Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

The chemical processes that occur during the surface degradation of document paper under the influence of external factors were studied by Raman spectroscopy. The possibility of comparing the same processes occurring on clean free paper and under printed text toner letters is of interest. It is assumed that the transformation of cellulose can occur at different rates in the areas of paper exposed to direct atmospheric and light exposure and in the areas containing an intermediate layer of the toner. The most stable temporal changes occur in the region of C–C–C and C–C–O vibrations of glycosidic rings in the short-wavelength region of the Raman spectrum.

Background

The main areas of research in the field of document dating, mainly focused on chromatographic methods. These methods are based on studying the dynamics of evaporation of volatile ink components. There is also a variety of chromatography techniques, including gas chromatography, ion chromatography, high performance liquid chromatography, thin layer chromatography and gas chromatography-mass spectrometry. This indicates the wide range of approaches and techniques used to determine the age of written materials. However, all these methods are used mainly during the first two years after writing the document details, which does not allow examining documents that are more than two years old.

Methods

Raman spectroscopy was used as the main research method. The object of the study was sheets of white A4 paper with printed text printed on them, produced on a laser printer. The subject of the study was areas of paper free of text, as well as areas of paper under toner. The integrated fluorescence of a paper optical brightener based on stilbene was studied in the wavelength range of 400–500 nm. Also, all objects were studied using optical microscopy.

Results

The comparison of peak intensity values averaged over 10 brands over the years made it possible to reveal the following regularities: – the ratio of peaks in the paper spectra from which the toner was removed is greater than in the blank paper spectra, and the difference becomes less noticeable as the age of the paper decreases. The ratio of the intensity of the 330 cm-1 peak to the intensity of the 1603 cm-1 peak: the older the document becomes, the lower the average ratios of these peaks in both the blank paper spectra and in the spectra of paper from which the toner has been removed. –the intensity of the peak in the region of 280 cm-1 and 1 086 cm-1 of the Raman shift increases with decreasing the age of the toner-free paper.– a gradual increase in the intensity of the 380 cm-1 peak is observed when comparing the paper samples from which the toner was removed for 2016, 2018, 2020, and 2022. Regularity was also found in the change in the ratio of the average statistical values of the peak at 280 cm-1 in the spectra of the paper under the toner to a similar peak in the spectra of the paper free from text: the value of this ratio decreases with decreasing the paper age. At the same time, the paper fluorescence signal is an informative parameter that makes it possible to establish some facts from the document’s history. With artificial document aging, a significant broadening of the dispersion region and the appearance of its “splitting” into two or three strata are observed in the distribution of the fluorescence signal level of a paper sheet relative to the average value. The average fluorescence signal of a naturally aged sheet decreases with the age of the document.

Conclusion

As a result of research, it has been established that Raman spectroscopy can be successfully used as a method for dating documents. When comparing the degree of degradation of the surface of open areas of paper and areas protected by toner of printed text, different effects of external factors on these areas were established, leading to different rates of degradation processes. The use of Raman peak intensity ratios for paper components in exposed areas compared to peaks under printed text further expands the methodology. The emphasis on spectral methods, in particular fluorescence signal distribution and Raman spectroscopy, to detect surface changes is well justified. It demonstrates a holistic approach to document analysis, taking into account both the chemical changes observed using Raman spectroscopy and the fluorescence signal distribution that may indicate signs of artificial aging through light exposure. This combination of methods appears to be reliable for assessing the age of documents and can make significant contributions to the field of forensic document examination.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110318287240912190749
2024-09-24
2025-12-14
Loading full text...

Full text loading...

References

  1. Olegovna ErshovaK. Valerievna KochemirovskaiaS. CieslaR. Pavlovna KirillovaN. Anatolyevich MokhorovD. Alekseevich KochemirovskyV. Physicochemical analysis of the age of handwritten inscriptions on documents: Trends and prospects.Expert Syst. Appl.202220511768310.1016/j.eswa.2022.117683
    [Google Scholar]
  2. CalcerradaM. García-RuizC. Analysis of questioned documents: A review.Anal. Chim. Acta201585314316610.1016/j.aca.2014.10.057 25467455
    [Google Scholar]
  3. EllisonS.L.R. FearnT. Characterising the performance of qualitative analytical methods: Statistics and terminology.Trends Analyt. Chem.200524646847610.1016/j.trac.2005.03.007
    [Google Scholar]
  4. Ruiz-HernándezV. RocaM.J. Egea-CortinesM. WeissJ. A comparison of semi-quantitative methods suitable for establishing volatile profiles.Plant Methods20181416710.1186/s13007‑018‑0335‑2 30100921
    [Google Scholar]
  5. WhiteK.M. PalenikC.S. Toner particles as forensic evidence: Microanalytical characterization of known toner and recognition of toner in environmental samples.J. Forensic Sci.20206561908192010.1111/1556‑4029.14501 32687231
    [Google Scholar]
  6. AhmedZ.E. AbdelhamidM. Abdel-SalamZ.A. PalleschiV. Abdel-HarithM. Laser-induced breakdown spectroscopy and chemometric analysis of black toners for forensic applications.J. Chemometr.2021355e333410.1002/cem.3334
    [Google Scholar]
  7. SzynkowskaM.I. CzerskiK. ParyjczakT. ParczewskiA. Ablative analysis of black and colored toners using LA-ICP-TOF-MS for the forensic discrimination of photocopy and printer toners.Surf. Interface Anal.201042542943710.1002/sia.3194
    [Google Scholar]
  8. BuzziniP. PolstonC. SchackmuthM. On the criteria for the discrimination of inkjet printer inks using micro-Raman spectroscopy.J. Raman Spectrosc.201849111791180110.1002/jrs.5458
    [Google Scholar]
  9. GeimanI. LeonaM. LombardiJ.R. Application of Raman spectroscopy and surface-enhanced Raman scattering to the analysis of synthetic dyes found in ballpoint pen inks.J. Forensic Sci.200954494795210.1111/j.1556‑4029.2009.01058.x 19457151
    [Google Scholar]
  10. CasadioF. LeonaM. LombardiJ.R. Van DuyneR. Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy.Acc. Chem. Res.201043678279110.1021/ar100019q 20420359
    [Google Scholar]
  11. AgarwalU.P. Analysis of cellulose and lignocellulose materials by Raman spectroscopy: A review of the current status.Molecules2019249165910.3390/molecules24091659 31035593
    [Google Scholar]
  12. AgarwalU.P. RalphS.A. BaezC. ReinerR.S. Detection and quantitation of cellulose II by Raman spectroscopy.Cellulose202128149069907910.1007/s10570‑021‑04124‑x
    [Google Scholar]
  13. Ćirić-MarjanovićG. TrchováM. StejskalJ. The chemical oxidative polymerization of aniline in water: Raman spectroscopy.J. Raman Spectrosc.200839101375138710.1002/jrs.2007
    [Google Scholar]
  14. NielsenA.S. BatchelderD.N. PyrzR. Estimation of crystallinity of isotactic polypropylene using Raman spectroscopy.Polymer20024392671267610.1016/S0032‑3861(02)00053‑8
    [Google Scholar]
  15. GorshkovaK.O. TumkinI.I. MyundL.A. TverjanovichA.S. MereshchenkoA.S. PanovM.S. KochemirovskyV.A. The investigation of dye aging dynamics in writing inks using Raman spectroscopy.Dyes Pigments201613123924510.1016/j.dyepig.2016.04.009
    [Google Scholar]
  16. KochemirovskyV.A. Influence of Raman spectra measurement conditions on the dating results of writing compositions.New Crim. Law Cod.202260619710.19195/2084‑5065.60.5
    [Google Scholar]
  17. FazioE. CorsaroC. MallamaceD. Paper aging and degradation monitoring by the non-destructive two-dimensional micro-Raman mapping.Spectrochim. Acta Part A201910.1016/j.saa.2019.117660
    [Google Scholar]
  18. FazioE. TrussoS. PonterioR.C. Surface-enhanced Raman scattering study of organic pigments using silver and gold nanoparticles prepared by pulsed laser ablation.Appl. Surf. Sci.2013272364110.1016/j.apsusc.2012.02.070
    [Google Scholar]
  19. HuX. LiuY. DuanY. HanJ. LiZ. HanT. A turn-on type stimuli-responsive fluorescent dye with specific solvent effect: Implication for a new prototype of paper using water as the ink.Spectrochim. Acta A Mol. Biomol. Spectrosc.201718471210.1016/j.saa.2017.04.079 28475959
    [Google Scholar]
  20. KaszowskaZ. MalekK. Staniszewska-SlezakE. NiedzielskaK. Raman scattering or fluorescence emission? Raman spectroscopy study on lime-based building and conservation materials.Spectrochim. Acta A Mol. Biomol. Spectrosc.201616971510.1016/j.saa.2016.06.012 27314909
    [Google Scholar]
  21. BillaE. KoutsoulaE. KoukiosE.G. Fluorescence analysis of paper pulps.Bioresour. Technol.1999671253310.1016/S0960‑8524(99)00097‑8
    [Google Scholar]
  22. BajpaiP. BajpaiP. Basic overview of pulp and paper manufacturing process.Green Chemistry and Sustainability in Pulp and Paper Industry.ChamSpringer2015113910.1007/978‑3‑319‑18744‑0_2
    [Google Scholar]
  23. BajpaiP. BajpaiP. Brief description of the pulp and papermaking process.Biotechnology for Pulp and Paper Processing.SingaporeSpringer201892610.1007/978‑981‑10‑7853‑8_2
    [Google Scholar]
  24. RullifankK.F. RoefinalM.E. KostantiM. SartikaL. Pulp and paper industry: An overview on pulping technologies, factors, and challenges.IOP Conf. Ser.: Mater. Sci. Eng.2020845101200510.1088/1757‑899X/845/1/012005
    [Google Scholar]
  25. GorshkovaK.O. RossinskayaE.R. KirillovaN.P. FogelA.A. KochemirovskaiaS.V. KochemirovskyV.A. Investigation of the new possibility of mathematical processing of Raman spectra for dating documents.Sci. Justice202060545146510.1016/j.scijus.2020.06.007 32873385
    [Google Scholar]
  26. CalviniP. GorassiniA. MerlaniA.L. On the kinetics of cellulose degradation: Looking beyond the pseudo zero order rate equation.Cellulose200815219320310.1007/s10570‑007‑9162‑8
    [Google Scholar]
  27. YuY. WuH. Significant differences in the hydrolysis behavior of amorphous and crystalline portions within microcrystalline cellulose in hot-compressed water.Ind. Eng. Chem. Res.20104983902390910.1021/ie901925g
    [Google Scholar]
  28. KulasinskiK. KetenS. ChurakovS.V. DeromeD. CarmelietJ. A comparative molecular dynamics study of crystalline, paracrystalline and amorphous states of cellulose.Cellulose20142131103111610.1007/s10570‑014‑0213‑7
    [Google Scholar]
  29. RuelK. NishiyamaY. JoseleauJ.P. Crystalline and amorphous cellulose in the secondary walls of Arabidopsis.Plant Sci.2012193-194486110.1016/j.plantsci.2012.05.008 22794918
    [Google Scholar]
  30. MazeauK. HeuxL. Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose.J. Phys. Chem. B2003107102394240310.1021/jp0219395
    [Google Scholar]
  31. BregadoJ.L. SecchiA.R. TavaresF.W. de Sousa RodriguesD. GambettaR. Amorphous paracrystalline structures from native crystalline cellulose: A molecular dynamics protocol.Fluid Phase Equilib.2019491567610.1016/j.fluid.2019.03.011
    [Google Scholar]
  32. NelsonM.L. O’ConnorR.T. Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose.J. Appl. Polym. Sci.1964831311132410.1002/app.1964.070080322
    [Google Scholar]
  33. MartínezJ.R. Nieto-VillenaA. de la Cruz-MendozaJ.Á. Ortega-ZarzosaG. GuerreroA.L. Monitoring the natural aging degradation of paper by fluorescence.J. Cult. Herit.201726222710.1016/j.culher.2017.01.011
    [Google Scholar]
  34. MansoM. CarvalhoM.L. Application of spectroscopic techniques for the study of paper documents: A survey.Spectrochim. Acta B At. Spectrosc.200964648249010.1016/j.sab.2009.01.009
    [Google Scholar]
  35. DupontA. EgasseC. MorinA. VasseurF. Comprehensive characterisation of cellulose- and lignocellulose-degradation products in aged papers: Capillary zone electrophoresis of low-molar mass organic acids, carbohydrates, and aromatic lignin derivatives.Carbohydr. Polym.200768111610.1016/j.carbpol.2006.07.005
    [Google Scholar]
  36. HowellC. Steenkjær HastrupA.C. GoodellB. JellisonJ. Temporal changes in wood crystalline cellulose during degradation by brown rot fungi.Int. Biodeterior. Biodegradation200963441441910.1016/j.ibiod.2008.11.009
    [Google Scholar]
  37. WangZ.W. LeeS.H. ElkinsJ.G. Morrell-FalveyJ.L. Spatial and temporal dynamics of cellulose degradation and biofilm formation by Caldicellulosiruptor obsidiansis and Clostridium thermocellum.AMB Express2011113010.1186/2191‑0855‑1‑30 21982458
    [Google Scholar]
  38. ChiriuD. RicciP.C. CappelliniG. SalisM. LoddoG. CarbonaroC.M. Ageing of ancient paper: A kinetic model of cellulose degradation from Raman spectra.J. Raman Spectrosc.201849111802181110.1002/jrs.5462
    [Google Scholar]
  39. KoechliC. CampbellA.N. Pepe-RanneyC. BuckleyD.H. Assessing fungal contributions to cellulose degradation in soil by using high-throughput stable isotope probing.Soil Biol. Biochem.201913015015810.1016/j.soilbio.2018.12.013
    [Google Scholar]
  40. ChiriuD. RicciP.C. CappelliniG. CarbonaroC.M. Ancient and modern paper: Study on ageing and degradation process by means of portable NIR μ-Raman spectroscopy.Microchem. J.2018138263410.1016/j.microc.2017.12.024
    [Google Scholar]
  41. AreaM.C. CeradameH. Paper aging and degradation: Recent findings and research methods.BioResources2011653075337
    [Google Scholar]
  42. PandeyK.K. Study of the effect of photo-irradiation on the surface chemistry of wood.Polym. Degrad. Stabil.200590192010.1016/j.polymdegradstab.2005.02.009
    [Google Scholar]
  43. NesměrákK. NěmcováI. Dating of historical manuscripts using spectrometric methods: A mini-review.Anal. Lett.201245433034410.1080/00032719.2011.644741
    [Google Scholar]
  44. PigorschE. ObenausH. Spectroscopic investigations for the dating of paper from the nineteenth century.Appl. Spectrosc.202377323123810.1177/00037028221139295 36320119
    [Google Scholar]
  45. KapoorN. SulkeP. ShuklaR.K. KakadR. PardeshiP. BadiyeA. Forensic analytical approaches to the dating of documents: An overview.Microchem. J.202117010672210.1016/j.microc.2021.106722
    [Google Scholar]
  46. GolerS. HagadornA. RatzanD.M. BagnallR. CacciolaA. McInerneyJ. YardleyJ.T. Using Raman spectroscopy to estimate the dates of carbon-based inks from Ancient Egypt.J. Cult. Herit.20193810611710.1016/j.culher.2018.12.003
    [Google Scholar]
  47. BrazA. López-LópezM. García-RuizC. Raman spectroscopy for forensic analysis of inks in questioned documents.Forensic Sci. Int.20132321-320621210.1016/j.forsciint.2013.07.017 24053882
    [Google Scholar]
  48. Zięba-PalusJ. Wesełucha-BirczyńskaA. TrzcińskaB. KowalskiR. MoskalP. Analysis of degraded papers by infrared and Raman spectroscopy for forensic purposes.J. Mol. Struct.2017114015416210.1016/j.molstruc.2016.12.012
    [Google Scholar]
  49. GrechukhaN. GorshkovaK. PanovM. TumkinI. KirillovaE. LukianovV. KirillovaN. KochemirovskyV. Analysis of the aging processes of writing ink: Raman spectroscopy versus gas chromatography aspects.Appl. Sci.201771099110.3390/app7100991
    [Google Scholar]
  50. AnhH.D. HungH.M. MinhT.B. Application of Raman spectroscopy in relative blue ballpoint pen ink dating for forensic document analysis – A case report.J. Sci. Technol.2024627710.55401/v3apkt33
    [Google Scholar]
  51. BalakhninaI.A. BrandtN.N. ChikishevA.Y. RebrikovaN.L. Raman microspectroscopy of old paper samples with foxing.Appl. Spectrosc.201468449550110.1366/13‑07222 24694707
    [Google Scholar]
  52. RazaA. SahaB. Application of Raman spectroscopy in forensic investigation of questioned documents involving stamp inks.Sci. Justice201353333233810.1016/j.scijus.2012.11.001 23937943
    [Google Scholar]
  53. ShahK.G. YagerP. Wavelengths and lifetimes of paper autofluorescence: A simple substrate screening process to enhance the sensitivity of fluorescence-based assays in paper.Anal. Chem.20178922120231202910.1021/acs.analchem.7b02424 29048155
    [Google Scholar]
  54. LuongoA. von StockertA.R. ScheragF.D. BrandstetterT. BiesalskiM. RüheJ. Controlling fluorescent readout in paper-based analytical devices.ACS Biomater. Sci. Eng.20239116379638910.1021/acsbiomaterials.3c00736 37875260
    [Google Scholar]
  55. BumpS. BöhmA. BabelL. WendenburgS. CarstensF. SchabelS. BiesalskiM. MeckelT. Spatial, spectral, radiometric, and temporal analysis of polymer-modified paper substrates using fluorescence microscopy.Cellulose2015221738810.1007/s10570‑014‑0499‑5
    [Google Scholar]
  56. ZhongX. WangX. ZhouY. Enhanced time-resolved fluorescence imaging based on dual-gated for forensic document inspection.4th Optics Young Scientist Summit (OYSS 2020),SPIE20211178110310810.1117/12.2591328
    [Google Scholar]
  57. ZhongX. WangX. ZhouY. Ns-scaled time-gated fluorescence lifetime imaging for forensic document examination.2017 International Conference on Optical Instruments and Technology: Optical Systems and Modern Optoelectronic InstrumentsBeijing, China201719620210.1117/12.2286229
    [Google Scholar]
  58. WuX. FangF. LiB. Determination of the sequence of intersecting lines between toners and seals by laser fluorescence microscope.J. Forensic Sci.20196461761176810.1111/1556‑4029.14097 31150117
    [Google Scholar]
  59. JohnyJ. OfficerS. FungW.K. PrabhuR. Fluorescence lifetime assisted enhanced security feature in travel documents for border control and security applications.Counterterrorism, Crime Fighting, Forensics, and Surveillance Technologies III.SPIE201911166374310.1117/12.2535742
    [Google Scholar]
  60. KoenigA. BüglerJ. KirschD. KöhlerF. WeyermannC. Ink dating using thermal desorption and gas chromatography/mass spectrometry: comparison of results obtained in two laboratories.J. Forensic Sci.201560s1Suppl. 1S152S16110.1111/1556‑4029.12603 25389038
    [Google Scholar]
  61. KoenigA. MagnolonS. WeyermannC. A comparative study of ballpoint ink ageing parameters using GC/MS.Forensic Sci. Int.20152529310610.1016/j.forsciint.2015.03.027 25989257
    [Google Scholar]
  62. MokhorovD.A. KochemirovskyV.A. MonographInstitute of Advanced Research and ExpertisePublishing and Printing Association of Higher Educational Institutions: St. Petersburg202326210.52565/9785911552282
    [Google Scholar]
  63. KochemirovskyV. BarovaV. DenisovaY. IschukD. FogelA. KochemirovskaiaS. AnisimovD. MokhorovD. NovomlinskyM. Influence of the humidity factor on artificial ink aging and document dating.SSRN202310.2139/ssrn.4446135
    [Google Scholar]
  64. SirroS. ErshovaK. KochemirovskyV. FiksJ. KondrakhinaP. ErmakovS. MokhorovD. KochemirovskaiaS. Recognition of fake paintings of the 20th-century Russian avant-garde using the physicochemical analysis of zinc white.Forensic Chem.20212610036710.1016/j.forc.2021.100367
    [Google Scholar]
  65. MokhorovD. AnisimovD. KochemirovskyV. Examination of the prescription of a document as a way to identify malfeasance.Reliab. Theory Appl.2023187561963110.1016/j.eswa.2022.117683
    [Google Scholar]
  66. LionettoF. Del SoleR. CannolettaD. VasapolloG. MaffezzoliA. Monitoring wood degradation during weathering by cellulose crystallinity.Materials20125101910192210.3390/ma5101910
    [Google Scholar]
  67. BarańskiA. Ageing kinetics of cellulose and paper.Restaurator 2002232778810.1515/REST.2002.77
    [Google Scholar]
  68. ErhardtD. MecklenburgM.F. Accelerated VS natural aging: Effect of aging conditions on the aging process of cellulose.MRS Proc.199535224710.1557/PROC‑352‑247
    [Google Scholar]
  69. ZouX. UesakaT. GurnagulN. Prediction of paper permanence by accelerated aging I. Kinetic analysis of the aging process.Cellulose19963124326710.1007/BF02228805
    [Google Scholar]
  70. KačíkF. KačíkováD. JablonskýM. KatuščákS. Cellulose degradation in newsprint paper ageing.Polym. Degrad. Stabil.20099491509151410.1016/j.polymdegradstab.2009.04.033
    [Google Scholar]
  71. WiercigrochE. SzafraniecE. CzamaraK. PaciaM.Z. MajznerK. KochanK. KaczorA. BaranskaM. MalekK. Raman and infrared spectroscopy of carbohydrates: A review.Spectrochim. Acta A Mol. Biomol. Spectrosc.201718531733510.1016/j.saa.2017.05.045 28599236
    [Google Scholar]
  72. SekkalM. DincqV. LegrandP. HuvenneJ.P. Investigation of the glycosidic linkages in several oligosaccharides using FT-IR and FT Raman spectroscopies.J. Mol. Struct.199534934935210.1016/0022‑2860(95)08781‑P
    [Google Scholar]
  73. RossinskayaE.R. GorshkovaK.O. KirillovaN.P. StoykoN.G. KirillovaE.O. KochemirovskaiaS.V. KochemirovskyV.A. Challenges of forensic-technical expertise of documents for determining the terms of their production.J. Sib. Fed. Univ. Humanit. Soc. Sci.201912441043710.17516/1997‑1370‑0402
    [Google Scholar]
  74. KumarR. KumarV. SharmaV. Fourier transform infrared spectroscopy and chemometrics for the characterization and discrimination of writing/photocopier paper types: Application in forensic document examinations.Spectrochim. Acta A Mol. Biomol. Spectrosc.2017170192810.1016/j.saa.2016.06.042 27394012
    [Google Scholar]
  75. YangH. YanR. ChenH. LeeD.H. ZhengC. Characteristics of hemicellulose, cellulose and lignin pyrolysis.Fuel20078612-131781178810.1016/j.fuel.2006.12.013
    [Google Scholar]
  76. SamynP. Lateral mapping of poly(styrene-co-maleimide) nanoparticle coatings on paper by confocal Raman microscopy.Vib. Spectrosc.201788273910.1016/j.vibspec.2016.09.025
    [Google Scholar]
  77. ProniewiczL.M. Paluszkiewicz, C.; Wesełucha-Birczyńska, A.; Barański, A.; Dutka, D. FT-IR and FT-Raman study of hydrothermally degraded groundwood containing paper.J. Mol. Struct.20026141-334535310.1016/S0022‑2860(02)00275‑2
    [Google Scholar]
  78. XiaJ. DuX. XuW. WeiY. XiongY. MinS. Non-destructive analysis the dating of paper based on convolutional neural network.Spectrochim. Acta A Mol. Biomol. Spectrosc.202124811929010.1016/j.saa.2020.119290 33310618
    [Google Scholar]
  79. JablonskyM. ŠimaJ. LelovskyM. Considerations on factors influencing the degradation of cellulose in alum-rosin sized paper.Carbohydr. Polym.202024511653410.1016/j.carbpol.2020.116534 32718636
    [Google Scholar]
  80. ŁojewskiT. MiśkowiecP. MissoriM. LubańskaA. ProniewiczL.M. ŁojewskaJ. FTIR and UV/vis as methods for evaluation of oxidative degradation of model paper: DFT approach for carbonyl vibrations.Carbohydr. Polym.201082237037510.1016/j.carbpol.2010.04.087
    [Google Scholar]
/content/journals/cac/10.2174/0115734110318287240912190749
Loading
/content/journals/cac/10.2174/0115734110318287240912190749
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test