Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

To comprehensively understand molecular processes, it is essential to analyze how thermodynamic parameters change with temperature and composition, providing valuable insights into molecular interactions. The industry's demand for precise information on the physical and chemical characteristics of different liquid combinations underscores the importance of such research. Researchers employ an ultrasonic interferometer for measuring ultrasonic wave velocity, a specific gravity bottle for liquid density determination, and an Ostwald viscometer for viscosity measurements. The propagation of ultrasonic waves can affect the physical properties of a medium, providing insights into the physics of liquids and solutions. Research has explored how frequency and temperature can impact thermoacoustic characteristics. Scientists have identified the nature of the forces between molecules, including hydrogen bonds, charge transfer complexes, and the breaking and formation of such bonds through their investigations. By measuring ultrasonic wave velocity, liquid density, and viscosity, researchers can analyze a range of acoustic and thermodynamic properties, thus significantly advancing our understanding of molecular interactions within each sample. Additionally, a comprehensive explanation of the measured parameters is provided to offer detailed insights into the studied phenomena, enhancing the overall understanding of molecular processes in liquid mixtures.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110306958240620073537
2024-07-02
2025-09-25
Loading full text...

Full text loading...

References

  1. NikamP. S. HasanM. PathakR. B. Densities and speeds of sound for aniline+ aliphatic alcohols (C~ 1-C~ 4) at different temperatures.J. pure. appl. ultras.1996181014
    [Google Scholar]
  2. PandaS. Molecular interaction of novel polymer dextran with 1 (N) sodium hydroxide solution: Ultrasonic studies.APJST202327617
    [Google Scholar]
  3. SamantarayB. PraharajM.K. DasB.R. DasS.P. Comparative study of molecular interaction in ternary liquid mixtures of polar and non-polar solvents.J. Scient. Res.202214391792910.3329/jsr.v14i3.57587
    [Google Scholar]
  4. NaseemB. AshrafN. Volumetric behavior of nitroimidazoles in binary solvent mixtures.J. Mol. Liq.201622437738610.1016/j.molliq.2016.10.004
    [Google Scholar]
  5. GodhaniD.R. DobariyaP.B. SanghaniA.M. MehtaJ.P. Thermodynamic properties of binary mixtures of 1,3,4-oxadiazole derivative with chloroform, N, N -dimethyl formamide at 303, 308 and 313 K and atmospheric pressure.Arab. J. Chem.201710S422S43010.1016/j.arabjc.2012.10.002
    [Google Scholar]
  6. NainA.K. Ultrasonic and viscometric studies of molecular interactions in binary mixtures of formamide with ethanol, 1-propanol, 1,2-ethanediol and 1,2-propanediol at different temperatures.J. Mol. Liq.20081401-310811610.1016/j.molliq.2008.01.016
    [Google Scholar]
  7. PandaS. Thermoacoustical parameters of dextran polymer in sodium hydroxide solutions.Songklanakarin J. Sci. Technol.2022444
    [Google Scholar]
  8. PraharajM.K. Study of molecular interaction in aqueous KCl at different temperatures.J. Scient. Res.20211311810.3329/jsr.v13i1.44977
    [Google Scholar]
  9. KaurK. JuglanK.C. Studies of molecular interaction in the binary mixture of chloroform and methanol by using ultrasonic technique.Pharma Chem.201572160167
    [Google Scholar]
  10. JyothirmaiG. NayeemS.M. KhanI. AnjaneyuluC. Thermo-physicochemical investigation of molecular interactions in binary combination (dimethyl carbonate + methyl benzoate).J. Therm. Anal. Calorim.2018132169370710.1007/s10973‑017‑6926‑8
    [Google Scholar]
  11. ZolkifleeN.F. AffandiM.M.R.M.M. MajeedA.B.A. Molecular dynamics and related solution chemistry of lovastatin in aqueous solution of arginine: Viscometric analysis.J. Mol. Liq.201927938639110.1016/j.molliq.2019.01.102
    [Google Scholar]
  12. SinghS. TalukdarM. DashU.N. Ultrasonic studies on paracetamol in aqueous solutions of sodium salicylate and nicotinamide.J. Mol. Liq.201824981582410.1016/j.molliq.2017.11.099
    [Google Scholar]
  13. BeebiS. NayeemS.M. RambabuC. Investigation of molecular interactions in binary mixture of dimethyl carbonate + Nmethylformamide at T = (303.15, 308.15, 313.15 and 318.15) K.J. Therm. Anal. Calorim.201913563387339910.1007/s10973‑018‑7574‑3
    [Google Scholar]
  14. PatnaikP. ChakrabortyN. KaurP. JuglanK.C. KumarH. Thermodynamic and acoustic investigation of d-panthenol in homologous series of polyethylene glycol at different temperatures.Advances in Functional and Smart Materials: Select Proceedings of ICFMMPSpringer Nature Singapore: Singapore2022403424
    [Google Scholar]
  15. PandaS. Analysis of aqueous dextran: An ultrasonic study.Curr. Microw. Chem.202291303610.2174/2213335609666220324144409
    [Google Scholar]
  16. ReddyG.V. MajumdarS. SinghR.P. Ultrasonic velocities and rao formalism in solutions of polymers of differing molecular-structures.Acustica1981474343346
    [Google Scholar]
  17. ArmishawR.F. JamesD.W. Structure of aqueous solutions. Relative intensity studies of the infrared librational band in nitrate solutions.J. Phys. Chem.197680550150810.1021/j100546a016
    [Google Scholar]
  18. KayR.L. BroadwaterT.L. Solvent structure in aqueous mixtures. III. Ionic conductances in ethanol-water mixtures at 10 and 25C.J. Solution Chem.197651577610.1007/BF00647181
    [Google Scholar]
  19. SamantarayB. PraharajM.K. DasS.P. Study of molecular interaction in binary mixtures containing N, N-Dimethylformamide and n-Butanol.J.Ultra. Chem.202117123
    [Google Scholar]
  20. PandaS. Acoustic and thermodynamics study of aqueous dextran: An ultrasonic analysis.Rom. J. Biophys.202333310511710.59277/RJB.2023.3.02
    [Google Scholar]
  21. LagemannR.T. DunbarW.S. Relationships between the velocity of sound and other physical properties of liquids.J. Phys. Chem.194549542843610.1021/j150443a003
    [Google Scholar]
  22. SrinivasuluU. Ramachandra NaiduP. Isentropic compressibilities of liquid mixtures of 1, 1, 1-trichloroethane with 1-alcohol at 303.15 K.Indian J. Pure Appl. Phy.1991298576579
    [Google Scholar]
  23. RajuluA.V. ReddyR.L. ReddyR.N.V. Ultrasonic and viscometric investigation of cellulose acetate/poly (methyl methacrylate) blends in solution.Acta Acust. United Acust.1998843577579
    [Google Scholar]
  24. HemmesP. MaevskiiA.A. BukinV.A. SarvazyanA.P. Ultrasonic investigation of solute-solvent and solute-solute interactions in aqueous solutions of bases, nucleosides, and nucleotides. 3. Solute-solute interactions: Studies of base stacking by ultrasonic velocity measurements.J. Phys. Chem.198084769970310.1021/j100444a004
    [Google Scholar]
  25. BlokhraR.L. NagA. Ultrasonic velocity of aqueous solutions of urea.Indian J. Pure Appl. Phy.19912911756759
    [Google Scholar]
  26. KneserH.O. The Interpretation of the anomalous sound-absorption in air and oxygen in terms of molecular collisions.J. Acoust. Soc. Am.19335212212610.1121/1.1915639
    [Google Scholar]
  27. PraharajM.K. MishraS. Molecular interaction in ternary liquid mixtures at different temperatures.World J. Pharm. Pharm. Sci.2015515971607
    [Google Scholar]
  28. PinkertonJ.M.M. The absorption of ultrasonic waves in liquids and its relation to molecular constitution.Proc. Phys. Soc. B194962212914110.1088/0370‑1301/62/2/307
    [Google Scholar]
  29. BhatJ.I. Shree VaraprasadN.S. Study on acoustic nature of succinimide in water + DMSO/DMF and dioxan at 303 K.Ind. J. Pure Appl. Phy.200442296103
    [Google Scholar]
  30. DasJ.K. DashS.K. SwainN. SwainB.B. Ultrasonic investigation in a polar-polar system—metyl isobutyl ketone (MIBK) and aliphatic alcohols.J. Mol. Liq.199981216317910.1016/S0167‑7322(99)00065‑3
    [Google Scholar]
  31. RajagopalK. Edwin GladsonS. Partial molar volume and partial molar compressibility of four homologous α-amino acids in aqueous sodium fluoride solutions at different temperatures.J. Chem. Thermodyn.201143685286710.1016/j.jct.2011.01.004
    [Google Scholar]
  32. PraharajM.K. Study of molecular interaction in organic ternary liquid mixtures containing toluene, research & reviews.J. Phys.2020911316
    [Google Scholar]
  33. PraharajM.K. Molecular interaction IN IONIC liquids at different temperatures.Int. Res. J. Eng. Technol.20207120862089
    [Google Scholar]
  34. PandaS. Thermo-acoustic parameters of polymer dextran with aqueous sodium hydroxide: An ultrasonic study. current materials science: formerly.Recent Pat. Mater. Sci.2023162217224
    [Google Scholar]
  35. PandaS. Thermo-acoustical Analysis of Polymer Dextran at Different Frequencies.Bulg. J. Phys.2022492136144
    [Google Scholar]
  36. SharmaS.J. BalharpureA.C. PandeA.S. DubeyS.U. SinghG.K. GhodkiV.M. RajagopalanS. Design of embedded sing-around system for ultrasonic velocity measurement in liquids.J. Embedd. Sys2014211517
    [Google Scholar]
  37. PandiyanV. OswalS.L. VasantharaniP. Thermodynamic and acoustic properties of binary mixtures of ethers. IV. Diisopropyl ether or oxolane with N,N-dimethylaniline or N,N-diethylaniline at 303.15, 313.15 and 323.15K.Thermochim. Acta20115181-2364610.1016/j.tca.2011.02.004
    [Google Scholar]
  38. AlishaS. B. BanuS. N. RaoK. K. SubhaM. C. S. RaoK. C. Ultrasonic studies on binary liquid mixtures of triethylamine with carbitols at 308.15 KInd. J. adv. chem. sci. 201753148154
    [Google Scholar]
  39. MistryA.A. BhandakkarV.D. ChimankarO.P. Acoustical studies on ternary mixture of toluene in cyclohexane&nitrobenzene at 308k using ultrasonic technique.J. Chem. Pharm. Res.201241170174
    [Google Scholar]
  40. MehraR. MalavB.B. Ultrasonic, volumetric and viscometric studies of lactose in mixed solvent of DMF–H2O at 298, 308 and 318 K.Arab. J. Chem.201710S1894S190010.1016/j.arabjc.2013.07.018
    [Google Scholar]
  41. DehuryS.K. TalukdarM. DashU.N. Thermo-acoustic parameters of multi-charged electrolytes (sodium thiosulphate and sodium chromate) in aqueous binary fructose solutions and derivation of surface excess values from ultrasonic velocity measurements.Int. J. Pharm. Sci. Rev. Res.2014261
    [Google Scholar]
  42. RajuluA.V. SreenivasuluG. RaghuramanK.S. Ultrasonic attenuation in aqueous dispersion of polytetrafluoroethylene.J. Polym.1994362120135
    [Google Scholar]
  43. TiwariS. KusmariyaB.S. TiwariA. PathakV. MishraA.P. Acoustical and viscometric studies of buspirone hydrochloride with co-balt(II) and copper(II) ions in aqueous medium.J. Taibah Univ. Sci.201711110110910.1016/j.jtusci.2015.10.012
    [Google Scholar]
  44. KaurM. PathaniaV. VermaniB.K. AnandV. GillD.S. Ultrasonic velocity and thermoacoustic parameters for copper(I) nitrates in dimethylsulfoxide with pyridine as a co-solvent at 298 K.Curr. Phys. Chem.202212213615810.2174/1877946812666220331122201
    [Google Scholar]
  45. SharmaA.K. SharmaR. GangwalA. Ultrasonic studies and acoustic parameters of complexes containing copper surfactants with 2-amino-6-methyl benzo-thiazole.Curr. Phys. Chem.20198322222910.2174/1573412914666181003151414
    [Google Scholar]
  46. MakenS. DeshwalB.R. ChadhaR. Anu; Singh, K.C.; Kim, H.; Park, J-W. Topological and thermodynamic investigations of molecular interactions in binary mixtures: Molar excess volumes and molar excess enthalpies.Fluid Phase Equilib.20052351424910.1016/j.fluid.2005.06.011
    [Google Scholar]
  47. AkhtarY. IbrahimS.F. Ultrasonic and thermodynamic studies of glycine in aqueous electrolytes solutions at 303K.Arab. J. Chem.20114448749010.1016/j.arabjc.2010.07.009
    [Google Scholar]
  48. SwainB. MishraR.N. DashU.N. Viscometric and thermodynamic studies on strong electrolytes-Metal chlorides and metal sulphates in aqueous medium at different temperatures.Int. J. Chem. Phy Sci201546676
    [Google Scholar]
  49. PandaS. MahapatraA.P. Molecular interaction of dextran with urea through ultrasonic technique.Clay Res.20193813542
    [Google Scholar]
  50. DudheV.G. TabhaneV.A. ChimankarO.P. DudheC.M. Study on molecular interaction of aqueous ascorbic acid (Vitamin C) at 293K.J. Chem. Phys.2014453210225
    [Google Scholar]
  51. TakayaH. NiiS. KawaizumiF. TakahashiK. Enrichment of surfactant from its aqueous solution using ultrasonic atomization.Ultrason. Sonochem.200512648348710.1016/j.ultsonch.2004.06.012 15848112
    [Google Scholar]
  52. PandaS. Molecular interaction study of binary liquid solution using ultrasonic technique.Recent Innov. Chem. Eng.202215213814610.2174/2405520415666220707142909
    [Google Scholar]
  53. HirschfelderJ. StevensonD. EyringH. A theory of liquid structure.J. Chem. Phys.193751189691210.1063/1.1749960
    [Google Scholar]
  54. DeshpandeD.D. BhatgaddeL.G. Sound velocities, adiabatic compressibilities, and free volumes in aniline solutions.J. Phys. Chem.196872126126610.1021/j100847a049
    [Google Scholar]
  55. SastryN.V. JainN.J. GeorgeA. BahadurP. Viscosities, speeds of sound and excess isentropic compressibilities of binary mixtures of alkyl alkanoate–hydrocarbons at 308.15 K and 318.15 K.Fluid Phase Equilib.1999163227528910.1016/S0378‑3812(99)00232‑0
    [Google Scholar]
  56. PrakashS. PrasadN. PrakashO. Ultrasonic velocity and allied parameters in alcoholic solutions of calcium nitrate.J. Chem. Eng. Data1977221515410.1021/je60072a024
    [Google Scholar]
  57. PrasadN. PrakashS. DwivediK.S. Acoustical properties in ternary liquid mixtures.Acta Acust. United Acust.1978394276279
    [Google Scholar]
  58. PraharajM.K. SatapathyA. MishraP.R. MishraS. Study of acoustical and thermodynamic properties of aqueous solution of NaCl at different concentrations and temperatures through ultrasonic technique.Arch. Appl. Sci. Res.201242837845
    [Google Scholar]
  59. RaoM.R. A relation between velocity of sound in liquids and molecular volume.Indian J. Phys.194014109116
    [Google Scholar]
  60. KiyoharaO. BensonG.C. Ultrasonic speeds and isentropic compressibilities of n-alkanol + n-heptane mixtures at 298.15 K.J. Chem. Thermodyn.197911986187310.1016/0021‑9614(79)90067‑3
    [Google Scholar]
  61. NathJ. DixitA.P. Ultrasonic velocities in, and adiabatic compressibilities and excess volumes for, binary liquid mixtures of acetone with tetrachloroethylene, trichloroethylene, methylene chloride, 1,2-dichloroethane, and cyclohexane.J. Chem. Eng. Data198429331331610.1021/je00037a026
    [Google Scholar]
  62. KalidossM. SrinivasamoorthyR. Ultrasonic study of ternary liquid mixtures of cyclohexanone+ 1, 2 dichloroethane+ n-propanol,+ n-butanol.J. Pure.Appl. Ultras.199719915
    [Google Scholar]
  63. PrakashO. SinhaS. Ultrasonic studies in binary mixtures of tetrahydrofuran with formamide, methyl formamide, dimethyl formamide and 2-methyl pyridine.Acta Acust. United Acust.1984544223225
    [Google Scholar]
  64. NomotoO. Empirical formula for sound velocity in liquid mixtures.J. Phys. Soc. Jpn.195813121528153210.1143/JPSJ.13.1528
    [Google Scholar]
  65. SehgalC.M. PorterB.R. GreenleafJ.F. Ultrasonic nonlinear parameters and sound speed of alcohol–water mixtures.J. Acoust. Soc. Am.198679256657010.1121/1.393548 3950207
    [Google Scholar]
  66. AliA. NainA.K. Physico-Chemical studies of solvent-solvent and ion-solvent interactions in solutions of Lithium Nitrate in Dimethyl-Sulphoxide+ Ethanol mixtures.Phys. Chem. Liquids1997341254010.1080/00319109708035911
    [Google Scholar]
  67. TabhaneV.A. AgrawalS. RewatkarK.G. Ultrasonic studies of binary liquid mixtures of cinnamaldehyde in methanol, acetone and cyclohexane.J. Acous. Soc. Of Ind200028369
    [Google Scholar]
  68. KannappanV. SanthiR. Ultrasonic study of induced dipole-dipole interactions in binary liquid mixtures.Indian J. Pure Appl. Phy.20054310750754
    [Google Scholar]
  69. PandaS. MahapatraA.P. Intermolecular interaction of dextran with urea.Int. J. Innov. Technol. Explor. Eng.201981174274810.35940/ijitee.K1445.0981119
    [Google Scholar]
  70. ChungF.H. Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures.J. Appl. Cryst.19747652653110.1107/S0021889874010387
    [Google Scholar]
  71. HubbardC.R. SnyderR.L. RIR-measurement and use in quantitative XRD.Powder Diffr.198832747710.1017/S0885715600013257
    [Google Scholar]
  72. HasselO. The structure of addition compounds, especially those in which halogens act as electron-acceptors.Proc. Chem. Soc. Lond.19579250255
    [Google Scholar]
  73. HasselO. Structures of electron-transfer and related molecular complexes in the solid state.Mol. Phys.19581324124610.1080/00268975800100301
    [Google Scholar]
  74. ReevesL.W. SchneiderW.G. Nuclear magnetic resonance measurements of complexes of chloroform with aromatic molecules and ole-fins.Can. J. Chem.195735325126110.1139/v57‑036
    [Google Scholar]
  75. KondoM. KishitaM. KimuraM. KuboM. The magnetic susceptibility of iodine in various solvents.Bull. Chem. Soc. Jpn.195629330530710.1246/bcsj.29.305
    [Google Scholar]
  76. FairbrotherW.J. MinardP. HallL. BettonJ.M. MissiakasD. YonJ.M. WilliamsR.J.P. Nuclear magnetic resonance studies of isolated structural domains of yeast phosphoglycerate kinase.Protein Eng. Des. Sel.19893151110.1093/protein/3.1.5 2682611
    [Google Scholar]
  77. PandeyJ.D. DubeyG.P. DeyR. DubeyS.N. Temperature and pressure dependence of thermo-acoustical parameters of liquid argon and xenon.Acta Acust. United Acust.19978319092
    [Google Scholar]
  78. PalA. KumarH. KumarB. GabaR. Density and speed of sound for binary mixtures of 1,4-dioxane with propanol and butanol isomers at different temperatures.J. Mol. Liq.201318727828610.1016/j.molliq.2013.08.009
    [Google Scholar]
  79. PandeyJ.D. DeyR. Datt BhattB. Estimation of molecular radius of liquids and liquid mixtures from sound velocity.J. Mol. Liq.20041111-3677110.1016/S0167‑7322(03)00262‑9
    [Google Scholar]
  80. PandaS. MahapatraA.P. Acoustic and ultrasonic studies of dextran in 2 (M) glycine-variation with frequencies and concentrations.Int. J. Pure. Appl.Phys.20161217179
    [Google Scholar]
  81. ThirumaranS. GeorgeD. Ultrasonic study of intermolecular association through hydrogen bonding in ternary liquid mixtures.J. Eng. Appl. Sci.200944111
    [Google Scholar]
  82. MEHRAR. ISRANIR. Application of various theories on ternary system of heptadecane, butanol and dimethyl sulfoxide at 298.15, 308.15 and 318.15 K.J. Indian Chem. Soc.2002792145147
    [Google Scholar]
  83. FloryP.J. Statistical thermodynamics of liquid mixtures.J. Am. Chem. Soc.19658791833183810.1021/ja01087a002
    [Google Scholar]
  84. LetcherT.M. BaxterR.C. Application of the prigogine-flory-patterson theory part I. Mixtures ofn-alkanes with bicyclic compounds, benzene, cyclohexane andn-hexane.J. Solution Chem.1989181658010.1007/BF00646083
    [Google Scholar]
  85. SinglaM. JindalR. KumarH. Volumetric, acoustic, and UV absorption studies on solute–solvent interactions of dipeptides of glycine with aqueous amoxicillin solutions.Thermochim. Acta201459114015110.1016/j.tca.2014.07.025
    [Google Scholar]
  86. BendiabH. Roux-DesgrangesG. RouxA.H. GrolierJ.P.E. PattersonD. Excess heat capacities of ternary systems containing chlorobenzene or chloronaphthalene.J. Solution Chem.199423230732310.1007/BF00973552
    [Google Scholar]
  87. PraharajM.K. ultrasonic and conductometric studies of nacl solutions through ultrasonic parameters.Int. J.Rec. Innov. Eng. Res.2018321216
    [Google Scholar]
  88. PandaS. MahapatraA.P. Ultrasonic investigation of aqueous dextran at different temperatures and frequencies.World J. Pharmac.Lif. Sci.20184127682
    [Google Scholar]
  89. PraharajM.K. SatapathyA. AhmedI. Ultrasonic and conductometric studies of aqueous potassium chloride solutions at different temperatures.Int. J. Curr. Res. Acad. Rev.2017561510.20546/ijcrar.2017.506.001
    [Google Scholar]
  90. PandeyJ.D. DeyR. VermaR. Thermodynamic properties of multicomponent liquid mixtures.Phys. Chem. Liquids200341214515310.1080/0031910021000044465
    [Google Scholar]
  91. RaoD.N. KrishnaiahA. NaiduP.R. Excess thermodynamic properties of liquid (ethylenediamine + an aromatic hydrocarbon).J. Chem. Thermodyn.198113767768210.1016/0021‑9614(81)90040‑9
    [Google Scholar]
  92. PandaS. Ultrasonic study of novel polymer dextran in aqueous media at 12 MHz.Curr. Microw. Chem.202310223724310.2174/2213335610666230810094605
    [Google Scholar]
  93. HassunS.K. Influence of the molecular structure of high-impact polystyrene in different solvents on ultrasonic absorption.Acoust. Lett.19881110195199
    [Google Scholar]
  94. KittelC. Ultrasonic propagation in liquids. II. Theoretical study of the free volume model of the liquid state.J. Chem. Phys.1946141061462410.1063/1.1724073
    [Google Scholar]
  95. EyringH. HirschfelderJ. The theory of the liquid state.J. Phys. Chem.193741224925710.1021/j150380a007
    [Google Scholar]
  96. KincaidJ.F. EyringH. The Liquid State.J. Phys. Chem.1939431374710.1021/j150388a004
    [Google Scholar]
  97. JacobsonB. GralénN. EhrensvärdG. Intermolecular free lengths in liquids in relation to compressibility, surface tension and viscosity.Acta Chem. Scand.195151214121610.3891/acta.chem.scand.05‑1214
    [Google Scholar]
  98. JacobsonB. Ultrasonic velocity in liquids and liquid mixtures.J. Chem. Phys.195220592792810.1063/1.1700615
    [Google Scholar]
  99. EyringH. The activated complex and the absolute rate of chemical reactions.Chem. Rev.1935171657710.1021/cr60056a006
    [Google Scholar]
  100. SuryanarayanaC.V. KuppusamyJ. Free volume and internal pressure of liquids from ultrasonic velocity.J. Acoust. Soc. India197647582
    [Google Scholar]
  101. KumarH. ChahalS. Studies of some thermodynamic properties of binary mixtures of acrylonitrile with aromatic ketones at T= 308.15 K.J. Solution Chem.201140216518110.1007/s10953‑010‑9645‑3
    [Google Scholar]
  102. PandaS. MahapatraA.P. Study of acoustic and thermodynamic properties of aqueous solution of dextran at different concentration and temperature through ultrasonic technique.Int. J. Sci. Res.201522503508
    [Google Scholar]
  103. RichardsT.W. A brief history of the investigation of internal pressures.Chem. Rev.19252331534810.1021/cr60007a002
    [Google Scholar]
  104. VanderwaalsJ. D. Essay on the continuity of the gaseous and liquid states.statist.mechan.187314121125
    [Google Scholar]
  105. HillT.L. Free-volume models for liquids.J. Phys. Colloid Chem.19475161219123210.1021/j150456a001 20269033
    [Google Scholar]
  106. PandaS. MahapatraA.P. Molecular interaction studies of aqueous Dextran solution through ultrasonic measurement at 313 K with different concentration and frequency.Arch. Phys. Res.201561612
    [Google Scholar]
  107. HassunS.K. Al-MadfaiS.H.F. Al-JarrahM.M.F. Ultrasonic study of molecular association of poly(vinyl chloride) solution in tetrahydrofuran.Br. Polym. J.198517433033310.1002/pi.4980170402
    [Google Scholar]
  108. RaoM.R. Velocity of sound in liquids and chemical constitution.J. Chem. Phys.19419968268510.1063/1.1750976
    [Google Scholar]
  109. WadaY. On the relation between compressibility and molal volume of organic liquids.J. Phys. Soc. Jpn.194944-628028310.1143/JPSJ.4.280
    [Google Scholar]
  110. PraharajM. SatapathyA. MishraP. MishraS. Ultrasonic studies of ternary liquid mixtures of N-N-dimethylformamide, nitrobenzene, and cyclohexane at different frequencies at 318 K. J.Theoret. Appl.Phys.2013712310.1186/2251‑7235‑7‑23
    [Google Scholar]
  111. ST. NK. Thermo-acoustical and excess thermodynamic studies of ternary liquid mixtures of substituted benzenes in aqueous mixed solvent systems at 303.15, 308.15 and 313.15 K.Int. J. Chemtech Res.201133839810.9735/0975‑3699.3.3.83‑98
    [Google Scholar]
  112. J Edward JeyakumarJ.E.J. S Chidambara VinayagamS.C.V. J Senthil Murugan and P S Syed IbrahimJ.S.M.P.S.S.I. IbrahimP.S. An ultrasonic study on acoustical and excess properties of ternary liquid mixtures of 2-bromoanisole + 1-butanol + n-hexane at different temperatures 303K, 308K and 313K and a frequency 2MHz.J. Chem. Soc. Pak.202042679879810.52568/000695/JCSP/42.06.2020
    [Google Scholar]
  113. VasantharaniP. BaluL. Ezhil PavaiR. ShailajhaS. Molecular interaction studies on aniline containing organic liquid mixtures using ultrasonic technique.Global J. Mol. Sci2009414248
    [Google Scholar]
  114. TsierkezosN.G. FilippouA.C. Thermodynamic investigation of N,N-dimethylformamide/toluene binary mixtures in the temperature range from 278.15 to 293.15K.J. Chem. Thermodyn.200638895296110.1016/j.jct.2005.10.008
    [Google Scholar]
  115. TiwariV. PandeR. Volumetric studies and thermodynamics of viscous flow of hydroxamic acids in acetone +water solvent at temperatures 303.15 and 313.15K.Thermochim. Acta2006443220621110.1016/j.tca.2006.01.019
    [Google Scholar]
  116. RamasamiP. KakkarR. Partial molar volumes and adiabatic compressibilities at infinite dilution of aminocarboxylic acids and glycylglycine in water and aqueous solutions of sodium sulphate at (288.15, 298.15 and 308.15)K.J. Chem. Thermodyn.200638111385139510.1016/j.jct.2006.01.014
    [Google Scholar]
  117. AliK.F. HummadiH.H. A study of some physical properties for b12 in aqueous solution at four temperatures. Al-Nahr.J. Sci.20071011317
    [Google Scholar]
  118. KantS. SharmaK. Apparent molar volume, viscometric and conductance studies of sodium chloride in different composition of lactose.Chem. Sci. Trans.20132911921
    [Google Scholar]
  119. SarkarA. SinhaB. Solution thermodynamics of aqueous nicotinic acid solutions in presence of tetrabutylammonium hydrogen sulphate.J. Serb. Chem. Soc.20137881225124010.2298/JSC111212027S
    [Google Scholar]
  120. PraharajM.K. MisraS. Ultrasonic and conductometric studies of NaCl solutions and study of ionicity of the liquid solution through the Walden plot and various ultrasonic parameters.J. Therm. Anal. Calorim.201813221089109410.1007/s10973‑018‑7038‑9
    [Google Scholar]
  121. Catherine PriscillaM. Study on thermodynamical parameters of ternary liquid mixtures (n-n dimethylformamide + methyl benzoate + toluene) at 303k, 313k and 323k.Int. Res. J. Eng. Technol.201749117
    [Google Scholar]
  122. ZhiQ. Influence of horn misalignment on weld quality in ultrasonic welding of carbon fiber/polyamide 66 composite; experiments showed horn misalignment of more than 4 cleg resulted in a significant decrease in weld area, weld strength, and cosmetic quality.Weld. J.2018974133S143S
    [Google Scholar]
  123. ZhiQ. TanX. LiuW. LiuY. OuB. ZhaoH. LiuZ. WangP. The effect of a hollow fixture on energy dissipation of ultrasonic welded carbon fiber/polyamide 66 composite.Weld. J.20211001137137810.29391/2021.100.033
    [Google Scholar]
  124. KhmelevV.N. SlivinA.N. AbramovA.D. Model of process and calculation of energy for a heat generation of a welded joint at ultrasonic welding polymeric thermoplastic materials.2007 8th Siberian Russian Workshop and Tutorial on Electron Devices and Materials,200731632210.1109/SIBEDM.2007.4292995
    [Google Scholar]
  125. ZhiQ. LuL. LiuZ.X. WangP.C. Influence of horn misalignment on weld quality in ultrasonic welding of carbon fiber/polyamide 66 composite.Weld. J.201897513314310.29391/2018.97.012
    [Google Scholar]
  126. KiełczyńskiP. SzalewskiM. BalcerzakA. WiejaK. RostockiA.J. SiegoczyńskiR.M. Ultrasonic evaluation of thermodynamic pa-rameters of liquids under high pressure.IEEE Trans. Ultrason. Ferroelectr. Freq. Control20156261122113110.1109/TUFFC.2015.007053 26067047
    [Google Scholar]
  127. DeyR. SainiA. SharmaA.K. PandeyJ.D. Estimation of some important thermodynamic and thermophysical properties of ternary liquid mixtures from ultrasonic velocity and density data.J. Mol. Liq.201419515015610.1016/j.molliq.2014.02.023
    [Google Scholar]
  128. PandaR. PandaS. BiswalS.K. A review of ultrasonic wave propagation through liquid solutions.Curr. Microw. Chem.202411121510.2174/0122133356288437240131061541
    [Google Scholar]
  129. SahuS. NathG. Study on molecular interactions in binary mixture at variable frequencies using ultrasonic technique.Res. J. Chem. Sci.20122116466
    [Google Scholar]
  130. BhandakkarV.D. Study of molecular interactions in liquidmixture using ultrasonic technique.IOSR J. Appl Phys.201215384310.9790/4861‑0153843
    [Google Scholar]
/content/journals/cac/10.2174/0115734110306958240620073537
Loading
/content/journals/cac/10.2174/0115734110306958240620073537
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test