Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Environmental contamination of the air, water, soil, and food has become a threat to the continued existence of many plant and animal communities in the ecosystem. The chemically activated stem bark of Anonna senegalensis was examined for equilibrium sorption.

Methods

This study aimed to assess the adsorption of Cr6+ and Cu2+ onto carbon (ASC) according to the following parameters: pH, solution temperature, starting metal ion concentration, agitation duration, dose of adsorbent, particle size, and carbonization temperature using a simultaneous batch adsorption method. Pseudo-first order, pseudo-second order, intra-particle diffusion kinetic, Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich isotherm models were all fitted using the equilibrium sorption data that were produced. Thermodynamic parameters of the adsorption studies were also evaluated.

Results

The physicochemical analysis of ASC showed ash content of 7.21 ± 0.02%, moisture content of 11.73 ± 0.29%, and porosity of 0.99 ± 0.08 with bulk density of 0.18 g/cm3. The heavy metal-loaded scanning electron microscope (SEM) micrograph showed a filled pit, and the XRD diffractogram, as well as FTIR spectra, revealed peaks that were different from the raw spectra, implying functionalization. The sorption data gave optimum conditions of the adsorption process to be pH of 6, agitation time of 88 minutes, adsorbent dose of 2.5 g/g, initial metal ion concentration of 5 mg/L, temperature of 30°C, particle size of 0.154 mm and carbonization temperature of 400°C.

Conclusion

The Langmuir isotherm was found to give the best-fit conformation of all the models based on superior ( ≥0.99). Dubinin-Radushkevich proved the mechanism to be physisorption. The pseudo-second-order kinetic model best fits the data with of 0.998 and 0.986 for Cr6+ and Cu2+. Thermodynamic results of the study revealed that ΔH for Cr6+ and Cu2+ were 32.78 and 27.14 KJ/mol and are all positive, implying an endothermic process and confirming the physisorption mechanism. The entropy change, ΔSᵒ, was also positive, revealing a high degree of disorderliness at the sorbate/sorbent interphase. The standard Gibbs free energy, ΔGᵒ, were all negative, showing spontaneity and feasibility.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110309252240627041126
2024-07-05
2025-10-28
Loading full text...

Full text loading...

References

  1. YasmeenB. JamshaidN. KhanM.Z. Environmental pollution effect on public health.JAMDC20224415416310.51127/JAMDCV4I4OA01
    [Google Scholar]
  2. AdeniyiA.G. AdewoyeL.T. IghaloJ.O. Computer aided simulation of the pyrolysis of waste lubricating oil using Aspen hysys. Journal of Environmental Research.Environ. Res. Eng. Manag.2018742525710.5755/j01.erem.74.2.20537
    [Google Scholar]
  3. MuryantoS. HadiS.D. Adsorption laboratory experiment for undergraduate chemical engineering: Introducing kinetic, equilibrium and thermodynamic concepts. IOP Conf. Series: Mat. Sci. Eng.,201716201200410.1016/j.ece.2017.10.001
    [Google Scholar]
  4. EkereN.R. AgwogieA.B. IhediohaJ.N. Removal of Pb(II), Cd(II), Cu(II) and Ni(II) ions from aqueous solution using Pentaclethra macrophylla stem activated carbon.Pak. J. Anal. Environ. Chem.201819219520410.21743/pjaec/2018.12.21
    [Google Scholar]
  5. WanX. LeiM. YangJ. Two potential multi-metal hyperaccumulators found in four mining sites in Hunan Province, China.Catena2017148677310.1016/j.catena.2016.02.005
    [Google Scholar]
  6. AfolabiF. AfolabiO. Phytochemical constituents of some medicinal plants in south West, Nigeria.IOSR J of App Chem201341767810.9790/5736‑0417678
    [Google Scholar]
  7. AjaiyeobaE. FaladeM. OgboleO. OkpakoO. AkinboyeD. In vivo antimalarial and cytotoxic properties of Annona senegalensis Extract. Afr.J Trad CAM200631137141
    [Google Scholar]
  8. AjboyeT.O. YakubuM.T. SalauA.K. OladijiA.T. AkanjiM.A. OkogunJ.I. Antioxidant and drug detoxification potential of aqueous extract of Annona senegalensis leaves in carbon tetrachloride-induced hepatocellular damage.Pharm. Biol.201048121361137010.3109/13880209.2010.483247 20815700
    [Google Scholar]
  9. AtawodiS. BulusT. IbrahimS. AmehD. NokA. MammanM. In vitro trypanocidal effect of methanolic extract of some nigerian savannah plants.Afr. J. Biotechnol.20032931732110.5897/AJB2003.000‑1065
    [Google Scholar]
  10. JadaM. UsmanW. OlabisiA. Crude flavonoids isolated from the stem bark of Annona senegalensis have antimicrobial activity.J. Adv. Biol. Biotechnol.201521242910.9734/JABB/2015/11884
    [Google Scholar]
  11. YeoD. DinicaR. YapiH.F. FurduiB. PraislerM. DjamanA.J. N’GuessanJ.D. Evaluation of the anti-inflammatory activity and phytochemical screening of Annona senegalensis leaves.Therapie2011661738010.2515/therapie/2010076 21466781
    [Google Scholar]
  12. SetzerW.N. OgungbeI.V. In-silico investigation of antitrypanosomal phytochemicals from Nigerian medicinal plants.PLoS Negl. Trop. Dis.201267e172710.1371/journal.pntd.0001727 22848767
    [Google Scholar]
  13. OtimenyinS. OmeriF. Hypnotic effect of methanolic extracts of Annona senegalensis Bark and Ficus thonningii leaves in mice and chicks. IJPPR.HUMAN201411112
    [Google Scholar]
  14. MoghadamtousiS. FadaeinasabM. NikzadS. MohanG. AliH. KadirH. Annona muricata (Annonaceae): A review of its traditional uses, isolated acetogenins and biological activities.Int. J. Mol. Sci.2015167156251565810.3390/ijms160715625 26184167
    [Google Scholar]
  15. AdzuB. AbubakarM.S. IzebeK.S. AkumkaD.D. GamanielK.S. Effect of Annona senegalensis rootbark extracts on Naja nigricotlis nigricotlis venom in rats.J. Ethnopharmacol.200596350751310.1016/j.jep.2004.09.055 15619571
    [Google Scholar]
  16. EmmanuelA. EbinbinA. AmlabuW. Detoxification of Echis ocellatus venom-induced toxicity by Annona senegalensis Pers.J. Complement. Integr. Med.2014112939710.1515/jcim‑2012‑0058 24867285
    [Google Scholar]
  17. RahmanM.S. SathasivamK.V. Heavy metal adsorption onto Kappaphycus sp from aqueous solutions: The use of error functions for validation of isotherm and kinetics models.BioMed Res. Int.2015201511310.1155/2015/126298 26295032
    [Google Scholar]
  18. Ibezim-EzeaniM.U. OrjiI. Kinetic and equilibrium studies on lead (II) ion removal from aqueous solution using succinic acid modified red onion skin extract.Int. J. Sci.Eng. Technol. Res.201763367374
    [Google Scholar]
  19. GoyalK. AroraS. Equilibrium and kinetic studies of adsorption of lead using low-cost adsorbents.Indian J. Sci. Technol.201694410525810.17485/ijst/2016/v9i44/105258
    [Google Scholar]
  20. LuD. LuoW. LiH. YangZ. Biotransformation and detoxification mechanism of inorganic arsenic in a freshwater benthic fish Tachysurus fulvidraco with dietborne exposure.Ecotoxicology2023321465610.1007/s10646‑022‑02611‑w 36565353
    [Google Scholar]
  21. AmehP.O. UsheM.U. JamesF. UsmanU. Removal of Ni (II) and Pb (II) from aqueous solution by adsorption onto Vitex simplicifolia nut activated carbon.J. Appl. Chem. Sci. Int.2016628590
    [Google Scholar]
  22. KumariH.J. KrishnamoorthyP. ArumuganT.K. Kinetics, thermodynamics and isotherm studies on the removal of chromium by Typha latifolia bioremediator stem carbon.J. Mater. Environ. Sci.20156615321541Available from: https://www.cabidigitallibrary.org/doi/full/10.5555/20153196602
    [Google Scholar]
  23. ArshadiM. AmiriM.J. MousaviS. Kinetic, equilibrium and thermodynamic investigations of Ni(II), Cd(II), Cu(II) and Co(II) adsorption on barley straw ash.Water Resour. Ind.2014611710.1016/j.wri.2014.06.001
    [Google Scholar]
  24. GorzinF. Bahri Rasht AbadiM.M. Adsorption of Cr(VI) from aqueous solution by adsorbent prepared from paper mill sludge: Kinetics and thermodynamics studies.Adsorpt. Sci. Technol.2018361-214916910.1177/0263617416686976
    [Google Scholar]
  25. ShanmugavalliR. MadhavakrishnaniS. KadirveluK. RasappanK. MohanrajR. PattabhiS. Adsorption studies on removal of Cr(VI) from aqueous solution using silk cotton hull carbon.J. Indust. Poll. Cont.20072316572
    [Google Scholar]
  26. SugashiniS. BegumK.M.M.S. Preparation of activated carbon from carbonized rice husk by ozone activation for Cr(VI) removal.N. Carbon Mater.201530325226110.1016/S1872‑5805(15)60190‑1
    [Google Scholar]
  27. AsuquoE. MartinA. NzeremP. Evaluation of Cd(II) ion removal from aqueous solution by a low-cost adsorbent prepared from white yam (Discorea rotundata) waste using batch sorption.ChemEngineering2018233510.3390/chemengineering2030035
    [Google Scholar]
  28. BanerjeeS. MukherjeeS. LaminKa-ot, A.; Joshi, S.R.; Mandal, T.; Halder, G. Biosorptive uptake of Fe 2+, Cu 2+ and As 5+ by activated biochar derived from Colocasia esculenta: Isotherm, kinetics, thermodynamics, and cost estimation.J. Adv. Res.20167559761010.1016/j.jare.2016.06.002 27408763
    [Google Scholar]
  29. AliH.R. HassaanM.A. Applications of bio-waste materials as green synthesis of nanoparticles and water purification.Adv. Mater.2017658510.11648/j.am.20170605.16
    [Google Scholar]
  30. SinghD.K. GuptaT. Source apportionment and risk assessment of PM 1 bound trace metals collected during foggy and non-foggy episodes at a representative site in the Indo-Gangetic plain.Sci. Total Environ.2016550809410.1016/j.scitotenv.2016.01.037 26808399
    [Google Scholar]
  31. OyedohE. EkwonuM.C. Experimental investigation on chromium (VI) using activated carbon resorcinol formaldehyde xerogels.Acta Polytech.201656537337810.14311/AP.2016.56.0373
    [Google Scholar]
  32. ChenA.H. LiuS.C. ChenC.Y. ChenC.Y. Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin.J. Hazard. Mater.20081541-318419110.1016/j.jhazmat.2007.10.009 18031930
    [Google Scholar]
  33. ImamogluM. TekirO. Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks.Desalination20082281-310811310.1016/j.desal.2007.08.011
    [Google Scholar]
  34. LasheenM.R. AmmarN.S. IbrahimH.S. Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel: Equilibrium and kinetic studies.Solid State Sci.201214220221010.1016/j.solidstatesciences.2011.11.029
    [Google Scholar]
  35. Pranata PutraW. KamariA. Najiah Mohd YusoffS. Fauziah IshakC. MohamedA. HashimN. Md IsaI. Biosorption of Cu(II), Pb(II) and Zn(II) ions from aqueous solutions using selected waste materials: Adsorption and characterisation studies.J. Encapsul. Adsorpt. Sci.201441253510.4236/jeas.2014.41004
    [Google Scholar]
  36. HorsefallM. EkpeteO.A. SpiffA.I. Fixed bed adsorption of chlorophenol on fluted pumpkin and commercial activated carbon.Aust. J. Basic Appl. Sci.201151111491155
    [Google Scholar]
  37. WeberW.J.Jr MorrisJ.C. Kinetics of adsorption on carbon from solutions.J. Sanit. Engrg. Div.1963892315910.1061/JSEDAI.0000430
    [Google Scholar]
  38. LangergrenS. About the theory of so-called adsorption of soluble substances.Kungliga Svenska Vetenscapsakademiens Handlingar1898244139Available from: https://sid.ir/paper/563615/en
    [Google Scholar]
  39. SatishaS. SyedB. PrasadN.M.N. Endogenic mediated synthesis of gold nanoparticles bearing bactericidal activity.J. Microsc. Ultrastruct.20164316216610.1016/j.jmau.2016.01.004 30023223
    [Google Scholar]
  40. EguS.A. MajiD.C. IdihO.S. OmaleA. Analusis of yam starch and its application in synthesis of NiO nanoparticles using a simple green method.Res. sq., 2022
    [Google Scholar]
  41. ŞenolZ.M. KeskinZ.S. DinçerE. AyedA.B. Influential lead uptake using dried and inactivated-fungal biomass obtained from Panaeolus papilionaceus: biological activity, equilibrium, and mechanism.Biomass Convers. Biorefin.202410.1007/s13399‑024‑05584‑4
    [Google Scholar]
  42. XuL. ZhengX. CuiH. ZhuZ. LiangJ. ZhouJ. Equilibrium, kinetic and thermodynamic studies on the adsorption of cadmium from aqueous solution by modified biomass ash.Bioinorg. Chem. Appl.201720171910.1155/2017/3695604 28348509
    [Google Scholar]
  43. YusuffA.S. OlatejuI.I. EkanemS.E. Equilibrium, kinetic and thermodynamic studies of the adsorption of heavy metals from aqueous solution by thermally treated quail eggshell.J. Environ. Sci. Technol.201710524525710.3923/jest.2017.245.257
    [Google Scholar]
  44. OluwasolaH.O. AsegbeloyinJ.N. OchonogorA.E. AniJ.U. IbejiC.U. OyekaE.E. Cadmium and lead adsorption capacities of Nigerian ultisol soil of tropics.Orient. J. Chem.20193531004101210.13005/ojc/350312
    [Google Scholar]
  45. UmehT.C. NdukaJ.K. AkpomieK.G. Kinetics and isotherm modeling of Pb(II) and Cd(II) sequestration from polluted water onto tropical ultisol obtained from Enugu Nigeria.Appl. Water Sci.20211146510.1007/s13201‑021‑01402‑8
    [Google Scholar]
  46. AljeboreeA.M. AlshirifiA.N. AlkaimA.F. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon.Arab. J. Chem.201710S3381S339310.1016/j.arabjc.2014.01.020
    [Google Scholar]
  47. EkereN.R. AgwogieA.B. IhediohaJ.N. Studies of biosorption of Pb 2+, Cd 2+ and Cu 2+ from aqueous solutions using Adansonia digitata root powders.Int. J. Phytoremediation201618211612510.1080/15226514.2015.1058329 26267780
    [Google Scholar]
  48. FooK.Y. HameedB.H. Coconut husk derived activated carbon via microwave induced activation: Effects of activation agents, preparation parameters and adsorption performance.Chem. Eng. J.2012184576510.1016/j.cej.2011.12.084
    [Google Scholar]
  49. HoY.S. McKayG. Pseudo-second order model for sorption processes.Process Biochem.199934545146510.1016/S0032‑9592(98)00112‑5
    [Google Scholar]
  50. AkpomieK.G. DawoduF.A. AdebowaleK.O. Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential.Alex. Eng. J.201554375776710.1016/j.aej.2015.03.025
    [Google Scholar]
  51. Shahul HameedK. MuthirulanP. Meenakshi SundaramM. Adsorption of chromotrope dye onto activated carbons obtained from the seeds of various plants: Equilibrium and kinetics studies.Arab. J. Chem.201710S2225S223310.1016/j.arabjc.2013.07.058
    [Google Scholar]
  52. SelviK. PattabhiS. KadirveluK. Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon.Bioresour. Technol.2001801878910.1016/S0960‑8524(01)00068‑2 11554606
    [Google Scholar]
  53. YusuffA.S. Adsorption of hexavalent chromium from aqueous solution by Leucaena leucocephala seed pod activated carbon: equilibrium, kinetic and thermodynamic studies.Arab J. Basic Appl. Sci.20192618910210.1080/25765299.2019.1567656
    [Google Scholar]
/content/journals/cac/10.2174/0115734110309252240627041126
Loading
/content/journals/cac/10.2174/0115734110309252240627041126
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): activated carbon; Adsorption; Annona senegalensis; isotherm; kinetic modeling; pollution; SEM; XRD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test