Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Introduction

The present work aims to synthesize, characterize, and DNA binding properties of copper, nickel, zinc, and iron complexes of a well-known polyphenol drug curcumin. The metal ion complexes of curcumin's synthesized transition metal ion complexes were characterized by UV-vis spectroscopy and FTIR.

Methods

The complexation of curcumin with transition metal ion complexes changes the color of the curcumin based on the metal incorporated. Moreover, the shift in the absorption maxima of curcumin metal ion complexes may confirm the formation of coordination complexes. Then, FTIR results indicated that the coordination of curcumin with metal ions in the ketone group of curcumin confirms the formation of 1:2 (M: L) complexes.

Results

Then, we evaluated the DNA binding properties of synthesized metal ion complexes of curcumin using electronic absorption spectra and agarose gel electrophoresis. The results indicated that the curcumin zinc complex exhibited less DNA binding constant among the four metal ion complexes than all the other compounds tested, confirming its weak interaction.

Conclusion

Moreover, all the compounds degrade plasmid DNA, confirming their DNA cleavage activity. From our findings, these compounds will pave the way for developing new anticancer drugs with less toxicity.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110347070240926050308
2024-09-27
2025-12-16
Loading full text...

Full text loading...

References

  1. Saud GanyS.L. ChinK.Y. TanJ.K. AminuddinA. MakpolS. Curcumin as a Therapeutic Agent for Sarcopenia.Nutrients20231511252610.3390/nu15112526 37299489
    [Google Scholar]
  2. DehghanG. DolatabadiJ.E.N. JouybanA. ZeynaliK.A. AhmadiS.M. KashanianS. Spectroscopic studies on the interaction of quercetin-terbium(III) complex with calf thymus DNA.DNA Cell Biol.201130319520110.1089/dna.2010.1063 21043831
    [Google Scholar]
  3. Leyva-DiazA.A. Hernandez-PatlanD. Solis-CruzB. AdhikariB. KwonY.M. LatorreJ.D. Hernandez-VelascoX. Fuente-MartinezB. HargisB.M. Lopez-ArellanoR. Tellez-IsaiasG. Evaluation of curcumin and copper acetate against Salmonella Typhimurium infection, intestinal permeability, and cecal microbiota composition in broiler chickens.J. Anim. Sci. Biotechnol.20211212310.1186/s40104‑021‑00545‑7 33541441
    [Google Scholar]
  4. BeraM. DasM. DolaiM. LahaS. IslamM.M. SamantaB.C. DasA. ChoudhuriI. BhattacharyyaN. MaityT. DNA/Protein Binding and Apoptotic-Induced Anticancer Property of a First Time Reported Quercetin–Iron(III) Complex Having a Secondary Anionic Residue: A Combined Experimental and Theoretical Approach.ACS Omega20238163664710.1021/acsomega.2c05790 36643564
    [Google Scholar]
  5. PrasadS. DuBourdieuD. SrivastavaA. KumarP. LallR. Metal–Curcumin Complexes in Therapeutics: An Approach to Enhance Pharmacological Effects of Curcumin.Int. J. Mol. Sci.20212213709410.3390/ijms22137094 34209461
    [Google Scholar]
  6. WanningerS. LorenzV. SubhanA. EdelmannF.T. Metal complexes of curcumin – Synthetic strategies, structures and medicinal applications.Chem. Soc. Rev.201544154986500210.1039/C5CS00088B 25964104
    [Google Scholar]
  7. GholamiM. ZeighamiH. BikasR. HeidariA. RafieeF. HaghiF. Inhibitory activity of metal-curcumin complexes on quorum sensing related virulence factors of Pseudomonas aeruginosa PAO1.AMB Express202010111110.1186/s13568‑020‑01045‑z 32514786
    [Google Scholar]
  8. ShahabadiN. FalsafiM. MoghadamN.H. DNA interaction studies of a novel Cu(II) complex as an intercalator containing curcumin and bathophenanthroline ligands.J. Photochem. Photobiol. B2013122455110.1016/j.jphotobiol.2013.03.002 23597781
    [Google Scholar]
  9. SelvarajS. KrishnaswamyS. DevashyaV. SethuramanS. KrishnanU.M. Flavonoid-metal ion complexes: A novel class of therapeutic agents.Med. Res. Rev.201434467770210.1002/med.21301 24037904
    [Google Scholar]
  10. TarahovskyY.S. Plant polyphenols in cell-cell interaction and communication.Plant Signal. Behav.20083860961110.4161/psb.3.8.6359 19704814
    [Google Scholar]
  11. UcaM. EksinE. EracY. ErdemA. Electrochemical Investigation of Curcumin–DNA Interaction by Using Hydroxyapatite Nanoparticles–Ionic Liquids Based Composite Electrodes.Materials (Basel)20211415434410.3390/ma14154344 34361538
    [Google Scholar]
  12. AslanM. AydınF. AslanF. LeventA. Application of Disposable Biosensor for Nivolumab–DNA Interaction Using Pencil Graphite Electrode.Russ. J. Electrochem.2023591194195310.1134/S1023193523110046
    [Google Scholar]
  13. AslanM. AydınF. LeventA. Voltammetric studies and spectroscopic investigations of the interaction of an anticancer drug bevacizumab-DNA and analytical applications of disposable pencil graphite sensor.Talanta202326512489310.1016/j.talanta.2023.124893 37437394
    [Google Scholar]
  14. SerpiC. StanićZ. GirousiS. Electroanalytical study of the interaction between dsDNA and curcumin in the presence of copper(II).Talanta2010814-51731173410.1016/j.talanta.2010.03.031 20441965
    [Google Scholar]
  15. WalkerB.C. MittalS. Antitumor Activity of Curcumin in Glioblastoma.Int. J. Mol. Sci.20202124943510.3390/ijms21249435 33322413
    [Google Scholar]
  16. MansouriK. RasoulpoorS. DaneshkhahA. AbolfathiS. SalariN. MohammadiM. RasoulpoorS. ShabaniS. Clinical effects of curcumin in enhancing cancer therapy: A systematic review.BMC Cancer202020179110.1186/s12885‑020‑07256‑8 32838749
    [Google Scholar]
  17. BestermanJ.M. ElwellL.P. CragoeE.J.Jr AndrewsC.W. CoryM. DNA intercalation and inhibition of topoisomerase II.J. Biol. Chem.198926442324233010.1016/S0021‑9258(18)94179‑7 2536704
    [Google Scholar]
  18. UroševićM. NikolićL. GajićI. NikolićV. DinićA. MiljkovićV. Curcumin: Biological Activities and Modern Pharmaceutical Forms.Antibiotics (Basel)202211213510.3390/antibiotics11020135 35203738
    [Google Scholar]
  19. BanaspatiA. RamuV. RazaM.K. GoswamiT.K. Copper(ii) curcumin complexes for endoplasmic reticulum targeted photocytotoxicity.RSC Advances20221247307223073310.1039/D2RA04813B 36349155
    [Google Scholar]
  20. PrasadS. LallR. Zinc-curcumin based complexes in health and diseases: An approach in chemopreventive and therapeutic improvement.J. Trace Elem. Med. Biol.20227312702310.1016/j.jtemb.2022.127023 35780653
    [Google Scholar]
  21. TianY. LiuY. WangL. GuoX. LiuY. MouJ. WuH. YangS. Gadolinium-doped hollow silica nanospheres loaded with curcumin for magnetic resonance imaging-guided synergistic cancer sonodynamic-chemotherapy.Mater. Sci. Eng. C202112611215710.1016/j.msec.2021.112157 34082962
    [Google Scholar]
  22. VajraguptaO. BoonchoongP. WatanabeH. TohdaM. KummasudN. SumanontY. Manganese complexes of curcumin and its derivatives: evaluation for the radical scavenging ability and neuroprotective activity.Free Radic. Biol. Med.200335121632164410.1016/j.freeradbiomed.2003.09.011 14680686
    [Google Scholar]
  23. LiS. XuG. ZhuY. ZhaoJ. GouS. Bifunctional ruthenium(ii) polypyridyl complexes of curcumin as potential anticancer agents.Dalton Trans.202049279454946310.1039/D0DT01040E 32598409
    [Google Scholar]
  24. SelvarajS. KrishnaswamyS. DevashyaV. SethuramanS. KrishnanU.M. Investigations on membrane perturbation by chrysin and its copper complex using self-assembled lipid bilayers.Langmuir20112721133741338210.1021/la2029356 21923196
    [Google Scholar]
  25. BanerjeeS. ChakravartyA.R. Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity.Acc. Chem. Res.20154872075208310.1021/acs.accounts.5b00127 26158541
    [Google Scholar]
  26. Al-AwadiN. ShuaibN.M. El-DissoukyA. Synthesis and spectroscopic characterization of nickel(II) complexes of 1-benzotriazol-1-yl-[(p-X-phenyl)hydrazone]propan-2-one.Spectrochim. Acta A Mol. Biomol. Spectrosc.2006651364310.1016/j.saa.2005.09.024 16458056
    [Google Scholar]
  27. LiS. MuB. YanP. KangY. WangQ. WangA. Incorporation of Different Metal Ion for Tuning Color and Enhancing Antioxidant Activity of Curcumin/Palygorskite Hybrid Materials.Front Chem.2021976094110.3389/fchem.2021.760941 34966719
    [Google Scholar]
  28. ShakeriA. PanahiY. JohnstonT.P. SahebkarA. Biological properties of metal complexes of curcumin.Biofactors201945330431710.1002/biof.1504 31018024
    [Google Scholar]
  29. SongY.M. XuJ.P. DingL. HouQ. LiuJ.W. ZhuZ.L. Syntheses, characterization and biological activities of rare earth metal complexes with curcumin and 1,10-phenanthroline-5,6-dione.J. Inorg. Biochem.2009103339640010.1016/j.jinorgbio.2008.12.001 19135257
    [Google Scholar]
  30. JeyaramanP. AlagarrajA. NatarajanR. In silico and in vitro studies of transition metal complexes derived from curcumin–isoniazid Schiff base.J. Biomol. Struct. Dyn.202038248849910.1080/07391102.2019.1581090 30767624
    [Google Scholar]
  31. ZhengM.H. BigdeliF. GaoL.X. WuD.Z. YanX.W. HuM.L. MorsaliA. Synthesis, Characterization and DNA Binding Investigations of a New Binuclear Ag(I) Complex and Evaluation of Its Anticancer Property. Int.J. Nanomedicine20201595396410.2147/IJN.S225038 32103949
    [Google Scholar]
  32. Lakey-BeitiaJ. BurilloA.M. La PennaG. HegdeM.L. RaoK.S. Polyphenols as Potential Metal Chelation Compounds Against Alzheimer’s Disease.J. Alzheimers Dis.202182s1S335S35710.3233/JAD‑200185 32568200
    [Google Scholar]
  33. WangQ. MaoH. WangW. ZhuH. DaiL. ChenY. TangX. Synthesis, X-ray crystal structure, DNA/BSA binding, DNA cleavage and cytotoxicity studies of phenanthroline based copper(II)/zinc(II) complexes.Biometals201730457558710.1007/s10534‑017‑0028‑8 28616784
    [Google Scholar]
/content/journals/cac/10.2174/0115734110347070240926050308
Loading
/content/journals/cac/10.2174/0115734110347070240926050308
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test