Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Currently, aluminum (Al) cookware is frequently utilized as a container for food preparation all over the world. The migration of elements from Al cookware can pose a serious potential health hazard. However, there is a lack of information about the leaching of multi-elements from Al cookware and their behaviours. A new investigation for leaching of multi-elements from Al cookware during conventional cooking environments was depicted in the current study.

Methods

Ten different Al cookware made by different manufacturers were used for simulating cooking media. Inductively coupled plasma-mass spectrometry (ICP-MS) as a fast, simple and reliable technique was used to investigate the leaching of multi-elements (34 elements) from Al cookware. Limits of detection (LOD) and limits of quantification (LOQ) ranged between 0.001-0.030 and 0.004-0.100 µg/L, respectively.

Results

This study revealed that numerous elements, including Al, arsenic (As), chromium (Cr), copper (Cu), cobalt (Co), lead (Pb), iron (Fe), manganese (Mn), magnesium (Mg), nickel (Ni), zinc (Zn) and vanadium (V) were released from Al cookware during conventional cooking conditions. Repeatability, reproducibility and recovery values ranged between 0.94 – 4.59% RSD, 1.76-4.71% RSD, and 96- 109%, respectively. The leaching amounts and behaviours of elements were closely related to the solution pH and cooking time. At acidic conditions, the concentrations of Al, Pb and Mn surpass WHO limits. After a 15-minute cooking duration, Al concentrations ranged from 56.8 to 8048 µg/L, which subsequently increased to 1097 – 201423 µg/L after 60 min. Several behaviours of Al leaching, including an extreme release, a linear release and a low release, were observed among samples. This could be probably due to the formation of a passivation layer of AlO which prevents the oxidation of Al. Moreover, Pb and Mn were detected at 14.1–25.8 and 262.5 µg/L after 30 min, respectively. At neutral media, Al, Cu, As, V, Mg and Zn were quantified among all studied pots. Further interesting findings are to observe the behaviour leaching of Zn at concentrations of 55-120 µg/L, including a strong release within 30 min in some samples, while others showed a linear dissolution within 60 min of the cooking process.

Conclusion

The study provided for the first time a more detailed study of the processes involved in the release of multi-elements during cooking inside Al cookware compared to the other hitherto published studies, which is an important insight in the field of food safety and other areas. The cumulative release of multi-elements from Al cookware could emphasize the importance of assessing the quality of such cookware, urging a closer examination of its composition and possibly advocating for potential alterations in the future.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110307444240514111208
2024-05-21
2025-09-26
Loading full text...

Full text loading...

References

  1. ZhouL. RuiH. WangZ. WuF. FangJ. LiK. LiuX. Migration law of lead and cadmium from Chinese pots during the cooking process.Int. J. Food Prop.201720sup3S3301S331010.1080/10942912.2017.1404472
    [Google Scholar]
  2. AlabiO.A. UnuigbojeM.A. OlagokeD.O. AdeoluwaY.M. Toxicity associated with long term use of aluminum cookware in mice: A systemic, genetic and reproductive perspective.Mutat. Res. Genet. Toxicol. Environ. Mutagen.2021861-86250329610.1016/j.mrgentox.2020.503296 33551099
    [Google Scholar]
  3. AlabiO.A. AdeoluwaY.M. Production usage, and potential public health effects of aluminum cookware: A review.Annal. Sci. Technol.202051203010.2478/ast‑2020‑0003
    [Google Scholar]
  4. DunnA. Packaging Technology.2nd edCRC Press200656360610.1201/9781420015171.ch15
    [Google Scholar]
  5. StahlT. FalkS. RohrbeckA. GeorgiiS. HerzogC. WiegandA. HotzS. BoschekB. ZornH. BrunnH. Migration of aluminum from food contact materials to food—a health risk for consumers? Part III of III: Migration of aluminum to food from camping dishes and utensils made of aluminum.Environ. Sci. Eur.20172911710.1186/s12302‑017‑0117‑x 28458987
    [Google Scholar]
  6. WeidenhamerJ.D. KobunskiP.A. KuepouoG. CorbinR.W. GottesfeldP. Lead exposure from aluminum cookware in Cameroon.Sci. Total Environ.201449633934710.1016/j.scitotenv.2014.07.016 25087065
    [Google Scholar]
  7. OdularuA.T. AjibadeP.A. OnianwaP.C. Comparative study of leaching of aluminium from aluminium, clay, stainless steel, and steel cooking pots.ISRN Public Health201320131410.1155/2013/517601
    [Google Scholar]
  8. Inan-ErogluE. GulecA. AyazA. Determination of aluminium leaching into various baked meats with different types of foils by ICP‐MS.J. Food Process. Preserv.20184212e1377110.1111/jfpp.13771
    [Google Scholar]
  9. SaenboonruangA.R.K. SaenboonruangK. Quantification of aluminum and heavy metal contents in cooked rice samples from Thailand markets using inductively coupled plasma mass spectrometry (ICP-MS) and potential health risk assessment.Emir. J. Food Agric.20183037238010.9755/ejfa.2018.v30.i5.1680
    [Google Scholar]
  10. SaxenaS. SainiS. SamtiyaM. AggarwalS. DhewaT. SehgalS. Assessment of Indian cooking practices and cookwares on nutritional security: A review.J. Appl. Nat. Sci.202113135737210.31018/jans.v13i1.2535
    [Google Scholar]
  11. MatheeA. StreetR. Recycled aluminium cooking pots: A growing public health concern in poorly resourced countries.BMC Public Health2020201141110.1186/s12889‑020‑09485‑9 32938416
    [Google Scholar]
  12. LomolinoG. CrapisiA. CagninM. Study of elements concentrations of European seabass (Dicentrarchus labrax) fillets after cooking on steel, cast iron, teflon, aluminum and ceramic pots.Int. J. Gastron. Food Sci.20165-61910.1016/j.ijgfs.2016.06.001
    [Google Scholar]
  13. Abedi SarvestaniR. AghasiM. Health risk assessment of heavy metals exposure (lead, cadmium, and copper) through drinking water consumption in Kerman city, Iran.Environ. Earth Sci.2019782471410.1007/s12665‑019‑8723‑0
    [Google Scholar]
  14. AhmadW. AlharthyR.D. ZubairM. AhmedM. HameedA. RafiqueS. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk.Sci. Rep.20211111700610.1038/s41598‑021‑94616‑4 34417479
    [Google Scholar]
  15. KelesO. DundarM. Aluminum foil: Its typical quality problems and their causes.J. Mater. Process. Technol.20071861-312513710.1016/j.jmatprotec.2006.12.027
    [Google Scholar]
  16. MbabaziJ. DrotiJ. SsekaaloH. TiwangyeJ. Variations in leaching of aluminium into human food from different types of African cookware.Int. J. Environ. Stud.201168687388110.1080/00207233.2011.587639
    [Google Scholar]
  17. DuruC.E. DuruI.A. Mobility of aluminum and mineral elements between aluminum foil and bean cake (Moimoi) mediated by pH and salinity during cooking.SN Appl. Sci.20202334810.1007/s42452‑020‑2170‑0
    [Google Scholar]
  18. AkhdharA. El-HadyD.A. AlmutairiM. AlnabatiK.K. AlowaifeerA. AlhayyaniS. AlbishriH.M. Al-BogamiA.S. Rapid release of heavy metals and anions from polyethylene laminated paper cups into hot water.Environ. Chem. Lett.2022201354010.1007/s10311‑021‑01315‑7
    [Google Scholar]
  19. DingR. CheongY.H. AhamedA. LisakG. Heavy metals detection with paper-based electrochemical sensors.Anal. Chem.20219341880188810.1021/acs.analchem.0c04247 33430590
    [Google Scholar]
  20. Venkateswara RajuC. Hwan ChoC. Mohana RaniG. ManjuV. UmapathiR. Suk HuhY. Pil ParkJ. Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions.Coord. Chem. Rev.202347621492010.1016/j.ccr.2022.214920
    [Google Scholar]
  21. SinghR. KumarN. MehraR. KumarH. SinghV.P. Progress and challenges in the detection of residual pesticides using nanotechnology based colorimetric techniques. Trend.Environ. Analyt. Chem.202026e0008610.1016/j.teac.2020.e00086
    [Google Scholar]
  22. SinghS. WangJ. CintiS. Review: An overview on recent progress in screenprinted electroanalytical (bio)sensors.ECS Sensors Plus20221202340110.1149/2754‑2726/ac70e2
    [Google Scholar]
  23. LuY. LiangX. NiyungekoC. ZhouJ. XuJ. TianG. A review of the identification and detection of heavy metal ions in the environment by voltammetry.Talanta201817832433810.1016/j.talanta.2017.08.033 29136830
    [Google Scholar]
  24. García-Miranda FerrariA. CarringtonP. Rowley-NealeS.J. BanksC.E. Recent advances in portable heavy metal electrochemical sensing platforms.Environ. Sci. Water Res. Technol.20206102676269010.1039/D0EW00407C
    [Google Scholar]
  25. RanjithK.S. Ezhil VilianA.T. GhoreishianS.M. UmapathiR. HwangS.K. OhC.W. HuhY.S. HanY.K. Hybridized 1D–2D MnMoO4–MXene nanocomposites as high-performing electrochemical sensing platform for the sensitive detection of dihydroxybenzene isomers in wastewater samples.J. Hazard. Mater.202242112677510.1016/j.jhazmat.2021.126775 34358971
    [Google Scholar]
  26. AppenrothK. Definition of “heavy metals” and their role in biological systems.Soil Heavy Metals. Soil BiologySpringer: Berlin, Heidelberg201019192910.1007/978‑3‑642‑02436‑8_2
    [Google Scholar]
  27. BradlH. KimC. KramarU. Interactions of heavy metals.Interf. Sci. Technol.200562816410.1016/S1573‑4285(05)80021‑3
    [Google Scholar]
  28. FurnessR. RainbowP. Eds.; Heavy Metals in the Marine Environment.CRC Press20181410.1201/9781351073158
    [Google Scholar]
  29. PeterH. VieiraM. Case studies in food safety and environmental health.Public Health, Food Science.New York, NYSpringer2007XVI-9410.1007/978‑0‑387‑45679‑9
    [Google Scholar]
  30. AriñoC. SerranoN. Díaz-CruzJ.M. EstebanM. Voltammetric determination of metal ions beyond mercury electrodes. A review.Anal. Chim. Acta2017990115310.1016/j.aca.2017.07.069 29029733
    [Google Scholar]
  31. NsabimanaA. KitteS.A. FerejaT.H. HalawaM.I. ZhangW. XuG. Recent developments in stripping analysis of trace metals.Curr. Opin. Electrochem.201917657110.1016/j.coelec.2019.04.012
    [Google Scholar]
  32. UmapathiR. Venkateswara RajuC. Majid GhoreishianS. Mohana RaniG. KumarK. OhM.H. Pil ParkJ. Suk HuhY. Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants.Coord. Chem. Rev.202247021470810.1016/j.ccr.2022.214708
    [Google Scholar]
  33. UmapathiR. GhoreishianS.M. SonwalS. RaniG.M. HuhY.S. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables.Coord. Chem. Rev.202245321430510.1016/j.ccr.2021.214305
    [Google Scholar]
  34. SonwalR. LeeM. Mohana RaniG. LeeE. JeonT. KangS. OhM. HuhY. Colorimetric based on-site sensing strategies for the rapid detection of pesticides in agricultural foods: New horizons, perspectives, and challenges.Coord. Chem. Rev.2021446214061
    [Google Scholar]
  35. UmapathiR. ParkB. SonwalS. RaniG.M. ChoY. HuhY.S. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods.Trends Food Sci. Technol.2022119698910.1016/j.tifs.2021.11.018
    [Google Scholar]
  36. VinothS. Shalini DeviK.S. PandikumarA. A comprehensive review on graphitic carbon nitride based electrochemical and biosensors for environmental and healthcare applications.Trends Analyt. Chem.202114011627410.1016/j.trac.2021.116274
    [Google Scholar]
  37. DingQ. LiC. WangH. XuC. KuangH. Electrochemical detection of heavy metal ions in water.Chem. Commun.202157597215723110.1039/D1CC00983D 34223844
    [Google Scholar]
  38. UmapathiR. RaniG.M. KimE. ParkS.Y. ChoY. HuhY.S. Sowing kernels for food safety: Importance of rapid on‐site detction of pesticide residues in agricultural foods.Food Front.20223466667610.1002/fft2.166
    [Google Scholar]
  39. MotshakeriM. SharmaM. PhillipsA.R.J. KilmartinP.A. Electrochemical methods for the analysis of milk.J. Agric. Food Chem.20227082427244910.1021/acs.jafc.1c06350 35188762
    [Google Scholar]
  40. AhmadR. TripathyN. KhoslaA. KhanM. MishraP. AnsariW.A. SyedM.A. HahnY.B. Review—Recent advances in nanostructured graphitic carbon nitride as a sensing material for heavy metal ions.J. Electrochem. Soc.2020167303751910.1149/2.0192003JES
    [Google Scholar]
  41. RanjithK. VilianA. GhoreishianS. UmapathiR. HuhY. HanY. An ultrasensitive electrochemical sensing platform for rapid detection of rutin with a hybridized 2D–1D MXene-FeWO4 nanocomposite.Sens. Actuators2021344130202
    [Google Scholar]
  42. LiG. QiX. WuJ. XuL. WanX. LiuY. ChenY. LiQ. Ultrasensitive, label-free voltammetric determination of norfloxacin based on molecularly imprinted polymers and Au nanoparticle-functionalized black phosphorus nanosheet nanocomposite.J. Hazard. Mater.202243612910710.1016/j.jhazmat.2022.129107 35569369
    [Google Scholar]
  43. MitraS. ChakrabortyA.J. TareqA.M. EmranT.B. NainuF. KhusroA. IdrisA.M. KhandakerM.U. OsmanH. AlhumaydhiF.A. Simal-GandaraJ. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity.J. King Saud Univ. Sci.202234310186510.1016/j.jksus.2022.101865
    [Google Scholar]
  44. ZubaidyE.A.H.A. MohammadF.S. BassioniG. Effect of pH, salinity and temperature on Aluminium cookware leaching during food preparation.Int. J. Electrochem. Sci.20116126424644110.1016/S1452‑3981(23)19691‑X
    [Google Scholar]
  45. KarboujR. DeslogesI. NortierP. A simple pre-treatment of aluminium cookware to minimize aluminium transfer to food.Food Chem. Toxicol.200947357157710.1016/j.fct.2008.12.028 19152826
    [Google Scholar]
  46. TennakoneK. PereraW.A.C. JayasuriyaA.C. Aluminium contamination via assisted leaching from metallic aluminium utensils at neutral pH.Environ. Monit. Assess.1992211798110.1007/BF00400058 24234345
    [Google Scholar]
  47. Al JuhaimanL.A. Estimating aluminum leaching from aluminum cookware in different vegetable extracts.Int. J. Electrochem. Sci.2012787283729410.1016/S1452‑3981(23)15784‑1
    [Google Scholar]
  48. Al JuhaimanL.A. Estimating Aluminum leaching from Aluminum cook wares in different meat extracts and milk.J. Saudi Chem. Soc.201014113113710.1016/j.jscs.2009.12.020
    [Google Scholar]
  49. DalipiR. BorgeseL. CasaroliA. BoniardiM. FittschenU. TsujiK. DeperoL.E. Study of metal release from stainless steels in simulated food contact by means of total reflection X-ray fluorescence.J. Food Eng.2016173859110.1016/j.jfoodeng.2015.10.045
    [Google Scholar]
  50. MohammadF.S. Al ZubaidyE.A.H. BassioniG. Effect of aluminum leaching process of cooking wares on food.Int. J. Electrochem. Sci.20116122223010.1016/S1452‑3981(23)14988‑1
    [Google Scholar]
  51. RazekaT. KishkY. KhalilN. ShehtaaA. Migration of iron and aluminum from different cookwares to fababean after cooking cycles and storage refrigerated.J. Environ. Sci.201842455810.21608/jes.2018.21592
    [Google Scholar]
  52. JabeenS. AliB. KhanM. KhanM. HasanS. Aluminum intoxication through leaching in food preparation.Alex. Sci. Exch201637618626
    [Google Scholar]
  53. OdularuA.T. AjibadeP.A. OnianwaP.C. Comparative study of leaching of aluminum from aluminum, clay, stainless steel, and steel cooking pots.ISRN Public Health201320131410.1155/2013/517601
    [Google Scholar]
  54. AlamriM.S. QasemA.A.A. MohamedA.A. HussainS. IbraheemM.A. ShamlanG. AlqahH.A. QashaA.S. Food packaging’s materials: A food safety perspective.Saudi J. Biol. Sci.20212884490449910.1016/j.sjbs.2021.04.047 34354435
    [Google Scholar]
  55. FermoP. SodduG. MianiA. ComiteV. Quantification of the aluminum content leached into foods baked using aluminum foil.Int. J. Environ. Res. Public Health20201722835710.3390/ijerph17228357 33198078
    [Google Scholar]
  56. YumotoS. KakimiS. OhsakiA. IshikawaA. Demonstration of aluminum in amyloid fibers in the cores of senile plaques in the brains of patients with Alzheimer’s disease.J. Inorg. Biochem.2009103111579158410.1016/j.jinorgbio.2009.07.023 19744735
    [Google Scholar]
  57. VeríssimoM.I.S. OliveiraJ.A.B.P. GomesM.T.S.R. Leaching of aluminium from cooking pans and food containers.Sens. Actuators B Chem.20061181-219219710.1016/j.snb.2006.04.061
    [Google Scholar]
  58. NagyE. JobstK. Aluminium dissolved from kitchen utensils.Bull. Environ. Contam. Toxicol.199452339639910.1007/BF00197827 8142710
    [Google Scholar]
  59. HajiseyedjavadiH. BlackhurstM. A machine learning approach to identify houses with high lead tap water concentrations.Proc. AAAI Conf. Artif. Intell.20203408133001330510.1609/aaai.v34i08.7040
    [Google Scholar]
  60. RajwanshiP. SinghV. GuptaM.K. KumariV. ShrivastavR. RamanamurthyM. DassS. Studies on aluminium leaching from cookware in tea and coffee and estimation of aluminium content in toothpaste, baking powder and paan masala.Sci. Total Environ.1997193324324910.1016/S0048‑9697(96)05347‑8 9092078
    [Google Scholar]
  61. CamposN.S. AlvarengaF.B.M. SabarenseC.M. OliveiraM.A.L. TimmJ.G. VieiraM.A. SousaR.A. Evaluation of the influence of different cooking pot types on the metallic elements content in edible chicken tissues by MIP OES.Braz. J. Food. Technol.202023e201930810.1590/1981‑6723.30819
    [Google Scholar]
  62. BrodyD.J. PirkleJ.L. KramerR.A. FlegalK.M. MatteT.D. GunterE.W. PaschalD.C. Blood lead levels in the US population.JAMA1994272427728310.1001/jama.1994.03520040039038 8028140
    [Google Scholar]
  63. TchounwouP.B. AbdelghaniA.A. PramarY.V. HeyerL.R. StewardC.M. Assessment of potential health risks associated with ingesting heavy metals in fish collected from a hazardous-waste contaminated wetland in Louisiana, USA.Rev. Environ. Health199611419120310.1515/REVEH.1996.11.4.191 9085435
    [Google Scholar]
  64. AbernathyC.O. LiuY.P. LongfellowD. AposhianH.V. BeckB. FowlerB. GoyerR. MenzerR. RossmanT. ThompsonC. WaalkesM. Arsenic: Health effects, mechanisms of actions, and research issues.Environ. Health Perspect.1999107759359710.1289/ehp.99107593 10379007
    [Google Scholar]
  65. KitchinK.T. Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites.Toxicol. Appl. Pharmacol.2001172324926110.1006/taap.2001.9157 11312654
    [Google Scholar]
  66. ShardA.G. Detection limits in XPS for more than 6000 binary systems using Al and Mg Kα X‐rays.Surf. Interface Anal.201446317518510.1002/sia.5406
    [Google Scholar]
  67. Al-HakkaniM.F. Guideline of inductively coupled plasma mass spectrometry “ICP–MS”: fundamentals, practices, determination of the limits, quality control, and method validation parameters.SN Appl. Sci.20191779110.1007/s42452‑019‑0825‑5
    [Google Scholar]
  68. GuidettiR. SimonettiP. Materials for cooking.A Guide to Professional Cookware.4th edLallio, ItalyS.A.P.S.20201629Available from: www.agnelliusa.com
    [Google Scholar]
  69. van GinkelM.F. van der VoetG.B. D’HaeseP.C. De BroeM.E. de WolffF.A. Effect of citric acid and maltol on the accumulation of aluminum in rat brain and bone.J. Lab. Clin. Med.1993121345346010.5555/uri:pii:0022214393902813 8445293
    [Google Scholar]
  70. WeidenhamerJ.D. FitzpatrickM.P. BiroA.M. KobunskiP.A. HudsonM.R. CorbinR.W. GottesfeldP. Metal exposures from aluminum cookware: An unrecognized public health risk in developing countries.Sci. Total Environ.201757980581310.1016/j.scitotenv.2016.11.023 27866735
    [Google Scholar]
  71. ISO, 17294-2:2003(en) (2003) Water quality : Application of inductively coupled plasma mass spectrometry (ICP-MS) : Part 2: Determination of 62 elements.Available from: https://www.iso.org/standard/36127.html
  72. AdamaO. Urban livelihoods and social networks: Emerging relations in informal recycling in kaduna, Nigeria.Urban Forum20122344946610.1007/s12132‑012‑9159‑8
    [Google Scholar]
  73. WHOGuidelines for Drinking-water Quality.2017Available from: https://www.who.int/publications/i/item/9789241549950
    [Google Scholar]
  74. WaniA.L. AraA. UsmaniJ.A. Lead toxicity: A review.Interdiscip. Toxicol.201582556410.1515/intox‑2015‑0009 27486361
    [Google Scholar]
/content/journals/cac/10.2174/0115734110307444240514111208
Loading
/content/journals/cac/10.2174/0115734110307444240514111208
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Aluminium cookware; cooking; food safety; ICP-MS; migration; multi-elements; pots quality
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test