Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Polycystic ovary syndrome (PCOS) presents as a complex endocrine and metabolic disorder characterized by anovulation, infertility, obesity, insulin resistance, and polycystic ovaries. Various factors contribute to PCOS risk, including lifestyle choices, diet, environmental pollutants, genetics, gut dysbiosis, neuroendocrine changes, and obesity. These factors can impact hyperinsulinemia, oxidative stress, hyperandrogenism, decreased folliculogenesis, and irregular menstrual cycles, ultimately contributing to metabolic syndrome. Conventional treatments for PCOS often carry significant side effects, prompting exploration into Ayurvedic alternatives. This review concentrates on molecular docking studies of phytochemicals sourced from . against key proteins implicated in PCOS pathogenesis. Identification, modeling, and evaluation of target proteins were conducted, followed by the assessment of their interactions with selected phytochemicals and additional ADMET analysis. Molecular docking studies utilizing Auto Dock Vina software were then performed to forecast the binding affinities of these phytochemicals to the active sites of the specified targets.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110312022240903060337
2024-09-10
2025-09-02
Loading full text...

Full text loading...

References

  1. Rodriguez ParisV. BertoldoM.J. The Mechanism of Androgen Actions in PCOS Etiology.Med. Sci. (Basel)2019798910.3390/medsci7090089 31466345
    [Google Scholar]
  2. KhanM.J. UllahA. BasitS. Genetic basis of polycystic ovary syndrome (PCOS): Current perspectives.Appl. Clin. Genet.20191224926010.2147/TACG.S200341 31920361
    [Google Scholar]
  3. AjmalN. KhanS.Z. ShaikhR. Polycystic ovary syndrome (PCOS) and genetic predisposition: A review article.Eur. J. Obstet. Gynecol. Reprod. Biol. X2019310006010.1016/j.eurox.2019.100060 31403134
    [Google Scholar]
  4. GleicherN. DarmonS. PatrizioP. BaradD.H. Reconsidering the Polycystic Ovary Syndrome (PCOS).Biomedicines2022107150510.3390/biomedicines10071505 35884809
    [Google Scholar]
  5. PatelS. Polycystic ovary syndrome (PCOS), an inflammatory, systemic, lifestyle endocrinopathy.J. Steroid Biochem. Mol. Biol.2018182273610.1016/j.jsbmb.2018.04.008 29678491
    [Google Scholar]
  6. WitchelS.F. BurghardA.C. TaoR.H. OberfieldS.E. The diagnosis and treatment of PCOS in adolescents: an update.Curr. Opin. Pediatr.201931456256910.1097/MOP.0000000000000778 31299022
    [Google Scholar]
  7. ZengX. XieY. LiuY. LongS. MoZ. Polycystic ovarian syndrome: Correlation between hyperandrogenism, insulin resistance and obesity.Clin. Chim. Acta202050221422110.1016/j.cca.2019.11.003 31733195
    [Google Scholar]
  8. AzzizR. Polycystic Ovary Syndrome.Obstet. Gynecol.2018132232133610.1097/AOG.0000000000002698 29995717
    [Google Scholar]
  9. SiddiquiS. MateenS. AhmadR. MoinS. A brief insight into the etiology, genetics, and immunology of polycystic ovarian syndrome (PCOS).J. Assist. Reprod. Genet.202239112439247310.1007/s10815‑022‑02625‑7 36190593
    [Google Scholar]
  10. BelenkaiaL.V. LazarevaL.M. WalkerW. LiznevaD.V. SuturinaL.V. Criteria, phenotypes and prevalence of polycystic ovary syndrome.Minerva Ginecol.201971321122310.23736/S0026‑4784.19.04404‑6 31089072
    [Google Scholar]
  11. van der HamK. StekelenburgK.J. LouwersY.V. van DorpW. SchreursM.W.J. van der WalR. Steegers-TheunissenR.P.M. LavenJ.S.E. The prevalence of thyroid dysfunction and hyperprolactinemia in women with PCOS.Front. Endocrinol. (Lausanne)202314124510610.3389/fendo.2023.1245106 37854182
    [Google Scholar]
  12. BayonaA. Martínez-VaelloV. ZamoraJ. Nattero-ChávezL. Luque-RamírezM. Escobar-MorrealeH.F. Prevalence of PCOS and related hyperandrogenic traits in premenopausal women with type 1 diabetes: A systematic review and meta-analysis.Hum. Reprod. Update202228450151710.1093/humupd/dmac011 35237802
    [Google Scholar]
  13. GanieM.A. RashidA. SahuD. NisarS. WaniI.A. KhanJ. Prevalence of polycystic ovary syndrome (PCOS) among reproductive age women from Kashmir valley: A cross‐sectional study.Int. J. Gynaecol. Obstet.2020149223123610.1002/ijgo.13125 32080845
    [Google Scholar]
  14. SzydlarskaD. MachajM. JakimiukA. History of discovery of polycystic ovary syndrome.Adv. Clin. Exp. Med.201726355555810.17219/acem/61987 28791833
    [Google Scholar]
  15. ZhuT. GoodarziM.O. Causes and Consequences of Polycystic Ovary Syndrome: Insights From Mendelian Randomization.J. Clin. Endocrinol. Metab.20221073e899e91110.1210/clinem/dgab757 34669940
    [Google Scholar]
  16. GuanC. ZahidS. MinhasA.S. OuyangP. VaughtA. BakerV.L. MichosE.D. Polycystic ovary syndrome: a “risk-enhancing” factor for cardiovascular disease.Fertil. Steril.2022117592493510.1016/j.fertnstert.2022.03.009 35512976
    [Google Scholar]
  17. AnagnostisP. TarlatzisB.C. KauffmanR.P. Polycystic ovarian syndrome (PCOS): Long-term metabolic consequences.Metabolism201886334310.1016/j.metabol.2017.09.016 29024702
    [Google Scholar]
  18. SadeghiH.M. AdeliI. CalinaD. DoceaA.O. MousaviT. DanialiM. NikfarS. TsatsakisA. AbdollahiM. Polycystic Ovary Syndrome: A Comprehensive Review of Pathogenesis, Management, and Drug Repurposing.Int. J. Mol. Sci.202223258310.3390/ijms23020583 35054768
    [Google Scholar]
  19. PasqualiR. Metabolic Syndrome in Polycystic Ovary Syndrome.Front. Horm. Res.20184911413010.1159/000485995 29894990
    [Google Scholar]
  20. CenaH. ChiovatoL. NappiR.E. Obesity, Polycystic Ovary Syndrome, and Infertility: A New Avenue for GLP-1 Receptor Agonists.J. Clin. Endocrinol. Metab.20201058e2695e270910.1210/clinem/dgaa285 32442310
    [Google Scholar]
  21. LiM. ChiX. WangY. SetrerrahmaneS. XieW. XuH. Trends in insulin resistance: insights into mechanisms and therapeutic strategy.Signal Transduct. Target. Ther.20227121610.1038/s41392‑022‑01073‑0 35794109
    [Google Scholar]
  22. XuY. QiaoJ. Association of Insulin Resistance and Elevated Androgen Levels with Polycystic Ovarian Syndrome (PCOS): A Review of Literature.J. Healthc. Eng.2022202211310.1155/2022/9240569 35356614
    [Google Scholar]
  23. ZhangY. HuM. JiaW. LiuG. ZhangJ. WangB. LiJ. CuiP. LiX. LagerS. Sferruzzi-PerriA.N. HanY. LiuS. WuX. BrännströmM. ShaoL.R. BilligH. Hyperandrogenism and insulin resistance modulate gravid uterine and placental ferroptosis in PCOS-like rats.J. Endocrinol.2020246324726310.1530/JOE‑20‑0155 32590339
    [Google Scholar]
  24. ZhaoH. ZhangJ. ChengX. NieX. HeB. Insulin resistance in polycystic ovary syndrome across various tissues: An updated review of pathogenesis, evaluation, and treatment.J. Ovarian Res.2023161910.1186/s13048‑022‑01091‑0 36631836
    [Google Scholar]
  25. TongC. WuY. ZhangL. YuY. Insulin resistance, autophagy and apoptosis in patients with polycystic ovary syndrome: Association with PI3K signaling pathway.Front. Endocrinol. (Lausanne)202213109114710.3389/fendo.2022.1091147 36589825
    [Google Scholar]
  26. MirabelliM. ChiefariE. ArcidiaconoB. CoriglianoD.M. BrunettiF.S. MaggisanoV. RussoD. FotiD.P. BrunettiA. Mediterranean Diet Nutrients to Turn the Tide against Insulin Resistance and Related Diseases.Nutrients2020124106610.3390/nu12041066 32290535
    [Google Scholar]
  27. KruszewskaJ. Laudy-WiadernyH. KunickiM. Review of Novel Potential Insulin Resistance Biomarkers in PCOS Patients—The Debate Is Still Open.Int. J. Environ. Res. Public Health2022194209910.3390/ijerph19042099 35206286
    [Google Scholar]
  28. WildR.A. Dyslipidemia in PCOS.Steroids201277429529910.1016/j.steroids.2011.12.002 22197663
    [Google Scholar]
  29. MacutD. Bjekić-MacutJ. Savić-RadojevićA. Dyslipidemia and oxidative stress in PCOS.Front. Horm. Res.201340516310.1159/000341683 24002405
    [Google Scholar]
  30. WekkerV. van DammenL. KoningA. HeidaK.Y. PainterR.C. LimpensJ. LavenJ.S.E. Roeters van LennepJ.E. RoseboomT.J. HoekA. Long-term cardiometabolic disease risk in women with PCOS: A systematic review and meta-analysis.Hum. Reprod. Update202026694296010.1093/humupd/dmaa029 32995872
    [Google Scholar]
  31. SzczesnowiczA. SzeligaA. NiwczykO. BalaG. MeczekalskiB. Do GLP-1 Analogs Have a Place in the Treatment of PCOS? New Insights and Promising Therapies.J. Clin. Med.20231218591510.3390/jcm12185915 37762856
    [Google Scholar]
  32. LiuQ. XieY. QuL. ZhangM. MoZ. Dyslipidemia involvement in the development of polycystic ovary syndrome.Taiwan. J. Obstet. Gynecol.201958444745310.1016/j.tjog.2019.05.003 31307731
    [Google Scholar]
  33. KakolyN.S. MoranL.J. TeedeH.J. JohamA.E. Cardiometabolic risks in PCOS: A review of the current state of knowledge.Expert Rev. Endocrinol. Metab.2019141233310.1080/17446651.2019.1556094 30556433
    [Google Scholar]
  34. GuoF. GongZ. FernandoT. ZhangL. ZhuX. ShiY. The lipid profiles in different characteristics of women with PCOS and the interaction between dyslipidemia and metabolic disorder states: A retrospective study in chinese population.Front. Endocrinol. (Lausanne)20221389212510.3389/fendo.2022.892125 35860700
    [Google Scholar]
  35. LiS. ZhaiJ. ChuW. GengX. WangD. JiaoL. LuG. ChanW.Y. SunK. SunY. ChenZ.J. DuY. Alleviation of Limosilactobacillus reuteri in polycystic ovary syndrome protects against circadian dysrhythmia-induced dyslipidemia via capric acid and GALR1 signaling.NPJ Biofilms Microbiomes2023914710.1038/s41522‑023‑00415‑2 37422471
    [Google Scholar]
  36. BednarskaS. SiejkaA. The pathogenesis and treatment of polycystic ovary syndrome: What’s new?Adv. Clin. Exp. Med.201726235936710.17219/acem/59380 28791858
    [Google Scholar]
  37. CheY. YuJ. LiY.S. ZhuY.C. TaoT. Polycystic Ovary Syndrome: Challenges and Possible Solutions.J. Clin. Med.2023124150010.3390/jcm12041500 36836035
    [Google Scholar]
  38. Rodriguez ParisV. EdwardsM.C. AflatounianA. BertoldoM.J. LedgerW.L. HandelsmanD.J. GilchristR.B. WaltersK.A. Pathogenesis of Reproductive and Metabolic PCOS Traits in a Mouse Model.J. Endocr. Soc.202156bvab06010.1210/jendso/bvab060 34056500
    [Google Scholar]
  39. DulebaA.J. Medical management of metabolic dysfunction in PCOS.Steroids201277430631110.1016/j.steroids.2011.11.014 22182833
    [Google Scholar]
  40. KimJ.J. ChoiY.M. Dyslipidemia in women with polycystic ovary syndrome.Obstet. Gynecol. Sci.201356313714210.5468/ogs.2013.56.3.137 24327994
    [Google Scholar]
  41. Bar-TanaJ. mTORC1 syndrome (TorS): unified paradigm for diabetes/metabolic syndrome.Trends Endocrinol. Metab.202334313514510.1016/j.tem.2023.01.001 36717300
    [Google Scholar]
  42. LiuZ. CongJ. LiuX. ZhaoH. LaiS. HeS. BaoH. Dyslipidemia is negatively associated with the cumulative live-birth rate in patients without PCOS following IVF/ICSI.Front. Physiol.20211271335610.3389/fphys.2021.713356 34483966
    [Google Scholar]
  43. ZhangJ. FanP. LiuH. BaiH. WangY. ZhangF. Apolipoprotein A-I and B levels, dyslipidemia and metabolic syndrome in south-west Chinese women with PCOS.Hum. Reprod.20122782484249310.1093/humrep/des191 22674204
    [Google Scholar]
  44. KazemiM. HadiA. PiersonR.A. LujanM.E. ZelloG.A. ChilibeckP.D. Effects of dietary glycemic index and glycemic load on cardiometabolic and reproductive profiles in women with polycystic ovary syndrome: A systematic review and meta-analysis of randomized controlled trials.Adv. Nutr.202112116117810.1093/advances/nmaa092 32805007
    [Google Scholar]
  45. ReckelhoffJ.F. ShawkyN.M. RomeroD.G. Yanes CardozoL.L. Polycystic Ovary Syndrome: Insights from Preclinical Research.Kidney3602022381449145710.34067/KID.0002052022 36176644
    [Google Scholar]
  46. BarreaL. MuscogiuriG. PuglieseG. de AlteriisG. ColaoA. SavastanoS. Metabolically Healthy Obesity (MHO) vs. Metabolically Unhealthy Obesity (MUO) Phenotypes in PCOS: Association with Endocrine-Metabolic Profile, Adherence to the Mediterranean Diet, and Body Composition.Nutrients20211311392510.3390/nu13113925 34836180
    [Google Scholar]
  47. GlueckC.J. GoldenbergN. Characteristics of obesity in polycystic ovary syndrome: Etiology, treatment, and genetics.Metabolism20199210812010.1016/j.metabol.2018.11.002 30445140
    [Google Scholar]
  48. WangZ. GroenH. CantineauA.E.P. van EltenT.M. KarstenM.D.A. van OersA.M. MolB.W.J. RoseboomT.J. HoekA. Dietary Intake, Eating Behavior, Physical Activity, and Quality of Life in Infertile Women with PCOS and Obesity Compared with Non-PCOS Obese Controls.Nutrients20211310352610.3390/nu13103526 34684528
    [Google Scholar]
  49. IbáñezL. de ZegherF. Adolescent PCOS: A postpubertal central obesity syndrome.Trends Mol. Med.202329535436310.1016/j.molmed.2023.02.006 36964058
    [Google Scholar]
  50. LegroR. Obesity and PCOS: Implications for diagnosis and treatment.Semin. Reprod. Med.201230649650610.1055/s‑0032‑1328878 23074008
    [Google Scholar]
  51. BarreaL. VerdeL. VetraniC. DocimoA. de AlteriisG. SavastanoS. ColaoA. MuscogiuriG. Evening chronotype is associated with hormonal and metabolic disorders in polycystic ovary syndrome.J. Pineal Res.2023742e1284410.1111/jpi.12844 36424371
    [Google Scholar]
  52. KambojP. KaushikA. HandaS. DuttaP. SaikiaU.N. PalA. DeD. Effects of metformin on clinical, hormonal and relevant gene expression parameters in patients with acne: An observational study.Clin. Exp. Dermatol.202348661762210.1093/ced/llad020 36656771
    [Google Scholar]
  53. SharmaA. WeltC.K. Practical Approach to Hyperandrogenism in Women.Med. Clin. North Am.202110561099111610.1016/j.mcna.2021.06.008 34688417
    [Google Scholar]
  54. ArmaniniD. BoscaroM. BordinL. SabbadinC. Controversies in the Pathogenesis, Diagnosis and Treatment of PCOS: Focus on Insulin Resistance, Inflammation, and Hyperandrogenism.Int. J. Mol. Sci.2022238411010.3390/ijms23084110 35456928
    [Google Scholar]
  55. RosenfieldR.L. EhrmannD.A. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited.Endocr. Rev.201637546752010.1210/er.2015‑1104 27459230
    [Google Scholar]
  56. Catteau-JonardS. Cortet-RudelliC. Richard-ProustC. DewaillyD. Hyperandrogenism in adolescent girls.Endocr. Dev.20122218119310.1159/000326688 22846529
    [Google Scholar]
  57. CappelliV. MusacchioM.C. BulfoniA. MorganteG. De LeoV. Natural molecules for the therapy of hyperandrogenism and metabolic disorders in PCOS.Eur. Rev. Med. Pharmacol. Sci.2017212Suppl.1529 28724177
    [Google Scholar]
  58. SaadiaZ. Follicle Stimulating Hormone (LH: FSH) Ratio in Polycystic Ovary Syndrome (PCOS) - Obese vs. Non- Obese Women.Med. Arh.202074428929310.5455/medarh.2020.74.289‑293 33041447
    [Google Scholar]
  59. MaliniN. RoyG.K. Influence of Insulin on LH, Testosterone and SHBG in Various PCOS Categories Based on the Mode of Secretion of LH in Relation to FSH Levels.Acta Endocrinol. (Bucur.)202117331331810.4183/aeb.2021.313 35342460
    [Google Scholar]
  60. LiuS. LvY. HanS. LiuM. MaS. RenH. LiY. A novel GnRH antagonist protocol based on LH levels versus traditional flexible GnRH antagonist protocol in PCOS patients undergoing in vitro fertilization: Study protocol for a randomized controlled, non-inferiority trial.Trials202223165410.1186/s13063‑022‑06586‑1 35964041
    [Google Scholar]
  61. XiaQ. XieL. WuQ. CongJ. MaH. LiJ. CaiW. WuX. Elevated baseline LH/FSH ratio is associated with poor ovulatory response but better clinical pregnancy and live birth in Chinese women with PCOS after ovulation induction.Heliyon202391e1302410.1016/j.heliyon.2023.e13024 36711322
    [Google Scholar]
  62. JohamA.E. NormanR.J. Stener-VictorinE. LegroR.S. FranksS. MoranL.J. BoyleJ. TeedeH.J. Polycystic ovary syndrome.Lancet Diabetes Endocrinol.202210966868010.1016/S2213‑8587(22)00163‑2 35934017
    [Google Scholar]
  63. Dietz de LoosA. JiskootG. BeerthuizenA. BusschbachJ. LavenJ. Metabolic health during a randomized controlled lifestyle intervention in women with PCOS.Eur. J. Endocrinol.20221861536410.1530/EJE‑21‑0669 34714771
    [Google Scholar]
  64. WoodwardA. KlonizakisM. BroomD. Exercise and Polycystic Ovary Syndrome.Adv. Exp. Med. Biol.2020122812313610.1007/978‑981‑15‑1792‑1_8 32342454
    [Google Scholar]
  65. ArentzS. SmithC.A. AbbottJ. FaheyP. CheemaB.S. BensoussanA. Combined Lifestyle and Herbal Medicine in Overweight Women with Polycystic Ovary Syndrome (PCOS): A Randomized Controlled Trial.Phytother. Res.20173191330134010.1002/ptr.5858 28685911
    [Google Scholar]
  66. SheleG. GenkilJ. SpeelmanD. A Systematic Review of the Effects of Exercise on Hormones in Women with Polycystic Ovary Syndrome.J. Funct. Morphol. Kinesiol.2020523510.3390/jfmk5020035 33467251
    [Google Scholar]
  67. KazemiM. McBreairtyL.E. ChizenD.R. PiersonR.A. ChilibeckP.D. ZelloG.A. A Comparison of a Pulse-Based Diet and the Therapeutic Lifestyle Changes Diet in Combination with Exercise and Health Counselling on the Cardio-Metabolic Risk Profile in Women with Polycystic Ovary Syndrome: A Randomized Controlled Trial.Nutrients20181010138710.3390/nu10101387 30274344
    [Google Scholar]
  68. ShahidR. Iahtisham-Ul-Haq, Mahnoor, AwanK.A. Iqbal M.J. MunirH. SaeedI. Diet and lifestyle modifications for effective management of polycystic ovarian syndrome (PCOS).J. Food Biochem.2022467e1411710.1111/jfbc.14117 35199348
    [Google Scholar]
  69. RudnickaE. SuchtaK. GrymowiczM. Calik-KsepkaA. SmolarczykK. DuszewskaA.M. SmolarczykR. MeczekalskiB. Chronic Low Grade Inflammation in Pathogenesis of PCOS.Int. J. Mol. Sci.2021227378910.3390/ijms22073789 33917519
    [Google Scholar]
  70. DabravolskiS.A. NikiforovN.G. EidA.H. NedosugovaL.V. StarodubovaA.V. PopkovaT.V. BezsonovE.E. OrekhovA.N. Mitochondrial Dysfunction and Chronic Inflammation in Polycystic Ovary Syndrome.Int. J. Mol. Sci.2021228392310.3390/ijms22083923 33920227
    [Google Scholar]
  71. BarreaL. MarzulloP. MuscogiuriG. Di SommaC. ScacchiM. OrioF. AimarettiG. ColaoA. SavastanoS. Source and amount of carbohydrate in the diet and inflammation in women with polycystic ovary syndrome.Nutr. Res. Rev.201831229130110.1017/S0954422418000136 30033891
    [Google Scholar]
  72. SniderA.P. WoodJ.R. Obesity induces ovarian inflammation and reduces oocyte quality.Reproduction20191583R79R9010.1530/REP‑18‑0583 30999278
    [Google Scholar]
  73. Çıtar DazıroğluM.E. Acar TekN. The Effect on Inflammation of Adherence to the Mediterranean Diet in Polycystic Ovary Syndrome.Curr. Nutr. Rep.202312119120210.1007/s13668‑023‑00451‑6 36719550
    [Google Scholar]
  74. NazR.K. NazR.K. Polycystic ovary syndrome current status and future perspective.Front. Biosci. (Elite Ed.)2014E6110411910.2741/E695 24389146
    [Google Scholar]
  75. SinghS. PalN. ShubhamS. SarmaD.K. VermaV. MarottaF. KumarM. Polycystic Ovary Syndrome: Etiology, Current Management, and Future Therapeutics.J. Clin. Med.2023124145410.3390/jcm12041454 36835989
    [Google Scholar]
  76. TorreA. FernandezH. [Polycystic ovary syndrome (PCOS)].J. Gynecol. Obstet. Biol. Reprod. (Paris)200736542344610.1016/j.jgyn.2007.04.002 17540511
    [Google Scholar]
  77. ChaudharyH. PatelJ. JainN.K. JoshiR. The role of polymorphism in various potential genes on polycystic ovary syndrome susceptibility and pathogenesis.J. Ovarian Res.202114112510.1186/s13048‑021‑00879‑w 34563259
    [Google Scholar]
  78. KshetrimayumC. SharmaA. MishraV.V. KumarS. Polycystic ovarian syndrome: Environmental/occupational, lifestyle factors; an overview.J. Turk. Ger. Gynecol. Assoc.201920425526310.4274/jtgga.galenos.2019.2018.0142 30821135
    [Google Scholar]
  79. LiznevaD. SuturinaL. WalkerW. BraktaS. Gavrilova-JordanL. AzzizR. Criteria, prevalence, and phenotypes of polycystic ovary syndrome.Fertil. Steril.2016106161510.1016/j.fertnstert.2016.05.003 27233760
    [Google Scholar]
  80. ParkerJ. O’BrienC. HawrelakJ. GershF.L. Polycystic Ovary Syndrome: An Evolutionary Adaptation to Lifestyle and the Environment.Int. J. Environ. Res. Public Health2022193133610.3390/ijerph19031336 35162359
    [Google Scholar]
  81. CharifsonM.A. TrumbleB.C. Evolutionary origins of polycystic ovary syndrome: An environmental mismatch disorder.Evol. Med. Public Health201920191506310.1093/emph/eoz011 31367382
    [Google Scholar]
  82. PeiZ. LuW. FengY. XuC. HsuehA.J.W. Out of step societal and Darwinian adaptation during evolution is the cause of multiple women’s health issues.Hum. Reprod.20223791959196910.1093/humrep/deac156 35881063
    [Google Scholar]
  83. NugentB. TobetS. LaraH. LucionA. WilsonM. RecabarrenS. ParedesA. Hormonal programming across the lifespan.Horm. Metab. Res.201244857758610.1055/s‑0032‑1312593 22700441
    [Google Scholar]
  84. RaeM. GraceC. HoggK. WilsonL.M. McHaffieS.L. RamaswamyS. MacCallumJ. ConnollyF. McNeillyA.S. DuncanC. The pancreas is altered by in utero androgen exposure: implications for clinical conditions such as polycystic ovary syndrome (PCOS).PLoS One201382e5626310.1371/journal.pone.0056263 23457541
    [Google Scholar]
  85. PadmanabhanV. Veiga-LopezA. Developmental origin of reproductive and metabolic dysfunctions: androgenic versus estrogenic reprogramming.Semin. Reprod. Med.201129317318610.1055/s‑0031‑1275519 21710394
    [Google Scholar]
  86. LindnerP.G. Long-term Health of Offspring of Women With Polycystic Ovarian Syndrome.Clin. Obstet. Gynecol.2021641485410.1097/GRF.0000000000000598 33337740
    [Google Scholar]
  87. Escobar-MorrealeH.F. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment.Nat. Rev. Endocrinol.201814527028410.1038/nrendo.2018.24 29569621
    [Google Scholar]
  88. KrishnanA. MuthusamiS. Hormonal alterations in PCOS and its influence on bone metabolism.J. Endocrinol.20172322R99R11310.1530/JOE‑16‑0405 27895088
    [Google Scholar]
  89. ThurstonL. AbbaraA. DhilloW.S. Investigation and management of subfertility.J. Clin. Pathol.201972957958710.1136/jclinpath‑2018‑205579 31296604
    [Google Scholar]
  90. MacLeanJ.A.II HayashiK. Progesterone actions and resistance in gynecological disorders.Cells202211464710.3390/cells11040647 35203298
    [Google Scholar]
  91. StubbsS.A. WebberL.J. StarkJ. RiceS. MargaraR. LaveryS. TrewG.H. HardyK. FranksS. Role of Insulin-like growth factors in initiation of follicle growth in normal and polycystic human ovaries.J. Clin. Endocrinol. Metab.20139883298330510.1210/jc.2013‑1378 23750031
    [Google Scholar]
  92. BrązertM. PawelczykL. Insulin-like growth factor-1 isoforms in human ovary. Preliminary report on the expression of the IGF-1 gene in PCOS patients and healthy controls.Ginekol. Pol.2015861289089510.17772/gp/60708 26995937
    [Google Scholar]
  93. CataldoN. Insulin-like growth factor binding proteins: Do they play a role in polycystic ovary syndrome?Semin. Reprod. Med.199715212313610.1055/s‑2007‑1016295 9165657
    [Google Scholar]
  94. MeierR.K. Polycystic Ovary Syndrome.Nurs. Clin. North Am.201853340742010.1016/j.cnur.2018.04.008 30100006
    [Google Scholar]
  95. WitchelS.F. TeedeH.J. PeñaA.S. Curtailing PCOS.Pediatr. Res.202087235336110.1038/s41390‑019‑0615‑1 31627209
    [Google Scholar]
  96. RashidR. MirS.A. KareemO. AliT. AraR. MalikA. AminF. BaderG.N. Polycystic ovarian syndrome-current pharmacotherapy and clinical implications.Taiwan. J. Obstet. Gynecol.2022611405010.1016/j.tjog.2021.11.009 35181044
    [Google Scholar]
  97. SaxenaY. PurwarB. MeenaH. SarthiP. Dolichos biflorus Linn. ameliorates diabetic complications in streptozotocin induced diabetic rats.Ayu201435444244610.4103/0974‑8520.159022 26195910
    [Google Scholar]
  98. BasuS. GhoshM. BhuniaR.K. GangulyJ. BanikB.K. Polysaccharides from Dolichos biflorus Linn and Trachyspermum ammi Linn seeds: isolation, characterization and remarkable antimicrobial activity.Chem. Cent. J.201711111810.1186/s13065‑017‑0349‑2 29159657
    [Google Scholar]
  99. NirumandM. HajialyaniM. RahimiR. FarzaeiM. ZingueS. NabaviS. BishayeeA. Dietary Plants for the Prevention and Management of Kidney Stones: Preclinical and Clinical Evidence and Molecular Mechanisms.Int. J. Mol. Sci.201819376510.3390/ijms19030765 29518971
    [Google Scholar]
  100. SahaS. VermaR.J. Antinephrolithiatic and antioxidative efficacy of Dolichos biflorus seeds in a lithiasic rat model.Pharm. Biol.2015531163010.3109/13880209.2014.909501 25243879
    [Google Scholar]
/content/journals/cac/10.2174/0115734110312022240903060337
Loading
/content/journals/cac/10.2174/0115734110312022240903060337
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test