Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

This study presents the successful fabrication of composite membranes composed of polyvinyl alcohol (PVA) polymer blended with titanium dioxide (TiO) nanoparticles and a combination of titanium dioxide/zirconium dioxide (TiO/ZrO) nanoparticles. The features of composite membranes were analyzed with a specific focus on comparing the characteristics of PVA/TiO and PVA/TiO/ZrO composite membranes.

Methods

TiO and ZrO nanoparticles were prepared using the sol-gel method. PVA/TiO and PVA/TiO/ZrO composite membranes were fabricated utilizing the solution casting method. A controlled method of production of nanoparticles and their uniform dispersion inside the polymer matrix are the key components contributing to the success of this approach. TiO and ZrO nanoparticles and their composite membranes were characterized through various characterization methods encompassing X-ray diffraction (XRD) study, UV-visible absorption spectroscopy, photoluminescence (PL) spectroscopy, transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM) analysis.

Results

The XRD study revealed improved crystallinity in composite membranes. The PVA/TiO/ZrO membrane possessed a greater level of crystallinity than the PVA/TiO membrane. The composite membranes exhibited enhanced absorption and PL behaviour. The FTIR spectra revealed the creation of a charge-transfer complex among the PVA, TiO and ZrO. The AFM study indicates that surface roughness increases after doping.

Conclusions

Good concurrence is established between grain size calculated by XRD and TEM. PVA/TiO/ZrO exhibits more improved characteristics than PVA/TiO because of the composite versatile properties resulting from the combining of two inorganic structural components with polymer. Such characteristics render it an appealing option for optical and optoelectronic device applications.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110313929240523085701
2024-06-04
2025-10-30
Loading full text...

Full text loading...

References

  1. SinghK. JaiswalR. KumarR. SinghS. AgarwalK. Polymer-based nanocomposites as defence material.Bull. Mater. Sci.2023202346
    [Google Scholar]
  2. MuthukumarC. JesuarockiamN. KrishnasamyS. ThiagamaniS.M.K. JawaidM. IshakM. BrittoJ. Role of characterization techniques in evaluating the material properties of nanoparticle-based polymer materials.United KingdomWoodhead Publishing2020415810.1016/B978‑0‑08‑103013‑4.00002‑9
    [Google Scholar]
  3. TomczakN. JańczewskiD. HanM. VancsoG.J. Designer polymer–quantum dot architectures.Prog. Polym. Sci.200934539343010.1016/j.progpolymsci.2008.11.004
    [Google Scholar]
  4. HeibaZ.K. MohamedM.B. ImamN.G. Fine-tune optical absorption and light emitting behavior of the CdS/PVA hybridized film nanocomposite.J. Mol. Struct.2017113632132910.1016/j.molstruc.2017.02.020
    [Google Scholar]
  5. GuchaitA. SaxenaA. ChattopadhyayS. MondalT. Influence of nanofillers on adhesion properties of polymeric composites.ACS Omega2022753844385910.1021/acsomega.1c05448 35155882
    [Google Scholar]
  6. NajafiM. AnsariR. DarvizehA. Effect of cryogenic aging on nanophased fiber metal laminates and glass/epoxy composites.Polym. Compos.20194062523253310.1002/pc.25134
    [Google Scholar]
  7. RamR. KhastgirD. RahamanM. Electromagnetic interference shielding effectiveness and skin depth of poly(vinylidene fluoride)/particulate nano‐carbon filler composites: Prediction of electrical conductivity and percolation threshold.Polym. Int.20196861194120310.1002/pi.5812
    [Google Scholar]
  8. SonD.R. RaghuA.V. ReddyK.R. JeongH.M. Compatibility of thermally reduced graphene with polyesters.J. Macromol. Sci. Part B Phys.201655111099111010.1080/00222348.2016.1242529
    [Google Scholar]
  9. ReddyK.R. KarthikK.V. PrasadS.B.B. SoniS.K. JeongH.M. RaghuA.V. Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts.Polyhedron201612016917410.1016/j.poly.2016.08.029
    [Google Scholar]
  10. ReddyK.R. JeongH.M. LeeY. RaghuA.V. Synthesis of MWCNTs‐core/thiophene polymer‐sheath composite nanocables by a cationic surfactant‐assisted chemical oxidative polymerization and their structural properties.J. Polym. Sci. A Polym. Chem.20104871477148410.1002/pola.23883
    [Google Scholar]
  11. GoswamiA. BajpaiA.K. BajpaiJ. SinhaB.K. Designing vanadium pentoxide-carboxymethyl cellulose/polyvinyl alcohol-based bionanocomposite films and study of their structure, topography, mechanical, electrical and optical behavior.Polym. Bull.201875278180710.1007/s00289‑017‑2067‑2
    [Google Scholar]
  12. RokytskyiM.O. ShutM.I. DemchenkoV.L. SichkarT.G. RokytskaH.V. ShutA.M. UrsulK.V. Influence of nanodispersed tin dioxide on polychlortrifluoroethylene mechanical properties.Appl. Nanosci.202213
    [Google Scholar]
  13. DiwaldO. BergerT. Metal Oxide Nanoparticles: Formation, Functional Properties, and Interfaces.Hoboken, NJ, USAWiley202110.1002/9781119436782
    [Google Scholar]
  14. AminZ. Metal oxide/polymer nanocomposites: A review on recent advances in fabrication and applications.Polym. Plast. Technol. Mater.202262655700
    [Google Scholar]
  15. TamgadgeY.S. SunatkariA.L. TalwatkarS.S. PahurkarV.G. MuleyG.G. Passive optical limiting studies of nanostructured Cu doped ZnO–PVA composite thin films.Opt. Mater.20165117518410.1016/j.optmat.2015.11.037
    [Google Scholar]
  16. Rahman KhanM.M. PalS. HoqueM.M. AlamM.R. YounusM. KobayashiH. Simple fabrication of PVA–ZnS composite films with superior photocatalytic performance: Enhanced luminescence property, morphology, and thermal stability.ACS Omega2019446144615310.1021/acsomega.8b02807 31459759
    [Google Scholar]
  17. GhobadiS. SadighikiaS. PapilaM. CebeciF.Ç. GürselS.A. Graphene-reinforced poly(vinyl alcohol) electrospun fibers as building blocks for high performance nanocomposites.RSC Advances20155103850098501810.1039/C5RA15689K
    [Google Scholar]
  18. SolimanT.S. VshivkovS.A. Effect of Fe nanoparticles on the structure and optical properties of polyvinyl alcohol nanocomposite films.J. Non-Cryst. Solids201951911945210.1016/j.jnoncrysol.2019.05.028
    [Google Scholar]
  19. FaragO.F. Abdel-FattahE. Synthesis and characterization PVA/plasma-functionalized MWCNTs nanocomposites films.J. Polym. Res.202330518310.1007/s10965‑023‑03550‑8
    [Google Scholar]
  20. AbdelazizM. GhannamM.M. Influence of titanium chloride addition on the optical and dielectric properties of PVA films.Physica B2010405395896410.1016/j.physb.2009.10.030
    [Google Scholar]
  21. GadM. ElkattanM. Tailoring the optical properties of polyvinyl alcohol-polyvinyl pyrrolidone based polymers.Opt. Quantum Electron.2023551198510.1007/s11082‑023‑05233‑6
    [Google Scholar]
  22. El-NaggarA.M. BrnawiS.Z. KamalA.M. AlbassamA.A. HeibaZ.K. MohamedM.B. Structural, optical, and electrical parameters of doped PVA/PVP blend with TPAI or THAI salt.Polymers (Basel)20231512266110.3390/polym15122661 37376307
    [Google Scholar]
  23. DawS. BasuR.K. DasS.K. Red mud reinforced polyvinyl alcohol composite films: Synthesis, chemical, mechanical and thermal properties.SN Appl. Sci.20191662510.1007/s42452‑019‑0648‑4
    [Google Scholar]
  24. RagabH.M. RajehA. Structural, thermal, optical and conductive properties of PAM/PVA polymer composite doped with Ag nanoparticles for electrochemical application.J. Mater. Sci. Mater. Electron.20203119167801679210.1007/s10854‑020‑04233‑6
    [Google Scholar]
  25. DennlerG. LungenschmiedC. NeugebauerH. SariciftciN.S. LatrècheM. CzeremuszkinG. WertheimerM.R. A new encapsulation solution for flexible organic solar cells.Thin Solid Films2006511-51234935310.1016/j.tsf.2005.12.091
    [Google Scholar]
  26. WeaverM.S. MichalskiL.A. RajanK. RothmanM.A. SilvernailJ.A. BrownJ.J. BurrowsP.E. GraffG.L. GrossM.E. MartinP.M. HallM. MastE. BonhamC. BennettW. ZumhoffM. Organic light-emitting devices with extended operating lifetimes on plastic substrates.Appl. Phys. Lett.200281162929293110.1063/1.1514831
    [Google Scholar]
  27. WuuD.S. ChenT.N. WuC.C. ChiangC.C. ChenY.P. HorngR.H. JuangF.S. Transparent barrier coatings for flexible organic light-emitting diode applications.Chem. Vap. Depos.200612422022410.1002/cvde.200506436
    [Google Scholar]
  28. ChenT.N. WuuD.S. WuC.C. ChiangC.C. ChenY.P. HorngR.H. Improvements of permeation barrier coatings using encapsulated parylene interlayers for flexible electronic applications.Plasma Process. Polym.20074218018510.1002/ppap.200600158
    [Google Scholar]
  29. GaumeJ. Wong-Wah-ChungP. RivatonA. ThériasS. GardetteJ.L. Photochemical behavior of PVA as an oxygen-barrier polymer for solar cell encapsulation.RSC Advances201118147110.1039/c1ra00350j
    [Google Scholar]
  30. RudkoG.Y. KovalchukA.O. FedivV.I. BeyerJ. ChenW.M. BuyanovaI.A. Effects of ultraviolet light on optical properties of colloidal CdS nanoparticles embedded in Polyvinyl Alcohol (PVA) matrix.Adv. Sci. Eng. Med.20124539440010.1166/asem.2012.1174
    [Google Scholar]
  31. GayitriH.M. AL-Gunaid, M.; Siddaramaiah; Gnana Prakash, A.P. Investigation of triplex CaAl2ZnO5 nanocrystals on electrical permittivity, optical and structural characteristics of PVA nanocomposite films.Polym. Bull.20207795005502610.1007/s00289‑019‑03069‑3
    [Google Scholar]
  32. SeydibeyoğluM.Ö. DogruA. WangJ. RencheckM. HanY. WangL. SeydibeyoğluE.A. ZhaoX. OngK. ShatkinJ.A. Shams Es-haghi, S.; Bhandari, S.; Ozcan, S.; Gardner, D.J. Review on hybrid reinforced polymer matrix composites with nanocellulose, nanomaterials, and other fibers.Polymers (Basel)202315498410.3390/polym15040984 36850267
    [Google Scholar]
  33. HuangS. FuQ. YanL. KasalB. Characterization of interfacial properties between fibre and polymer matrix in composite materials – A critical review.J. Mater. Res. Technol.2021131441148410.1016/j.jmrt.2021.05.076
    [Google Scholar]
  34. AgobiA. IkeubaA. EkpunobiA. IKhioya, I.L.; Udofia, K.I.; Ntibi, J.E.E.; Ozoemena, C.N.; Abua, M.A. Optical and structural properties of graphene oxide-incorporated polyvinylpyrrolidone/ copper ternary nanocomposites (PVP/Cu/GO) films. Rev. Mex. Fis.,2023693 May-Jun03100110.31349/RevMexFis.69.031001
    [Google Scholar]
  35. KickelbickG. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale.Prog. Polym. Sci.20032818311410.1016/S0079‑6700(02)00019‑9
    [Google Scholar]
  36. NeugebauerH. BrabecC. HummelenJ.C. SariciftciN.S. Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells.Sol. Energy Mater. Sol. Cells2000611354210.1016/S0927‑0248(99)00094‑X
    [Google Scholar]
  37. NguyenT.P. Polymer-based nanocomposites for organic optoelectronic devices. A review.Surf. Coat. Tech.2011206474275210.1016/j.surfcoat.2011.07.010
    [Google Scholar]
  38. Al-MuntaserA. Abo-DiefH.M. TarabiahA.E. AlzahraniE. AlsalmahH.A. AlharbiZ.M. PashameahR.A. SaeedA. Incorporated TIO 2 nanoparticles into PVC/PMMA polymer blend for enhancing the optical and electrical/dielectric properties: Hybrid nanocomposite films for flexible optoelectronic devices.Polym. Eng. Sci.202363113684369710.1002/pen.26476
    [Google Scholar]
  39. TawansiA. OrabyA.H. ZidanH.M. DorghamM.E. Effect of one-dimensional phenomena on electrical, magnetic and ESR properties of MnCl2-filled PVA films.Physica B19982541-212613310.1016/S0921‑4526(98)00414‑1
    [Google Scholar]
  40. WahyuniS. PrasetyaA.T. KartiniI. Photocatalytic activity and antimicrobial properties of TiO2-SiO2-PVA composite.Asian J. Chem.201729228729010.14233/ajchem.2017.20163
    [Google Scholar]
  41. Abdel KaderK.A.M. Abdel HamiedS.F. MansourA.B. Effect of the molecular weights on the optical and mechanical properties of Poly (vinyl alcohol).Films. Polym. Test.20022184785010.1016/S0142‑9418(02)00020‑X
    [Google Scholar]
  42. IkedaH. MurataT. FujinoS. Fabrication and photoluminescence of monolithic silica glass doped with alumina nanoparticles using SiO2-PVA nanocomposite.J. Ceram. Soc. Jpn.2015123143955055310.2109/jcersj2.123.550
    [Google Scholar]
  43. BadryR. IbrahimA. GamalF. ShehataD. EzzatH. ElhaesH. IbrahimM. Electronic properties of polyvinyl alcohol/TiO2/SiO2 nanocomposites.Biointerface Res. Appl. Chem.20201056427643510.33263/BRIAC105.64276435
    [Google Scholar]
  44. AlgelalH.M.A. KareemS.S. MohammedK.A. KhameesE.J. AbedA.S. AlkhayattA.H.O. Al-OkbiR.R. Synthesis of PVA-Fe2O3-TiO2 hybrid structure for biomedical application.J. Optoelect. Biomed. Mater.2022142435110.15251/JOBM.2022.142.43
    [Google Scholar]
  45. Rahman KhanM.M. AkterM. AminM.K. YounusM. ChakrabortyN. Synthesis, luminescence and thermal properties of PVA–ZnO–Al2O3 composite films: Towards fabrication of sunlight-induced catalyst for organic dye removal.J. Polym. Environ.20182683371338110.1007/s10924‑018‑1220‑9
    [Google Scholar]
  46. ShettyB. G.; Crasta, V.; Kumar N B, R.; K, R.; Bairy, R.; Shankaragouda Patil, P. Promising PVA/TiO2, CuO filled nanocomposites for electrical and third order nonlinear optical applications.Opt. Mater.20199510921810.1016/j.optmat.2019.109218
    [Google Scholar]
  47. PattersonA.L. The Scherrer Formula for X-Ray particle size determination.Phys. Rev.1939561097898210.1103/PhysRev.56.978
    [Google Scholar]
  48. AzizS.B. Modifying poly (vinyl alcohol) (PVA) from insulator to small-bandgap polymer: A novel approach for organic solar cells and optoelectronic devices.J. Electron. Mater.201645173674510.1007/s11664‑015‑4191‑9
    [Google Scholar]
  49. AbdullahO.G. SaleemS.A. Effect of copper sulfide nanoparticles on the optical and electrical behavior of Poly (vinyl alcohol) films.J. Electron. Mater.201645115910592010.1007/s11664‑016‑4797‑6
    [Google Scholar]
  50. AlsaiariM. A. MorsyM. SamirM. Al-QahtaniA. AslsaiariR. AlsaiariA. KamounE. A. AliA. I. RamzyG. H. Advantages incorporating V2O5 nanoparticles into PMMA composite membranes for the structural, optical, electrical, and mechanical properties for conductive polymeric membrane applications.Mater. Adv.,202458D3MA01108A10.1039/D3MA01108A
    [Google Scholar]
  51. MehtoA. MehtoV.R. ChauhanJ. Preparation and characterization of Polyvinyl Alcohol (PVA)/ZrO 2 composite membranes.Phys. Status Solidi, B Basic Res.202326010230016410.1002/pssb.202300164
    [Google Scholar]
  52. ShehapA.M. Thermal and spectroscopic studies of polyvinyl alcohol/sodium carboxy methyl cellulose blends.Egypt J. Solids.2008317591
    [Google Scholar]
  53. AbdullahO.G. AzizS.B. RasheedM.A. Structural and optical characterization of PVA:KMnO 4 based solid polymer electrolyte.Results Phys.201661103110810.1016/j.rinp.2016.11.050
    [Google Scholar]
  54. RashadM.M. ShalanA.E. Synthesis and optical properties of titania-PVA nanocomposites.Int. J. Nanoparticles20125215916910.1504/IJNP.2012.046249
    [Google Scholar]
  55. AnY. UshidaT. SusukiM. KoyamaT. HanabusaK. ShiraiH. Complex formation of partially phosphorylated poly(vinyl alcohol), with metal ions in aqueous solution.Polymer (Guildf.)199637143097310010.1016/0032‑3861(96)89410‑9
    [Google Scholar]
  56. RaoN.R. Ultra-violet and visible spectroscopy: Chemical applications.London, UKButterworth1967
    [Google Scholar]
  57. SagadevanS. PalK. ChowdhuryZ.Z. HoqueM.E. Structural, dielectric and optical investigation of chemically synthesized Ag-doped ZnO nanoparticles composites.J. Sol-Gel Sci. Technol.201783239440410.1007/s10971‑017‑4418‑8
    [Google Scholar]
  58. LeiX.F. XueX.X. YangH. Preparation and characterization of Ag-doped TiO2 nanomaterials and their photocatalytic reduction of Cr(VI) under visible light.Appl. Surf. Sci.201432139640310.1016/j.apsusc.2014.10.045
    [Google Scholar]
  59. SelvamK. SwaminathanM. NanoN. TiO2 mediated selective photocatalytic synthesis of quinaldines from nitrobenzenes.RSC Advances2012272848285510.1039/C2RA01178F
    [Google Scholar]
  60. JiaS. LiX. ZhangB. YangJ. ZhangS. LiS. ZhangZ. TiO2/CuS heterostructure nanowire array photoanodes toward water oxidation: The role of CuS.Appl. Surf. Sci.201946382983710.1016/j.apsusc.2018.09.003
    [Google Scholar]
  61. XiangQ.J. LvK.L. YuJ.G. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (0 0 1) facets for the photocatalytic degradation of acetone in air.Appl. Catal. B20109655756410.1016/j.apcatb.2010.03.020
    [Google Scholar]
  62. RenL. LiY. MaoM. LanL. LaoX. ZhaoX. Significant improvement in photocatalytic activity by forming homojunction between anatase TiO2 nanosheets and anatase TiO2 nanoparticles.Appl. Surf. Sci.201949028329210.1016/j.apsusc.2019.05.351
    [Google Scholar]
  63. YuJ.C. YuJ. HoW. JiangW. Zhang, Zhang. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders.Chem. Mater.20021493808381610.1021/cm020027c
    [Google Scholar]
  64. ZhangW.F. ZhangM.S. YinZ. ChenQ. Photoluminescence in anatase titanium dioxide nanocrystals.Appl. Phys. B200070226126510.1007/s003400050043
    [Google Scholar]
  65. TanG. MishraD.D. KumarA. SharmaP. Controllable synthesis of WO3/Co1-δWO4 composite nanopowders for photocatalytic degradation of methylene blue (MB).J. Nanopart. Res.202224611610.1007/s11051‑022‑05506‑3
    [Google Scholar]
  66. ShehapandA.M. AkilD.S. Structural and optical properties of TiO2 nanoparticles/PVA for different composites thin films.Int. J. Nanoelectron. Mater.201691736
    [Google Scholar]
  67. CaiZ. RemadeviR. Al FaruqueM.A. SettyM. FanL. HaqueA.N.M.A. NaebeM. Fabrication of a cost-effective lemongrass (Cymbopogon citratus) membrane with antibacterial activity for dye removal.RSC Advances2019958340763408510.1039/C9RA04729H 35528869
    [Google Scholar]
  68. KimG.M. Fabrication of Bio-Nanocomposite Nanofibers Mimicking the Mineralized Hard Tissues via Electrospinning Process.LondonNanofibers, IntechOpen201010.5772/8148
    [Google Scholar]
  69. LeeJ. HongJ. ParkD.W. ShimS.E. Microencapsulation and characterization of poly(vinyl alcohol)-coated titanium dioxide particles for electrophoretic display.Opt. Mater.201032453053410.1016/j.optmat.2009.11.008
    [Google Scholar]
  70. KimG.M. SimonP. KimJ-S. SimonP. KimJ.S. Electrospun PVA/HAp nanocomposite nanofibers: Biomimetics of mineralized hard tissues at a lower level of complexity.Bioinspir. Biomim.20083404600310.1088/1748‑3182/3/4/046003 18812653
    [Google Scholar]
  71. OmkaramI. Sreekanth ChakradharR.P. Lakshmana RaoJ. EPR, optical, infrared and Raman studies of VO2+ ions in polyvinylalcohol films.Physica B20073881-231832510.1016/j.physb.2006.06.134
    [Google Scholar]
  72. Al-EmamE. SoenenH. CaenJ. JanssensK. Characterization of polyvinyl alcohol-borax/agarose (PVA-B/AG) double network hydrogel utilized for the cleaning of works of art.Herit. Sci.20208110610.1186/s40494‑020‑00447‑3
    [Google Scholar]
  73. NawarA.M. El-MahalawyA.M. Heterostructure device based on Brilliant Green nanoparticles–PVA/p-Si interface for analog–digital converting dual-functional sensor applications.J. Mater. Sci. Mater. Electron.20203143256327310.1007/s10854‑020‑02874‑1
    [Google Scholar]
  74. ChahalR.P. MahendiaS. TomarA.K. KumarS. γ-Irradiated PVA/Ag nanocomposite films: Materials for optical applications.J. Alloys Compd.201253821221910.1016/j.jallcom.2012.05.085
    [Google Scholar]
  75. KimO. KwonJ. KimS. XuB. SeoK. ParkC. DoW. BaeJ. KangS. Effect of PVP-Capped ZnO Nanoparticles with Enhanced Charge Transport on the Performance of P3HT/PCBM Polymer Solar Cells.Polymers (Basel)20191111181810.3390/polym11111818 31694327
    [Google Scholar]
/content/journals/cac/10.2174/0115734110313929240523085701
Loading
/content/journals/cac/10.2174/0115734110313929240523085701
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test