Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Objective

Liubao tea residues, often discarded as waste, may contain valuable bioactive compounds as polysaccharides. To characterize the physicochemical properties of polysaccharides extracted by 4 mol/L KOH (KTP) and investigate its effects on macrophage activation and immune response.

Methods

KTP was extracted using an alkaline method. Physicochemical characterization was performed using monosaccharide analysis, molecular weight assessment, FT-IR spectroscopy, XRD, and NMR spectroscopy. Immunomodulatory effects were evaluated through macrophage activation assays, focusing on NO production, cytokine release, and NF-κB pathway modulation.

Results

Monosaccharide analysis identified KTP as a composite of arabinose, mannose, galactose, glucose, and xylose with distinct variations in abundance. Molecular weight analysis revealed KTP as a heterogeneous polysaccharide with fractions KTP-1 and KTP-2 of different molecular sizes. Structural characterization analysis showed specific functional groups, bond arrangements, and helical conformations, elucidating KTP’s intricate surface morphologies and semi-crystalline nature. Additionally, immunomodulatory studies demonstrated KTP’s activation of macrophage pathways the NF-κB pathway, increasing nitric oxide (NO) and pro-inflammatory cytokine production dose-dependently.

Conclusion

This study reveals KTP's rich structural diversity and potent immunomodulatory activity, highlighting its potential as a natural immune booster and possible application in developing functional foods.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110347613250104124717
2025-01-29
2025-12-17
Loading full text...

Full text loading...

References

  1. FengX. DengH. HuangL. TengJ. WeiB. XiaN. PangB. Degradation of cell wall polysaccharides during traditional and tank fermentation of Chinese Liupao tea.J. Agric. Food Chem.20247284195420610.1021/acs.jafc.3c07447 38354398
    [Google Scholar]
  2. LiJ. WangD. XingX. ChengT.J.R. LiangP.H. BuloneV. ParkJ.H. HsiehY.S.Y. Structural analysis and biological activity of cell wall polysaccharides extracted from Panax ginseng marc.Int. J. Biol. Macromol.2019135293710.1016/j.ijbiomac.2019.05.077 31121231
    [Google Scholar]
  3. LiY. ShengY. LiuJ. XuG. YuW. CuiQ. LuX. DuP. AnL. Hair-growth promoting effect and anti-inflammatory mechanism of Ginkgo biloba polysaccharides.Carbohydr. Polym.202227811881110.1016/j.carbpol.2021.118811 34973721
    [Google Scholar]
  4. CampestriniL.H. RaseraG.B. de CamargoA.C. FranchinM. NaniB.D. RosalenP.L. Canniatti-BrazacaS.G. BiasotoA.C.T. ShahidiF. AlencarS.M. Alkaline conditions better extract anti-inflammatory polysaccharides from winemaking by-products.Food Res. Int.202013110853210.1016/j.foodres.2019.108532 32247498
    [Google Scholar]
  5. WangH. TengJ. HuangL. Determination of the variations in the metabolic profile and sensory quality of Liupao tea during fermentation through UHPLC-HR-MS metabolomics.Food Chem.2023404Pt B13477310.1016/j.foodchem.2022.134773 36332583
    [Google Scholar]
  6. QinH. HuangL. TengJ. WeiB. XiaN. YeY. Purification, characterization, and bioactivity of Liupao tea polysaccharides before and after fermentation.Food Chem.202135312941910.1016/j.foodchem.2021.129419 33740504
    [Google Scholar]
  7. ShahP.K. Inflammation, infection and atherosclerosis.Trends Cardiovasc. Med.201929846847210.1016/j.tcm.2019.01.004 30733074
    [Google Scholar]
  8. FanX. XiaoX. MaoX. ChenD. YuB. WangJ. YanH. Tea bioactive components prevent carcinogenesis via anti-pathogen, anti-inflammation, and cell survival pathways.IUBMB Life202173232834010.1002/iub.2445 33368980
    [Google Scholar]
  9. YeY. WarusawitharanaH. ZhaoH. LiuZ. LiB. WuY. HeP. TuY. Tea polyphenols attenuates inflammation via reducing lipopolysaccharides level and inhibiting TLR4/NF-κB pathway in obese mice.Plant Foods Hum. Nutr.202277110511110.1007/s11130‑021‑00937‑0 35138518
    [Google Scholar]
  10. ZhuJ. ChenZ. ChenL. YuC. WangH. WeiX. WangY. Comparison and structural characterization of polysaccharides from natural and artificial Se-enriched green tea.Int. J. Biol. Macromol.201913038839810.1016/j.ijbiomac.2019.02.102 30794901
    [Google Scholar]
  11. ZhuJ. ChenZ. ZhouH. YuC. HanZ. ShaoS. HuX. WeiX. WangY. Effects of extraction methods on physicochemical properties and hypoglycemic activities of polysaccharides from coarse green tea.Glycoconj. J.202037224125010.1007/s10719‑019‑09901‑2 31915970
    [Google Scholar]
  12. ZhuJ. ChenX. LiF. WeiK. ChenJ. WeiX. WangY. Preparation, physicochemical and hypoglycemic properties of natural selenium-enriched coarse tea glycoproteins.Plant Foods Hum. Nutr.202277225826410.1007/s11130‑022‑00975‑2 35612700
    [Google Scholar]
  13. LinX. JiX. WangM. YinS. PengQ. An alkali-extracted polysaccharide from Zizyphus jujuba cv. Muzao: Structural characterizations and antioxidant activities.Int. J. Biol. Macromol.201913660761510.1016/j.ijbiomac.2019.06.117 31220502
    [Google Scholar]
  14. ChenC. WangP. HuangQ. YouL.J. LiuR.H. ZhaoM. FuX. LuoZ.G. A comparison study on polysaccharides extracted from Fructus mori using different methods: Structural characterization and glucose entrapment.Food Funct.20191063684369510.1039/C9FO00026G 31168531
    [Google Scholar]
  15. SongX. RenT. ZhengZ. LuT. WangZ. DuF. TongH. Anti-tumor and immunomodulatory activities induced by an alkali-extracted polysaccharide BCAP-1 from Bupleurum chinense via NF-κB signaling pathway.Int. J. Biol. Macromol.20179535736210.1016/j.ijbiomac.2016.10.112 27884671
    [Google Scholar]
  16. TangY. HeX. LiuG. Effects of different extraction methods on the structural, antioxidant and hypoglycemic properties of red pitaya stem polysaccharide.Food Chem.2023405Pt A13480410.1016/j.foodchem.2022.134804 36356363
    [Google Scholar]
  17. GuoH. FuM.X. ZhaoY.X. LiH. LiH.B. WuD.T. GanR.Y. The chemical, structural, and biological properties of crude polysaccharides from sweet tea (Lithocarpus litseifolius (hance) chun) based on different extraction technologies.Foods2021108177910.3390/foods10081779 34441556
    [Google Scholar]
  18. SunY. HouS. SongS. ZhangB. AiC. ChenX. LiuN. Impact of acidic, water and alkaline extraction on structural features, antioxidant activities of Laminaria japonica polysaccharides.Int. J. Biol. Macromol.201811298599510.1016/j.ijbiomac.2018.02.066 29447968
    [Google Scholar]
  19. SouissiN. BoughribaS. AbdelhediO. HamdiM. JridiM. LiS. NasriM. Extraction, structural characterization, and thermal and biomedical properties of sulfated polysaccharides from razor clam Solen marginatus.RSC Advances2019920115381155110.1039/C9RA00959K 35520239
    [Google Scholar]
  20. ZhengL. MaY. ZhangY. MengQ. YangJ. WangB. LiuQ. CaiL. GongW. YangY. ShiJ. Increased antioxidant activity and improved structural characterization of sulfuric acid-treated stepwise degraded polysaccharides from Pholiota nameko PN-01.Int. J. Biol. Macromol.20211661220122910.1016/j.ijbiomac.2020.11.004 33157137
    [Google Scholar]
  21. LinY. PiJ. JinP. LiuY. MaiX. LiP. FanH. Enzyme and microwave co-assisted extraction, structural characterization and antioxidant activity of polysaccharides from Purple-heart Radish.Food Chem.202237213127410.1016/j.foodchem.2021.131274 34638061
    [Google Scholar]
  22. ZhongC. TianW. ChenH. YangY. XuY. ChenY. ChenP. ZhuS. LiP. DuB. Structural characterization and immunoregulatory activity of polysaccharides from Dendrobium officinale leaves.J. Food Biochem.2022461e1402310.1111/jfbc.14023 34873736
    [Google Scholar]
  23. ZhuJ. ZhouH. ZhangJ. LiF. WeiK. WeiX. WangY. Valorization of polysaccharides obtained from dark tea: Preparation, physicochemical, antioxidant, and hypoglycemic properties.Foods20211010227610.3390/foods10102276 34681325
    [Google Scholar]
  24. ZhouH. ChenY. WangZ. XieC. YeD. GuoA. XieW. XingJ. ZhengM. Preparation, characterization and antioxidant activity of cobalt polysaccharides from qingzhuan dark tea.Heliyon202394e1550310.1016/j.heliyon.2023.e15503 37151649
    [Google Scholar]
  25. NiuY. YanW. LvJ. YaoW. YuL.L. Characterization of a novel polysaccharide from tetraploid Gynostemma pentaphyllum makino.J. Agric. Food Chem.201361204882488910.1021/jf400236x 23627413
    [Google Scholar]
  26. YaoH.Y.Y. WangJ.Q. YinJ.Y. NieS.P. XieM.Y. A review of NMR analysis in polysaccharide structure and conformation: Progress, challenge and perspective.Food Res. Int.202114311029010.1016/j.foodres.2021.110290 33992390
    [Google Scholar]
  27. QianL. DuM. YangX. WangQ. HuangS. MaY. SunY. Microanalysis characterization and immunomodulatory effect for selenium-enriched polysaccharide from Morchella esculenta (L.).Pers. Molecules2023287288510.3390/molecules28072885 37049647
    [Google Scholar]
  28. HuangR. ShenM. YuY. Physicochemical characterization and immunomodulatory activity of sulfated Chinese yam polysaccharide.Int. J. Biol. Macromol.2020165Pt A63564410.1016/j.ijbiomac.2020.09.213 33010270
    [Google Scholar]
  29. McElvaneyO.J. CurleyG.F. Rose-JohnS. McElvaneyN.G. Interleukin-6: obstacles to targeting a complex cytokine in critical illness.Lancet Respir. Med.20219664365410.1016/S2213‑2600(21)00103‑X 33872590
    [Google Scholar]
  30. TianJ. ZhangC. WangX. RuiX. ZhangQ. ChenX. DongM. LiW. Structural characterization and immunomodulatory activity of intracellular polysaccharide from the mycelium of Paecilomyces cicadae TJJ1213.Food Res. Int.202114711051510.1016/j.foodres.2021.110515 34399493
    [Google Scholar]
  31. LiG. JuY. WenY. ZuoM. WangC. ZhangX. HouX. YangG. GaoJ. Screening of Codonopsis radix Polysaccharides with Different Molecular Weights and Evaluation of Their Immunomodulatory Activity In Vitro and In Vivo.Molecules20222717545410.3390/molecules27175454 36080221
    [Google Scholar]
  32. LiQ. VermaI.M. NF-κB regulation in the immune system.Nat. Rev. Immunol.200221072573410.1038/nri910 12360211
    [Google Scholar]
  33. IshiiM. NakaharaT. ArahoD. MurakamiJ. NishimuraM. Glycolipids from spinach suppress LPS-induced vascular inflammation through eNOS and NK-κB signaling.Biomed. Pharmacother.20179111112010.1016/j.biopha.2017.04.052 28448865
    [Google Scholar]
  34. SchepetkinI.A. DaniletsM.G. LigachevaA.A. TrofimovaE.S. SelivanovaN.S. SherstoboevE.Y. KrivoshchekovS.V. GulinaE.I. BrazovskiiK.S. KirpotinaL.N. QuinnM.T. BelousovM.V. Immunomodulatory activity of polysaccharides isolated from Saussurea salicifolia L. and Saussurea frolovii Ledeb.Molecules20232818665510.3390/molecules28186655 37764432
    [Google Scholar]
  35. EllefsenC.F. WoldC.W. WilkinsA.L. RiseF. SamuelsenA.B.C. Water-soluble polysaccharides from Pleurotus eryngii fruiting bodies, their activity and affinity for Toll-like receptor 2 and dectin-1.Carbohydr. Polym.202126411799110.1016/j.carbpol.2021.117991 33910729
    [Google Scholar]
  36. SunY. WangF. LiuY. AnY. ChangD. WangJ. XiaF. LiuN. ChenX. CaoY. Comparison of water- and alkali-extracted polysaccharides from Fuzhuan brick tea and their immunomodulatory effects in vitro and in vivo.Food Funct.202213280682410.1039/D1FO02944D 34985061
    [Google Scholar]
/content/journals/cac/10.2174/0115734110347613250104124717
Loading
/content/journals/cac/10.2174/0115734110347613250104124717
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test