Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Nanoparticles are widely used in manufacturing, daily life applications, and other fields because of their unique properties. However, the nanoparticles that end up in surface water are difficult to break down naturally and cause environmental hazards that cannot be ignored. In this paper, the migration mode of nanoparticles in the environment was proposed, and the factors affecting the removal efficiency of nanoparticles mainly include ionic strength, natural organic matter, surface properties, . The common methods for removing nanoparticles mainly include coagulation precipitation methods, activated sludge methods, membrane filtration methods, and adsorption methods. In addition, new technologies such as photothermal removal and electro-adsorption have also been applied to remove nanoparticles in water. In future research, combining the advantages of different removal methods and using different methods interactively to remove nanoparticles in water could become a new research direction.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110303211240430161337
2024-05-07
2025-11-05
Loading full text...

Full text loading...

References

  1. Mohammad Mirsoleimani AziziS. HaiF.I. LuW. Al-MamunA. Ranjan DharB. A review of mechanisms underlying the impacts of (nano) microplastics on anaerobic digestion.Bioresour. Technol.202132912489410.1016/j.biortech.2021.124894 33662851
    [Google Scholar]
  2. RitchieA.W. CoxH.J. Barrientos-PalomoS.N. SharplesG.J. BadyalJ.P.S. Bioinspired multifunctional polymer–nanoparticle–surfactant complex nanocomposite surfaces for antibacterial oil–water separation.Colloids Surf. A Physicochem. Eng. Asp.201956035235910.1016/j.colsurfa.2018.10.030
    [Google Scholar]
  3. HenryC. DorrB. BrantJ.A. Buckminsterfullerene (C60) nanoparticle fouling of microfiltration membranes operated in a cross-flow configuration.Separ. Purif. Tech.2012100304310.1016/j.seppur.2012.08.019
    [Google Scholar]
  4. ZhangP. JinL. ZhouL. DuX. YangY. Heat transfer around copper nanoparticle with high superheat in water pool: A molecular dynamics simulation.Therm. Sci. Eng. Prog.2018850951610.1016/j.tsep.2018.10.008
    [Google Scholar]
  5. AlhammadiM. AliyaS. UmapathiR. OhM.H. HuhY.S. A simultaneous qualitative and quantitative lateral flow immunoassay for on-site and rapid detection of streptomycin in pig blood serum and urine.Microchem. J.202319510942710.1016/j.microc.2023.109427
    [Google Scholar]
  6. Venkateswara RajuC. Hwan ChoC. Mohana RaniG. ManjuV. UmapathiR. Suk HuhY. Pil ParkJ. Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions.Coord. Chem. Rev.202347621492010.1016/j.ccr.2022.214920
    [Google Scholar]
  7. UmapathiR. RaniG.M. KimE. ParkS.Y. ChoY. HuhY.S. Sowing kernels for food safety: Importance of rapid on-site detction of pesticide residues in agricultural foods.Food Front.20223466667610.1002/fft2.166
    [Google Scholar]
  8. UmapathiR. ParkB. SonwalS. RaniG.M. ChoY. HuhY.S. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods.Trends Food Sci. Technol.2022119698910.1016/j.tifs.2021.11.018
    [Google Scholar]
  9. XuL. WangZ. ZhaoJ. LinM. XingB. Accumulation of metal-based nanoparticles in marine bivalve mollusks from offshore aquaculture as detected by single particle ICP-MS.Environ. Pollut.202026011404310.1016/j.envpol.2020.114043 32041024
    [Google Scholar]
  10. FerayA. SzelyN. GuilletE. HulloM. LegrandF.X. BrunE. PallardyM. Biola-VidammentA. How to address the adjuvant effects of nanoparticles on the immune system.Nanomaterials202010342510.3390/nano10030425 32121170
    [Google Scholar]
  11. SousaV.S. Ribau TeixeiraM. Removal of a mixture of metal nanoparticles from natural surface waters using traditional coagulation process.J. Water Process Eng.20203610128510.1016/j.jwpe.2020.101285
    [Google Scholar]
  12. De-Paz-ArroyoG. Picos-CorralesL.A. Pérez-SicairosS. Licea-ClaverieA. Flocculants based on responsive polymers and chitosan for removal of metallic nanoparticles as contaminants of emerging concern present in water.Colloids Surf. A Physicochem. Eng. Asp.202367513204510.1016/j.colsurfa.2023.132045
    [Google Scholar]
  13. FanH. StrioloA. Nanoparticle effects on the water-oil interfacial tension.Phys. Rev. E Stat. Nonlin. Soft Matter Phys.201286505161010.1103/PhysRevE.86.051610 23214796
    [Google Scholar]
  14. LowryG.V. GregoryK.B. ApteS.C. LeadJ.R. Transformations of nanomaterials in the environment.Environ. Sci. Technol.201246136893689910.1021/es300839e 22582927
    [Google Scholar]
  15. WangH. WickR.L. XingB. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans.Environ. Pollut.200915741171117710.1016/j.envpol.2008.11.004 19081167
    [Google Scholar]
  16. ChenY. OuyangL. LiuN. LiF. LiP. SunM. QinH. LiY. XiangX. WuL. pH-responsive magnetic artificial melanin with tunable aggregation-induced stronger magnetism for rapid remediation of plastic fragments.J. Hazard. Mater.202243512896210.1016/j.jhazmat.2022.128962 35472546
    [Google Scholar]
  17. PetosaA.R. BrennanS.J. RajputF. TufenkjiN. Transport of two metal oxide nanoparticles in saturated granular porous media: Role of water chemistry and particle coating.Water Res.20124641273128510.1016/j.watres.2011.12.033 22236555
    [Google Scholar]
  18. OttofuellingS. Von Der KammerF. HofmannT. Commercial titanium dioxide nanoparticles in both natural and synthetic water: comprehensive multidimensional testing and prediction of aggregation behavior.Environ. Sci. Technol.20114523100451005210.1021/es2023225 22013881
    [Google Scholar]
  19. JaisiD.P. JiS. DongH. BlakeR.E. EberlD.D. KimJ. Role of microbial Fe(III) reduction and solution chemistry in aggregation and settling of suspended particles in the Mississippi River delta plain, Louisiana, USA.Clays Clay Miner.200856441642810.1346/CCMN.2008.0560403
    [Google Scholar]
  20. Serrão SousaV. Ribau TeixeiraM. Silver nanoparticles separation from the water using nanofiltration membranes: The role of mono- divalent salts and NOM.Separ. Purif. Tech.201514916517310.1016/j.seppur.2015.05.036
    [Google Scholar]
  21. MiaoL. WangC. HouJ. WangP. AoY. DaiS. LvB. Effects of pH and natural organic matter (NOM) on the adsorptive removal of CuO nanoparticles by periphyton.Environ. Sci. Pollut. Res. Int.201522107696770410.1007/s11356‑014‑3952‑y 25510615
    [Google Scholar]
  22. LoosliF. Le CoustumerP. StollS. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability.Water Res.201347166052606310.1016/j.watres.2013.07.021 23969399
    [Google Scholar]
  23. FurmanO. UsenkoS. LauB.L.T. Relative importance of the humic and fulvic fractions of natural organic matter in the aggregation and deposition of silver nanoparticles.Environ. Sci. Technol.201347310.1021/es303275g 23298221
    [Google Scholar]
  24. KumariM. GuptaS.K. A novel process of adsorption cum enhanced coagulation-flocculation spiked with magnetic nanoadsorbents for the removal of aromatic and hydrophobic fraction of natural organic matter along with turbidity from drinking water.J. Clean. Prod.202024411889910.1016/j.jclepro.2019.118899
    [Google Scholar]
  25. KiserM.A. RyuH. JangH. HristovskiK. WesterhoffP. Biosorption of nanoparticles to heterotrophic wastewater biomass.Water Res.201044144105411410.1016/j.watres.2010.05.036 20547403
    [Google Scholar]
  26. ZhouD. KellerA.A. Role of morphology in the aggregation kinetics of ZnO nanoparticles.Water Res.20104492948295610.1016/j.watres.2010.02.025 20227744
    [Google Scholar]
  27. JarvieH.P. Al-ObaidiH. KingS.M. BowesM.J. LawrenceM.J. DrakeA.F. GreenM.A. DobsonP.J. Fate of silica nanoparticles in simulated primary wastewater treatment.Environ. Sci. Technol.200943228622862810.1021/es901399q 20028062
    [Google Scholar]
  28. Serrão SousaV. CorniciucC. Ribau TeixeiraM. The effect of TiO2 nanoparticles removal on drinking water quality produced by conventional treatment C/F/S.Water Res.201710911210.1016/j.watres.2016.11.030 27865169
    [Google Scholar]
  29. GoraS. LiangR. ZhouY.N. AndrewsS. Settleable engineered titanium dioxide nanomaterials for the removal of natural organic matter from drinking water.Chem. Eng. J.201833463864910.1016/j.cej.2017.10.058
    [Google Scholar]
  30. FattahiA. ArlosM.J. BraggL.M. KowalczykS. LiangR. SchneiderO.M. ZhouN. ServosM.R. Photodecomposition of pharmaceuticals and personal care products using P25 modified with Ag nanoparticles in the presence of natural organic matter.Sci. Total Environ.202175214200010.1016/j.scitotenv.2020.142000 32889254
    [Google Scholar]
  31. WangY.F. XuZ. XuL. High efficient removal of silver nanoparticles by coagulation with tetraethylenepentamine modified silica.Colloids Surf. A Physicochem. Eng. Asp.202059912489710.1016/j.colsurfa.2020.124897
    [Google Scholar]
  32. KhanR. InamM.A. AkramM. UddinA. KhanS. YeomI.T. Effect of dissolved organic matter on agglomeration and removal of CuO nanoparticles by coagulation.Processes20197745510.3390/pr7070455
    [Google Scholar]
  33. ShiZ. YuS. NanJ. XiaoQ. The effect of multivalent anions on removal of Titanium dioxide nanoparticles from drinking water sources by coagulation-sedimentation processes: Efficacy and mechanisms.Separ. Purif. Tech.202229812166710.1016/j.seppur.2022.121667
    [Google Scholar]
  34. WangH. QiJ. KellerA.A. ZhuM. LiF. Effects of pH, ionic strength and humic acid on the removal of TiO2 nanoparticles from aqueous phase by coagulation.Colloids Surf. A Physicochem. Eng. Asp.201445016116510.1016/j.colsurfa.2014.03.029
    [Google Scholar]
  35. WangY. ZhangY. ZhangT.C. XiangG. WangX. YuanS. Removal of trace arsenite through simultaneous photocatalytic oxidation and adsorption by magnetic Fe3O4 @PpPDA@TiO2 core–shell nanoparticles.ACS Appl. Nano Mater.2020388495850410.1021/acsanm.0c02083
    [Google Scholar]
  36. SunY. SunH. LiD. SunW. ZhengH. Copper oxide nanoparticles removal by coagulation and optimization by matter–element analysis model.J. Environ. Chem. Eng.202210110709610.1016/j.jece.2021.107096
    [Google Scholar]
  37. YouZ. ZhuangC. SunY. ZhangS. ZhengH. Efficient removal of TiO2 nanoparticles by enhanced flocculation–coagulation.Ind. Eng. Chem. Res.20195831145281453710.1021/acs.iecr.9b01504
    [Google Scholar]
  38. WangZ. WangY. YuC. ZhaoY. FanM. GaoB. The removal of silver nanoparticle by titanium tetrachloride and modified sodium alginate composite coagulants: Floc properties, membrane fouling, and floc recycle.Environ. Sci. Pollut. Res. Int.20182521210582106910.1007/s11356‑018‑2240‑7 29767310
    [Google Scholar]
  39. ShelkeD.B. IslamN.F. ChambhareM.R. SonawaneH.B. PatowaryR. PrasadR. SarmaH. Enhancing secondary metabolites and alleviating environmental stress in crops with mycogenic nanoparticles: A comprehensive review.Biocatal. Agric. Biotechnol.20235210280510.1016/j.bcab.2023.102805
    [Google Scholar]
  40. GaneshR. SmeraldiJ. HosseiniT. KhatibL. OlsonB.H. RossoD. Evaluation of nanocopper removal and toxicity in municipal wastewaters.Environ. Sci. Technol.201044207808781310.1021/es101355k 20853883
    [Google Scholar]
  41. HirakawaT. KamatP.V. Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation.J. Am. Chem. Soc.2005127113928393410.1021/ja042925a 15771529
    [Google Scholar]
  42. ParkH.J. KimH.Y. ChaS. AhnC.H. RohJ. ParkS. KimS. ChoiK. YiJ. KimY. YoonJ. Removal characteristics of engineered nanoparticles by activated sludge.Chemosphere201392552452810.1016/j.chemosphere.2013.03.020 23659965
    [Google Scholar]
  43. SunQ. LiY. TangT. YuanZ. YuC.P. Removal of silver nanoparticles by coagulation processes.J. Hazard. Mater.201326141442010.1016/j.jhazmat.2013.07.066 23973474
    [Google Scholar]
  44. JainR. Seder-ColominaM. JordanN. DessiP. CosmidisJ. van HullebuschE.D. WeissS. FargesF. LensP.N.L. Entrapped elemental selenium nanoparticles affect physicochemical properties of selenium fed activated sludge.J. Hazard. Mater.201529519320010.1016/j.jhazmat.2015.03.043 25919502
    [Google Scholar]
  45. AsmatuluR. MuppallaH. VeisiZ. KhanW. AsaduzzamanA. NurajeN. Study of hydrophilic electrospun nanofiber membranes for filtration of micro and nanosize suspended particles.Membranes20133437538810.3390/membranes3040375 24957063
    [Google Scholar]
  46. SpringerF. LaborieS. GuiguiC. Removal of SiO2 nanoparticles from industry wastewaters and subsurface waters by ultrafiltration: Investigation of process efficiency, deposit properties and fouling mechanism.Separ. Purif. Tech.201310861410.1016/j.seppur.2013.01.043
    [Google Scholar]
  47. ZhongZ. LiW. XingW. XuN. Crossflow filtration of nanosized catalysts suspension using ceramic membranes.Separ. Purif. Tech.201176322323010.1016/j.seppur.2010.08.005
    [Google Scholar]
  48. BalasubramanianG. SenS. PuriI.K. Shear viscosity enhancement in water–nanoparticle suspensions.Phys. Lett. A20123766-786086310.1016/j.physleta.2011.12.041
    [Google Scholar]
  49. ZhangX. ZhangY. ZhangX. LiS. HuangY. Nitrogen rich core–shell magnetic mesoporous silica as an effective adsorbent for removal of silver nanoparticles from water.J. Hazard. Mater.20173371910.1016/j.jhazmat.2017.04.053 28501638
    [Google Scholar]
  50. KhanS.S. MukherjeeA. ChandrasekaranN. Adsorptive removal of silver nanoparticles (SNPs) from aqueous solution by Aeromonas punctata and its adsorption isotherm and kinetics.Colloids Surf. B Biointerfaces20129215616010.1016/j.colsurfb.2011.11.032 22178439
    [Google Scholar]
  51. GichevaG. YordanovG. Removal of citrate-coated silver nanoparticles from aqueous dispersions by using activated carbon.Colloids Surf. A Physicochem. Eng. Asp.2013431515910.1016/j.colsurfa.2013.04.039
    [Google Scholar]
  52. DhandayuthapaniB. MallampatiR. SriramuluD. DsouzaR.F. ValiyaveettilS. PVA/Gluten hybrid nanofibers for removal of nanoparticles from water.ACS Sustain. Chem.& Eng.2014241014102110.1021/sc500003k
    [Google Scholar]
  53. PramanikB.K. PramanikS.K. MoniraS. Understanding the fragmentation of microplastics into nano-plastics and removal of nano/microplastics from wastewater using membrane, air flotation and nano-ferrofluid processes.Chemosphere202128213105310.1016/j.chemosphere.2021.131053 34098311
    [Google Scholar]
  54. WangP. HuangZ. ChenS. JingM. GeZ. ChenJ. YangS. ChenJ. FangY. Sustainable removal of nano/microplastics in water by solar energy.Chem. Eng. J.202242813119610.1016/j.cej.2021.131196
    [Google Scholar]
  55. XiongY. ZhaoJ. LiL. WangY. DaiX. YuF. MaJ. Interfacial interaction between micro/nanoplastics and typical PPCPs and nanoplastics removal via electrosorption from an aqueous solution.Water Res.202018411610010.1016/j.watres.2020.116100 32755733
    [Google Scholar]
/content/journals/cac/10.2174/0115734110303211240430161337
Loading
/content/journals/cac/10.2174/0115734110303211240430161337
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test