoid from Euphorbia neriifolia leaves.Arab. J. Chem.201710450951410.1016/j.arabjc.2014.08.019
    [Google Scholar]
  5. ChaudharyP. JanmedaP. Quantification of phytochemicals and in vitro antioxidant activities from various parts of Euphorbia neriifolia Linn.J. Appl. Biol. Biotechnol.2022100213314510.7324/JABB.2022.100217
    [Google Scholar]
  6. ChaudharyP. JanmedaP. Comparative pharmacognostical standardization of different parts of Euphorbia neriifolia Linn.Vegetos202236121022110.1007/s42535‑022‑00508‑x
    [Google Scholar]
  7. ChaudharyP. SinghD. SwapnilP. MeenaM. JanmedaP. Euphorbia neriifolia (Indian spurge tree): A plant of multiple biological and pharmacological activities.Sustainability2023152122510.3390/su15021225
    [Google Scholar]
  8. ChaudharyP. JanmedaP. Sehund: Poison or medicine. Agri. Food.E-Newsl.202134254256
    [Google Scholar]
  9. BigoniyaP. RanaA.C. Hemolytic and in-vitro antioxidant activity of saponin isolated from Euphorbia neriifolia leaf.Recent Progress in Medicinal Plants: Natural Products-II.1st ed GovilJ.N. Texas, USAStudium Press LLC2006359376
    [Google Scholar]
  10. LiJ.C. FengX.Y. LiuD. ZhangZ.J. ChenX.Q. LiR.T. LiH.M. Diterpenoids from Euphorbia neriifolia and their related anti-HIV and cytotoxic activity.Chem. Biodivers.20191612e190049510.1002/cbdv.201900495 31755643
    [Google Scholar]
  11. BalekundriA. MannurV. Quality control of the traditional herbs and herbal products: A review.Future J. Pharm. Sci.2020616710.1186/s43094‑020‑00091‑5
    [Google Scholar]
  12. AbdullahS. OhY.S. KwakM.K. ChongK. Biophysical characterization of antibacterial compounds derived from pathogenic fungi Ganoderma boninense.J. Microbiol.202159216417410.1007/s12275‑021‑0551‑8 33355891
    [Google Scholar]
  13. TilburtJ. KaptchukT.J. Herbal medicine research and global health: An ethical analysis.Bull. World Health Organ.200886859459910.2471/BLT.07.042820 18797616
    [Google Scholar]
  14. SisodiyaD. ShrivastavaP. Qualitative and quantitative estimation of bioactive compounds of Euphorbia thymifolia L.Asian J. Pharm. Edu. Res.2017633443
    [Google Scholar]
  15. JainD. UpadhyayR. JainS. PrakashA. Janmeda. P. TLC and HPTLC finger printing of Cyperus rotundus (Linn.). Lett. Appl.NanoBioscience20221133861387010.33263/LIANBS113.38613870
    [Google Scholar]
  16. KhanA.D. SinghM.K. LavhaleP.M. KaushikR. Phytochemical screening and HPTLC analysis of bio-active markers of ethanol extract of Indian bay leaves.J. Herbs Spices Med. Plants202329215616710.1080/10496475.2022.2117253
    [Google Scholar]
  17. AdinS.N. GuptaI. AhadA. AqilM. MujeebM. A developed high-performance thin-layer chromatography method for the determination of baicalin in Oroxylum indicum L. and its antioxidant activity.J. Planar Chromatogr. Mod. TLC202235438339310.1007/s00764‑022‑00182‑4
    [Google Scholar]
  18. PatelN.G. PatelK.G. PatelK.V. GandhiT.R. Validated HPTLC method for quantification of luteolin and apigenin in Premna mucronata Ropxb.Verbenaceae. Adv. Pharmacol. Sci.201520151710.1155/2015/682365 26421008
    [Google Scholar]
  19. TonioloC. NicolettiM. MaggiF. VendittiA. HPTLC determination of chemical composition variability in raw materials used in botanicals.Nat. Prod. Res.201428211912610.1080/14786419.2013.852546 24219430
    [Google Scholar]
  20. NileS.H. ParkS.W. HPTLC densitometry method for simultaneous determination of flavonoids in selected medicinal plants.Front. Life Sci.2015819710310.1080/21553769.2014.969387
    [Google Scholar]
  21. KumarA. MahantyB. GoswamiR.C.D. BarooahP.K. ChoudharyB. In vitro antidiabetic, antioxidant activities and GCMS analysis of Rhynchostylis retusa and Euphorbia neriifolia leaf extracts.3 Biotech.20211131510.1007/s13205‑021‑02869‑7
    [Google Scholar]
  22. RaviL. KrishnanK. Cytotoxic potential of N-hexadecanoic acid extracted from Kigelia pinnata leaves.Asian J. Cell Biol.2016121202710.3923/ajcb.2017.20.27
    [Google Scholar]
  23. SharmaV. PaliwalR. Phytochemical analysis and evaluation of antioxidant activities of hydro-ethanolic extract of Moringa olifera Lam.Pods. J. Pharm. Res.201142554557
    [Google Scholar]
  24. GogoiJ. NakhuruK.S. PolicegoudraR.S. ChattopadhyayP. RaiA.K. VeerV. Isolation and characterization of bioactive components from Mirabilis jalapa L. radix.J. Tradit. Complement. Med.201661414710.1016/j.jtcme.2014.11.028 26870679
    [Google Scholar]
  25. ZhunZ. Han-WenY. Cai-YunP. Yu-QingJ. Xu-DongZ. BinL. Wen-BingS. Li-MinG. Shu-JinH. WeiW. Chang-XiaoL. Qualitative and quantitative analysis of linoleic acid in Polygonati rhizome.Digit. Chin. Med.20203318018710.1016/j.dcmed.2020.09.004
    [Google Scholar]
  26. BhargavaA. ShrivastavaP. TilwariA. HPTLC analysis of Fumaria parviflora (Lam.) methanolic extract of whole plant.Future J. Pharm. Sci.202171110.1186/s43094‑020‑00150‑x
    [Google Scholar]
  27. DołowyM. Pyka-PająkA. JampílekJ. Simple and accurate HPTLC-densitometric method for assay of nandrolone decanoate in pharmaceutical formulation.Molecules201924343510.3390/molecules24030435 30691078
    [Google Scholar]
  28. MukherjeeD. KumarN.S. KhatuaT. MukherjeeP.K. Rapid validated HPTLC method for estimation of betulinic acid in Nelumbo nucifera (Nymphaeaceae) rhizome extract.Phytochem. Anal.201021655656010.1002/pca.1232 21043041
    [Google Scholar]
  29. ChakrabortyA. BhattacharjeeA. DasguptaP. MannaD. OhW.C. MukhopadhyayG. Simple method for standardization and quantification of linoleic acid in Solanum nigrum Berries by HPTLC.J. Chromatogr. Sep. Tech.201676201610.4172/2157‑7064.1000342
    [Google Scholar]
  30. VadaliaJ.M. SanandiaJ. ShethN. Comparative quantitative phytochemical and HPTLC analysis of two Euphorbiaceae family plants under the name Dugdhika.J. Planar Chromatogr. Mod. TLC202033547347910.1007/s00764‑020‑00059‑4
    [Google Scholar]
  31. NairS. MukneA. Assessment of chemical stability of constituents in thiosulfinate derivative-rich extract of garlic by a validated HPTLC method.Indian J. Pharm. Sci.201779343845010.4172/pharmaceutical‑sciences.1000247
    [Google Scholar]
  32. KuppusamyP. YusoffM.M. ParineN.R. GovindanN. Evaluation of in-vitro antioxidant and antibacterial properties of Commelina nudiflora L. extracts prepared by different polar solvents.Saudi J. Biol. Sci.201522329330110.1016/j.sjbs.2014.09.016 25972750
    [Google Scholar]
  33. ChinonyeI.I. Ozeh RitaN. LyndaO.U. AdanmaU. FidelisA.O. MaureenC.O. Characterization and antimicrobial properties of volatile component of the ethanol leaf extract of Momordica charantia.Int. Res. J. Nat. Sci.2019711427
    [Google Scholar]
  34. PonnurajS. JaganathanD. KanagarajanM. DeivamarudachalamT.P.D. Spectroscopic analysis and antibacterial efficacy of bioactive compounds from Limonia acidissima L. fruit extract against clinical pathogens.Int. J. Pharm. Pharm. Sci.201573383389
    [Google Scholar]
  35. HossainM.A. KabirM.J. SalehuddinS.M. RahmanS.M.M. DasA.K. SinghaS.K. AlamM.K. RahmanA. Antibacterial properties of essential oils and methanol extracts of sweet basil Ocimum basilicum occurring in Bangladesh.Pharm. Biol.201048550451110.3109/13880200903190977 20645791
    [Google Scholar]
  36. BayanY. Chemical composition and antifungal activity of the plant extracts of Turkey Cardaria draba (L.) Desv.Egypt. J. Biol. Pest Control2016263579581
    [Google Scholar]
  37. RadyM.M. HassanB.A.A. HamadF.M.I. RadyM.M. The efficiency of some natural alternatives in root-knot nematode control.Adv. Plants Agric. Res.20188435536210.15406/apar.2018.08.00337
    [Google Scholar]
  38. AkwuN.A. NaidooY. ChannangihalliS.T. SinghM. NundkumarN. LinJ. The essential oils of Grewia Lasiocarpa E. Mey. Ex Harv.: Chemical composition, in vitro biological activity and cytotoxic effect on Hela cells.An. Acad. Bras. Cienc.2021932e2019034310.1590/0001‑3765202120190343 34076085
    [Google Scholar]
  39. S, H.; Pereira, L.; B, N. Biologically active components for cosmeceutical use extracted from Chaetomorpha aerea.Tradit. Med. Res.2022743510.53388/TMR20220326002
    [Google Scholar]
  40. BK Mehta NigamV. SinghA. Gas chromatography mass spectrometry (GC-MS) analysis of the hexane extract of the Syzygium cumini bark.J. Med. Plants Res.20116254163416610.5897/JMPR11.488
    [Google Scholar]
  41. AnebM. TalbaouiA. BouyahyaA. BouryH. AmzaziS. BenjouadA. DakkaN. BakriY. In vitro cytotoxic effect and antibacterial activity of Moroccan medicinal plant Aristolochia longa and Lavandula multifida.European J. Med. Plants201616211310.9734/EJMP/2016/28534
    [Google Scholar]
  42. ParthasarathyA. JayalakshmiM. PushpabharathiN. VaradharajV. Identification of bioactive components in enhalus acoroides seagrass extract by gas chromatography-mass spectrometry. AsianJ. Pharm. Clin. Res.2018111031310.22159/ajpcr.2018.v11i10.25577
    [Google Scholar]
  43. OkwuD.E. IghodaroB.U. GC-MS evaluation of bioactive compounds and antibacterial activity of the oil fraction from the leaves of Alstonia boonei De Wild.Pharma Chem.201021261272
    [Google Scholar]
  44. CoêlhoM.L. IslamM.T. Laylson da Silva OliveiraG. Oliveira Barros de AlencarM.V. Victor de Oliveira SantosJ. Campinho dos ReisA. Oliveira Ferreira da MataA.M. Correia Jardim PazM.F. DoceaA.O. CalinaD. Sharifi-RadJ. Amélia de Carvalho Melo-CavalcanteA. Cytotoxic and antioxidant properties of natural bioactive monoterpenes nerol, estragole, and 3,7-dimethyl-1-octanol.Adv. Pharmacol. Pharm. Sci.2022202211110.1155/2022/8002766 36465700
    [Google Scholar]
  45. IgwaranA. IwerieborB.C. Ofuzim OkohS. NwodoU.U. ObiL.C. OkohA.I. Chemical constituents, antibacterial and antioxidant properties of the essential oil flower of Tagetes minuta grown in Cala community Eastern Cape, South Africa.BMC Complement. Altern. Med.201717135110.1186/s12906‑017‑1861‑6 28676058
    [Google Scholar]
  46. FrançoisN. CharityN.M. FredO. MerylC. NicholasA. JonesO.M. ElizabethM.K. Antimycobacterial activities, cytotoxicity and phytochemical screening of extracts for three medicinal plants growing in Kenya.J. Med. Plants Res.202014412914310.5897/JMPR2020.6905
    [Google Scholar]
  47. MohanambalR. MurugaiahK. GC-MS determination of bioactive constituents of Furcreaea foetida leaf.World J. Pharm. Res.201541011601166
    [Google Scholar]
  48. JahanI. TonaM.R. SharminS. SayeedM.A. TaniaF.Z. PaulA. ChyM.N.U. RakibA. EmranT.B. Simal-GandaraJ. GC-MS phytochemical profiling, pharmacological properties, and in silico studies of Chukrasia velutina leaves: A novel source for bioactive agents.Molecules20202515353610.3390/molecules25153536 32748850
    [Google Scholar]
  49. CeesayA. Nor ShamsudinM. Aliyu-PaikoM. IsmailI.S. NazarudinM.F. Mohamed AlipiahN. Extraction and characterization of organ components of the Malaysian sea cucumber Holothuria leucospilota yielded bioactives exhibiting diverse properties.BioMed Res. Int.2019201911610.1155/2019/2640684 31119160
    [Google Scholar]
  50. PucotJ. DaparM. DemayoC. Qualitative analysis of the antimicrobial, phytochemical and GC-MS profile of the stem ethanolic extract from Anodendron borneense (King & Gamble).J. Complement. Med. Res.202112223110.5455/jcmr2021.12.02.27
    [Google Scholar]
  51. SolehaM. SulezaA. HermiyantiE. Antioxidant activity of extract Cantigi (Vaccinium varingiaefolium) (Bl.) Miq. and its major compound of GC-MS NIST library analysis.Adv. Health Sci. Res.20202255355810.2991/ahsr.k.200215.107
    [Google Scholar]
  52. SeptianaE. Bustanussalam, Yadi, RachmanF. HapsariY. IzzatiF.N. RahmawatiS.I. SimanjuntakP. Antioxidant activity of endophytic fungi from young and old leaves of cinnamon plants from Bogor, Indonesia.IOP Conf. Ser. Earth Environ. Sci.2021762101203810.1088/1755‑1315/762/1/012038
    [Google Scholar]
  53. ParkJ.H. LeeH.S. Acaricidal target and mite indicator as color alteration using 3,7-dimethyl-2,6-octadienal and its derivatives derived from Melissa officinalis leaves.Sci. Rep.201881812910.1038/s41598‑018‑26536‑9 29802382
    [Google Scholar]
  54. ZhouJ.Y. ZhaoX.Y. DaiC.C. Antagonistic mechanisms of endophytic Pseudomonas fluorescens against Athelia rolfsii.J. Appl. Microbiol.201411741144115810.1111/jam.12586 24962812
    [Google Scholar]
  55. LalthanpuiiP.B. Chemical profiling, antibacterial and antiparasitic studies of Imperata cylindrica.J. Appl. Pharm. Sci.201991211712110.7324/JAPS.2019.91216
    [Google Scholar]
  56. ChirumamillaP. DharavathS.B. TaduriS. GC–MS profiling and antibacterial activity of Solanum khasianum leaf and root extracts.Bull. Natl. Res. Cent.202246112710.1186/s42269‑022‑00818‑9 35571364
    [Google Scholar]
  57. HanifS. JabeenK. AkhtarN. IqbalS. GC-MS analysis & antifungal activity of Datura metel L. against Rhizoctonia solani Kuhn.An. Acad. Bras. Cienc.2022941e2020085110.1590/0001‑3765202220200851 35293512
    [Google Scholar]
  58. PatilA. JadhavV. GC-MS analysis of bioactive components from methanol leaf extract of Toddalia asiatica (L.).Int. J. Pharm. Sci. Rev. Res.20142911820
    [Google Scholar]
  59. VelmuruganS. BabuM.M. PunithaS.M.J. VijiV.T. CitarasuT. Screening and characterization of antiviral compounds from Psidium guajava Linn. Root bark against white spot syndrome virus.Indian J. Nat. Prod. Resour.201432208214
    [Google Scholar]
  60. SaveS.A. LokhandeR.S. ChowdharyA.S. Determination of 1,2-benzenedicarboxylic acid, bis (2-ethylhexyl) ester from the twigs of Thevetia peruviana as a Colwell biomarker.J. Innov. Pharm. Biol. Sci.201523349362
    [Google Scholar]
  61. BekeleD. TekieH. AsfawZ. PetrosB. Bioactive chemical constituents from the leaf of Oreosyce africana Hook. F (Cucurbitaceae) with mosquitocidal activities against adult Anopheles arabiensis, the principal malaria vector in Ethiopia.J. Fertil. Pestic.201671110.4172/2471‑2728.1000159
    [Google Scholar]
  62. ShogeM. GarbaS. LabaranS. Antimicrobial activity of 1,2-benzenedicarboxylic acid, butyldecyl ester isolated from the seeds and pods of Acacia nilotica Linn.Basic Res. J. Microbiol.201632811
    [Google Scholar]
  63. GazwiH.S.S. OmarM.O.A. MahmoudM.E. Phytochemical analysis, antioxidant capacities, and in vitro biological activities of the extract of seed coat as by-products of pea.BMC Chem.2023171110.1186/s13065‑023‑00911‑8 36726157
    [Google Scholar]
  64. SenthilkumarN. ShaliniT.B. LenoraL.M. DivyaG. Pterocarpus indicus Wild: A lesser known tree species of medicinal importance.Asian J. Res. Bot.2020342032
    [Google Scholar]
  65. GazwiH.S.S. ShoeibN.A. MahmoudM.E. SoltanO.I.A. HamedM.M. RagabA.E. Phytochemical profile of the ethanol extract of Malvaviscus arboreus red flower and investigation of the antioxidant, antimicrobial, and cytotoxic activities.Antibiotics20221111165210.3390/antibiotics11111652 36421296
    [Google Scholar]
  66. LakshmiP.T.V. RajalakshmiP. Identification of phyto-components and its biological activities of Aloe vera through gas chromatography-mass spectrometry.Int. Res. J. Pharm.201125247249
    [Google Scholar]
  67. SujathaJ. AsokanS. RajaeshkumarS. Antioxidant effect and phytochemical analysis of chloroform extract of Cassis fistula using FT-IR, HPLC, and GC-MS analaysis.Int. J. Pharm. Sci. Rev. Res.2017461129133
    [Google Scholar]
  68. AzizM. AhmadS. KhurshidU. PervaizI. LodhiA.H. JanN. KhurshidS. ArshadM.A. IbrahimM.M. MersalG.A.M. AlenaziF.S. Awadh Saleh AlamriA. ButtJ. SaleemH. El-BahyZ.M. Comprehensive biological potential, phytochemical profiling using GC-MS and LC-ESI-MS, and in-silico assessment of Strobilanthes glutinosus Nees: An important medicinal plant.Molecules20222720688510.3390/molecules27206885 36296481
    [Google Scholar]
  69. OguniesiM. OkieiW. OforE. OsiboteA.E. Analysis of the essential oil from the dried leaves of Euphorbia hirta Linn. (Euphorbiacea), a potential medication for asthma.Afr. J. Biotechnol.200982470427050
    [Google Scholar]
  70. OgukweC.K. AkaleziO. EzugwaB.O. OjukwuH.E. Evaluation of the anti-tumor agents in Annona muricata (Linn.) leaves using column chromatography, and gas-chromatography-mass spectrometry.World J. Pharm. Res.201652517
    [Google Scholar]
  71. FarhatH. UroojF. SohailN. HameediS.F. AliM.S. Ehteshamul-HaqueS. Evaluation of antibacterial potential of endophytic fungi and GC-MS profiling of metabolites from Talaromyces trachyspermus.S. Afr. J. Bot.202215024024710.1016/j.sajb.2022.07.004
    [Google Scholar]
  72. BasaidK. MayadE.H. BouharroudR. FurzeJ.N. BenjlilH. de OliveiraA.L. ChebliB. Biopesticidal value of Senecio glaucus subsp. coronopifolius essential oil against pathogenic fungi, nematodes, and mites.Mater. Today Proc.20202743082309010.1016/j.matpr.2020.03.588
    [Google Scholar]
  73. BảoN.C. TyP.V. Long-chain compounds isolated from lac tien (Passiflora foetida L.).Hue Univ. J. Sci. Nat. Sci.20171261C10110610.26459/hueuni‑jns.v126i1C.4602
    [Google Scholar]
  74. ChenZ. HigashiK. ShidaraR. UedaK. MoritaT. LimwikrantW. YamamotoK. MoribeK. The nanostructure of rod-like ascorbyl dipalmitate nanoparticles stabilized by a small amount of DSPE-PEG.Int. J. Pharm.202160260212059910.1016/j.ijpharm.2021.120599 33862127
    [Google Scholar]
  75. InoueY. IshizawaM. ItakuraS. TanikawaT. TodoH. Verification of nanoparticle formation, skin permeation, and apoptosis using nobiletin as a methoxyflavonoid derivative.AAPS Open2022811710.1186/s41120‑022‑00065‑2
    [Google Scholar]
  76. BulamaJ.S. DangoggoS.M. HaliluM.E. TsafeA.I. HassanS.W. Isolation and characterization of palmitic acid from ethyl acetate extract of root bark of Terminalia glaucescens.Chem. Mater. Res2014612140144
    [Google Scholar]
  77. KalitaR.D. HussainI. DekaR.C. BuragohainA.K. Antimyobacterial activity of linoleic acid and oleic acid obtained from the hexane extract of the seeds of Mesua ferrea L. and their in silico investigation.Indian J. Nat. Prod. Resour.201892132142
    [Google Scholar]
  78. MalarvizhiD. AnusooriyaP. MeenakshiP. SundaramS. OirereE. GopalakrishnanV.K. Isolation, structural characterization of oleic acid from Zaleya decandra root extract.Anal. Chem. Lett.20166566967710.1080/22297928.2016.1238319
    [Google Scholar]
  79. OthmanA.R. AbdullahN. AhmadS. IsmailI.S. ZakariaM.P. Elucidation of in-vitro anti-inflammatory bioactive compounds isolated from Jatropha curcas L. plant root.BMC Complement. Altern. Med.20151511110.1186/s12906‑015‑0528‑4 25652309
    [Google Scholar]
  80. IgweO.U. OkwunoduluF.U. Investigation of bioactive phytochemical compounds from the chloroform extract of the leaves of Phyllanthus anarus by GC-MS technique.Int. J. Chem. Pharm. Sci.201421554560
    [Google Scholar]
  81. JainD. MeenaM. SinghD. JanmedaP. Structural characterisation of bioactive compounds of Gymnosporia senegalensis (Lam.) Loes. using advanced analytical technique like FT-IR, GC-MS and 1H-NMR spectroscopy.Nat. Prod. Res.2023371411110.1080/14786419.2023.2269460 37837421
    [Google Scholar]
  82. JainD. MeenaM. SinghD. JanmedaP. Isolation, development and validation of HPTLC method for the estimation of β-carotene from Gymnosporia senegalensis (Lam.).Loes. Plant Physiol. Biochem.202320110784310.1016/j.plaphy.2023.107843 37354729
    [Google Scholar]
  83. Aparicio-RuizR. García-GonzálezD.L. MoralesM.T. Lobo-PrietoA. RomeroI. Comparison of two analytical methods validated for the determination of volatile compounds in virgin olive oil: GC-FID vs GC-MS.Talanta201818713314110.1016/j.talanta.2018.05.008 29853026
    [Google Scholar]
  84. ChaudharyP. MeenaM. JanmedaP. Microscopic characterization, TLC fingerprinting and optimization of total lipid content from Euphorbia neriifolia (L.) using response surface methodology.Microsc. Res. Tech.202487356559010.1002/jemt.24456 37971145
    [Google Scholar]
  85. HaradaH. YamashitaU. KuriharaH. FukushiE. KawabataJ. KameiY. Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga.Anticancer Res.200222525872590 12529968
    [Google Scholar]
  86. BarupalT. MeenaM. SharmaK. Inhibitory effects of leaf extract of Lawsonia inermis on Curvularia lunata and characterization of novel inhibitory compounds by GC–MS analysis.Biotechnol. Rep.201923e0033510.1016/j.btre.2019.e00335 31194076
    [Google Scholar]
  87. WenX. WangQ. DaiT. ShaoJ. WuX. JiangZ. JacobJ.A. JiangC. Identification of possible reductants in the aqueous leaf extract of mangrove plant Rhizophora apiculata for the fabrication and cytotoxicity of silver nanoparticles against human osteosarcoma MG-63 cells.Mater. Sci. Eng. C202011611125210.1016/j.msec.2020.111252 32806252
    [Google Scholar]
  88. SharmaV. Pracheta, Anti-carcinogenic potential of Euphorbia neriifolia leaves and isolated flavonoid against N-nitrosodiethylamine-induced renal carcinogenesis in mice.Indian J. Biochem. Biophys.2013506521528 24772977
    [Google Scholar]
  89. SudhaA. SrinivasanP. Bioassay-guided isolation and antioxidant evaluation of flavonoid compound from aerial parts of Lippia nodiflora L.BioMed Res. Int.2014201411010.1155/2014/549836 24967379
    [Google Scholar]
  90. KumarS. ChandraR. BeheraL. SudhirI. MeenaM. SinghS. KeswaniC. Microbial consortium mediated acceleration of the defense response in potato against Alternaria solani through prodigious inflation in phenylpropanoid derivatives and redox homeostasis.Heliyon2023911e2214810.1016/j.heliyon.2023.e22148 38045140
    [Google Scholar]
  91. ZehraA. RaytekarN.A. MeenaM. SwapnilP. Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: A review.Curr. Res. Microb. Sci.2021210005410.1016/j.crmicr.2021.100054 34841345
    [Google Scholar]
/content/journals/cac/10.2174/0115734110319220240718094750
Loading
/content/journals/cac/10.2174/0115734110319220240718094750
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): densitometry; Derivatization; Euphorbia neriifolia; GC-MS; HPTLC; linoleic acid
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test