Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder affecting reproductive-aged women worldwide, characterized by heterogeneous clinical manifestations and diagnostic challenges. The integration of nanotechnology with diagnostic medicine has paved the way for innovative approaches aimed at improving the early detection and monitoring of PCOS. This review provides a comprehensive overview of nanotechnology-based diagnostic strategies for PCOS, highlighting their principles, advantages, challenges, and clinical applications. Nanoparticle-based biomarkers, nanostructured sensors, molecular imaging techniques, and lab-on-chip devices are among the key nanodiagnostic approaches discussed. The review also addresses the potential implications of nanotechnology in personalized medicine and the translation of these innovative diagnostic tools into clinical practice. Through a critical examination of recent advancements and future prospects, this review underscores the transformative potential of nanotechnology in revolutionizing the diagnosis and management of PCOS.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110311450240612051821
2024-01-18
2025-11-04
Loading full text...

Full text loading...

References

  1. AzzizR. CarminaE. ChenZ. DunaifA. LavenJ.S.E. LegroR.S. LiznevaD. Natterson-HorowtizB. TeedeH.J. YildizB.O. Polycystic ovary syndrome.Nat. Rev. Dis. Primers2016211605710.1038/nrdp.2016.57 27510637
    [Google Scholar]
  2. WangR. GuZ. WangY. YinX. LiuW. ChenW. HuangY. WuJ. YangS. FengL. ZhouL. LiL. DiW. PuX. HuangL. QianK.A. “one‐stop shop” decision tree for diagnosing and phenotyping polycystic ovarian syndrome on serum metabolic fingerprints.Adv. Funct. Mater.20223245220667010.1002/adfm.202206670
    [Google Scholar]
  3. SunZ. AnY. LiH. ZhuH. LuM. Electrochemical investigation of testosterone using a AuNPs modified electrode.Int. J. Electrochem. Sci.20171212112241123410.20964/2017.12.36
    [Google Scholar]
  4. GoodarziM.O. DumesicD.A. ChazenbalkG. AzzizR. Polycystic ovary syndrome: Etiology, pathogenesis and diagnosis.Nat. Rev. Endocrinol.20117421923110.1038/nrendo.2010.217 21263450
    [Google Scholar]
  5. SirmansS. PateK. Epidemiology, diagnosis, and management of polycystic ovary syndrome.Clin. Epidemiol.2013611310.2147/CLEP.S37559 24379699
    [Google Scholar]
  6. DewaillyD. LujanM.E. CarminaE. CedarsM.I. LavenJ. NormanR.J. Escobar-MorrealeH.F. Definition and significance of polycystic ovarian morphology: A task force report from the androgen excess and polycystic ovary syndrome society.Hum. Reprod. Update201420333435210.1093/humupd/dmt061 24345633
    [Google Scholar]
  7. LauritsenM.P. BentzenJ.G. PinborgA. LoftA. FormanJ.L. ThuesenL.L. CohenA. HougaardD.M. Nyboe AndersenA. The prevalence of polycystic ovary syndrome in a normal population according to the Rotterdam criteria versus revised criteria including anti-Mullerian hormone.Hum. Reprod.201429479180110.1093/humrep/det469 24435776
    [Google Scholar]
  8. MarchW.A. MooreV.M. WillsonK.J. PhillipsD.I.W. NormanR.J. DaviesM.J. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria.Hum. Reprod.201025254455110.1093/humrep/dep399 19910321
    [Google Scholar]
  9. KnochenhauerE.S. KeyT.J. Kahsar-MillerM. WaggonerW. BootsL.R. AzzizR. Prevalence of the polycystic ovary syndrome in unselected black and white women of the southeastern United States: A prospective study.J. Clin. Endocrinol. Metab.19988393078308210.1210/jc.83.9.3078 9745406
    [Google Scholar]
  10. HolteJ. GennarelliG. WideL. LithellH. BerneC. High prevalence of polycystic ovaries and associated clinical, endocrine, and metabolic features in women with previous gestational diabetes mellitus.J. Clin. Endocrinol. Metab.19988341143115010.1210/jcem.83.4.4707 9543131
    [Google Scholar]
  11. WolfW. WattickR. KinkadeO. OlfertM. Geographical prevalence of polycystic ovary syndrome as determined by region and race/ethnicity.Int. J. Environ. Res. Public Health20181511258910.3390/ijerph15112589 30463276
    [Google Scholar]
  12. Escobar-MorrealeH.F. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment.Nat. Rev. Endocrinol.201814527028410.1038/nrendo.2018.24 29569621
    [Google Scholar]
  13. Di LorenzoG. RicciG. SeveriniG.M. RomanoF. BiffiS. Imaging and therapy of ovarian cancer: Clinical application of nanoparticles and future perspectives.Theranostics20188164279429410.7150/thno.26345 30214620
    [Google Scholar]
  14. DumesicD.A. OberfieldS.E. Stener-VictorinE. MarshallJ.C. LavenJ.S. LegroR.S. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome.Endocr. Rev.201536548752510.1210/er.2015‑1018 26426951
    [Google Scholar]
  15. AbuelezzN.Z. ShabanaM.E. Abdel-MageedH.M. RashedL. MorcosG.N.B. Nanocurcumin alleviates insulin resistance and pancreatic deficits in polycystic ovary syndrome rats: Insights on PI3K/AkT/mTOR and TNF-α modulations.Life Sci.202025611800310.1016/j.lfs.2020.118003 32589998
    [Google Scholar]
  16. RajaM.A. MaldonadoM. ChenJ. ZhongY. GuJ. Development and evaluation of curcumin encapsulated self-assembled nanoparticles as potential remedial treatment for PCOS in a female rat model.Int. J. Nanomedicine2021166231624710.2147/IJN.S302161 34531655
    [Google Scholar]
  17. ConwayG. DewaillyD. Diamanti-KandarakisE. Escobar-MorrealeH.F. FranksS. GambineriA. KeleştimurF. MacutD. MićićD. PasqualiR. PfeiferM. PignatelliD. PugeatM. YildizB.O. The polycystic ovary syndrome: A position statement from the European Society of Endocrinology.Eur. J. Endocrinol.201417141P2910.1530/EJE‑14‑0253 24849517
    [Google Scholar]
  18. LiznevaD. SuturinaL. WalkerW. BraktaS. Gavrilova-JordanL. AzzizR. Criteria, prevalence, and phenotypes of polycystic ovary syndrome.Fertil. Steril.2016106161510.1016/j.fertnstert.2016.05.003 27233760
    [Google Scholar]
  19. AnbuA.S. VenkatachalamP. Biological macromolecule cross linked TPP–chitosan complex: A novel nanohybrid for improved ovulatory activity against PCOS treatment in female rats.RSC Adv.2016697943019431310.1039/C6RA07228C
    [Google Scholar]
  20. FauserB.C.J.M. TarlatzisB.C. RebarR.W. LegroR.S. BalenA.H. LoboR. CarminaE. ChangJ. YildizB.O. LavenJ.S.E. BoivinJ. PetragliaF. WijeyeratneC.N. NormanR.J. DunaifA. FranksS. WildR.A. DumesicD. BarnhartK. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): The Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group.Fertil. Steril.20129712838.e2510.1016/j.fertnstert.2011.09.024 22153789
    [Google Scholar]
  21. DeswalR. NarwalV. DangA.S. PundirC.S. An ultrasensitive electrochemical immunosensor for detection of sex hormone binding globulin.Microchem. J.201914910401010.1016/j.microc.2019.104010
    [Google Scholar]
  22. WaltersK. AllanC. HandelsmanD. Rodent models for human polycystic ovary syndrome.Biol. Reprod.2012865149
    [Google Scholar]
  23. BarryJ.A. AziziaM.M. HardimanP.J. Risk of endometrial, ovarian and breast cancer in women with polycystic ovary syndrome: A systematic review and meta-analysis.Hum. Reprod. Update201420574875810.1093/humupd/dmu012 24688118
    [Google Scholar]
  24. HayesM.G. UrbanekM. EhrmannD.A. ArmstrongL.L. LeeJ.Y. SiskR. KaraderiT. BarberT.M. McCarthyM.I. FranksS. LindgrenC.M. WeltC.K. Diamanti-KandarakisE. PanidisD. GoodarziM.O. AzzizR. ZhangY. JamesR.G. OlivierM. KissebahA.H. AlveroR. BarnhartH.X. BakerV. BarnhartK.T. BatesG.W. BrzyskiR.G. CarrB.R. CarsonS.A. CassonP. CataldoN.A. ChristmanG. CoutifarisC. DiamondM.P. EisenbergE. GosmanG.G. GiudiceL.C. HaisenlederD.J. HuangH. KrawetzS.A. LucidiS. McGovernP.G. MyersE.R. NestlerJ.E. OhlD. SantoroN. SchlaffW.D. SnyderP. SteinkampfM.P. TrussellJ.C. UsadiR. YanQ. ZhangH. Stener-VictorinE. LegroR.S. DunaifA. Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations.Nat. Commun.201561750210.1038/ncomms8502 26284813
    [Google Scholar]
  25. AzzizR. Polycystic ovary syndrome.Obstet. Gynecol.2018132232133610.1097/AOG.0000000000002698 29995717
    [Google Scholar]
  26. WeisslederR. NahrendorfM. PittetM.J. Imaging macrophages with nanoparticles.Nat. Mater.201413212513810.1038/nmat3780 24452356
    [Google Scholar]
  27. YuM.K. ParkJ. JonS. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy.Theranostics20122134410.7150/thno.3463 22272217
    [Google Scholar]
  28. JinS. WanJ. MengL. HuangX. GuoJ. LiuL. WangC. Biodegradation and toxicity of protease/redox/ph stimuli-responsive PEGlated PMAA nanohydrogels for targeting drug delivery.ACS Appl. Mater. Interfaces2015735198431985210.1021/acsami.5b05984 26288386
    [Google Scholar]
  29. LegroR.S. ArslanianS.A. EhrmannD.A. HoegerK.M. MuradM.H. PasqualiR. WeltC.K. Diagnosis and treatment of polycystic ovary syndrome: An Endocrine Society clinical practice guideline.J. Clin. Endocrinol. Metab.201398124565459210.1210/jc.2013‑2350 24151290
    [Google Scholar]
  30. ZhangG.J. HuangM.J. LuoZ.H.H. TayG.K.I. LimE.J.A. LiuE.T. ThomsenJ.S. Highly sensitive and reversible silicon nanowire biosensor to study nuclear hormone receptor protein and response element DNA interactions.Biosens. Bioelectron.201026236537010.1016/j.bios.2010.07.129 20800469
    [Google Scholar]
  31. ZambreA. ChandaN. PrayagaS. AlmudhafarR. AfrasiabiZ. UpendranA. KannanR. Design and development of a field applicable gold nanosensor for the detection of luteinizing hormone.Anal. Chem.201284219478948410.1021/ac302314e 23004345
    [Google Scholar]
  32. KwakS.Y. WongM.H. LewT.T.S. BiskerG. LeeM.A. KaplanA. DongJ. LiuA.T. KomanV.B. SinclairR. HamannC. StranoM.S. Nanosensor technology applied to living plant systems.Annu. Rev. Anal. Chem.201710111314010.1146/annurev‑anchem‑061516‑045310 28605605
    [Google Scholar]
  33. KumarA. AravamudhanS. GordićM. BhansaliS. MohapatraS.S. Ultrasensitive detection of cortisol with enzyme fragment complementation technology using functionalized nanowire.Biosens. Bioelectron.2007229-102138214410.1016/j.bios.2006.09.035 17097283
    [Google Scholar]
  34. WangH. DongP. DiD. WangC. LiuY. ChenJ. WuX. Interdigitated microelectrodes biosensor with nanodot arrays for thyroid‐stimulating hormone detection.Micro & Nano Lett.201381111410.1049/mnl.2012.0776
    [Google Scholar]
  35. XiaW. LiY. WanY. ChenT. WeiJ. LinY. XuS. Electrochemical biosensor for estrogenic substance using lipid bilayers modified by Au nanoparticles.Biosens. Bioelectron.201025102253225810.1016/j.bios.2010.03.004 20353888
    [Google Scholar]
  36. SánchezS. RoldánM. PérezS. FàbregasE. Toward a fast, easy, and versatile immobilization of biomolecules into carbon nanotube/polysulfone-based biosensors for the detection of hCG hormone.Anal. Chem.200880176508651410.1021/ac7025282 18662016
    [Google Scholar]
  37. WangC. KimJ. ZhuY. YangJ. LeeG.H. LeeS. YuJ. PeiR. LiuG. NuckollsC. HoneJ. LinQ. An aptameric graphene nanosensor for label-free detection of small-molecule biomarkers.Biosens. Bioelectron.20157122222910.1016/j.bios.2015.04.025 25912678
    [Google Scholar]
  38. AuchinvoleC.A.R. RichardsonP. McGuinnesC. MallikarjunV. DonaldsonK. McNabH. CampbellC.J. Monitoring intracellular redox potential changes using SERS nanosensors.ACS Nano20126188889610.1021/nn204397q 22165857
    [Google Scholar]
  39. FehrM. OkumotoS. DeuschleK. LagerI. LoogerL.L. PerssonJ. KozhukhL. LalondeS. FrommerW.B. Development and use of fluorescent nanosensors for metabolite imaging in living cells.Biochem. Soc. Trans.200533128729010.1042/BST0330287 15667328
    [Google Scholar]
  40. NukolovaN.V. OberoiH.S. CohenS.M. KabanovA.V. BronichT.K. Folate-decorated nanogels for targeted therapy of ovarian cancer.Biomaterials201132235417542610.1016/j.biomaterials.2011.04.006 21536326
    [Google Scholar]
  41. BarretoJ.A. O’MalleyW. KubeilM. GrahamB. StephanH. SpicciaL. Nanomaterials: Applications in cancer imaging and therapy.Adv. Mater.20112312H18H4010.1002/adma.201100140 21433100
    [Google Scholar]
  42. FamS.Y. CheeC.F. YongC.Y. HoK.L. MariatulqabtiahA.R. TanW.S. Stealth coating of nanoparticles in drug-delivery systems.Nanomaterials202010478710.3390/nano10040787 32325941
    [Google Scholar]
  43. WangY. ZhangK. QinX. LiT. QiuJ. YinT. HuangJ. McGintyS. PontrelliG. RenJ. WangQ. WuW. WangG. Biomimetic nanotherapies: Red blood cell based core–shell structured nanocomplexes for atherosclerosis management.Adv. Sci.2019612190017210.1002/advs.201900172 31380165
    [Google Scholar]
  44. LukB.T. ZhangL. Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis.ACS Appl. Mater. Interfaces2014624218592187310.1021/am5036225 25014486
    [Google Scholar]
  45. LinP.C. LinS. WangP.C. SridharR. Techniques for physicochemical characterization of nanomaterials.Biotechnol. Adv.201432471172610.1016/j.biotechadv.2013.11.006 24252561
    [Google Scholar]
  46. RampadoR. CrottiS. CalicetiP. PucciarelliS. AgostiniM. Recent advances in understanding the protein corona of nanoparticles and in the formulation of “stealthy” nanomaterials.Front. Bioeng. Biotechnol.2020816610.3389/fbioe.2020.00166 32309278
    [Google Scholar]
  47. BaraniM. SabirF. RahdarA. ArshadR. KyzasG.Z. Nanotreatment and nanodiagnosis of prostate cancer: Recent updates.Nanomaterials2020109169610.3390/nano10091696 32872181
    [Google Scholar]
  48. WeiJ. ShuaiX. WangR. HeX. LiY. DingM. LiJ. TanH. FuQ. Clickable and imageable multiblock polymer micelles with magnetically guided and PEG-switched targeting and release property for precise tumor theranosis.Biomaterials201714513815310.1016/j.biomaterials.2017.08.005 28863308
    [Google Scholar]
  49. DinF. AmanW. UllahI. QureshiO.S. MustaphaO. ShafiqueS. ZebA. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors.Int. J. Nanomedicine2017127291730910.2147/IJN.S146315 29042776
    [Google Scholar]
  50. ZhangY. LiM. GaoX. ChenY. LiuT. Nanotechnology in cancer diagnosis: Progress, challenges and opportunities.J. Hematol. Oncol.201912113710.1186/s13045‑019‑0833‑3 31847897
    [Google Scholar]
  51. LinY.X. HuX.F. ZhaoY. GaoY.J. YangC. QiaoS.L. WangY. YangP.P. YanJ. SuiX.C. QiaoZ.Y. LiL.L. XieJ.B. ZhuS.Q. WuX.C. LiY. WangL. WangH. Photothermal ring integrated intraocular lens for high‐efficient eye disease treatment.Adv. Mater.20172934170161710.1002/adma.201701617 28714205
    [Google Scholar]
  52. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  53. VeisehO. TangB.C. WhiteheadK.A. AndersonD.G. LangerR. Managing diabetes with nanomedicine: Challenges and opportunities.Nat. Rev. Drug Discov.2015141455710.1038/nrd4477 25430866
    [Google Scholar]
  54. KooK.M. WangJ. RichardsR.S. FarrellA. YaxleyJ.W. SamaratungaH. TelokenP.E. RobertsM.J. CoughlinG.D. LavinM.F. MainwaringP.N. WangY. GardinerR.A. TrauM. Design and clinical verification of surface-enhanced raman spectroscopy diagnostic technology for individual cancer risk prediction.ACS Nano20181288362837110.1021/acsnano.8b03698 30028592
    [Google Scholar]
  55. AlharbiK.K. Al-sheikhY.A. Role and implications of nanodiagnostics in the changing trends of clinical diagnosis.Saudi J. Biol. Sci.201421210911710.1016/j.sjbs.2013.11.001 24600302
    [Google Scholar]
  56. ParkS. AalipourA. VermeshO. YuJ.H. GambhirS.S. Towards clinically translatable in vivo nanodiagnostics.Nat. Rev. Mater.2017251701410.1038/natrevmats.2017.14 29876137
    [Google Scholar]
  57. LiuC.H. TandonP. RussellL.M. Translational nanodiagnostics for in vivo cancer detection. Rai,P. MorrisS.A. Nanotheranostics for Cancer Applications. BioanalysisSpringer: Cham,2019213316210.1007/978‑3‑030‑01775‑0_7
    [Google Scholar]
  58. JainK.K. Nanodiagnostics: Application of nanotechnology in molecular diagnostics.Expert Rev. Mol. Diagn.20033215316110.1586/14737159.3.2.153 12647993
    [Google Scholar]
  59. ShoalaT. Nanodiagnostic techniques in plant pathology. Abd-ElsalamK. PrasadR. Nanobiotechnology Applications in Plant Protection. Nanotechnology in the Life Sciences.ChamSpringer201920922210.1007/978‑3‑030‑13296‑5_11
    [Google Scholar]
  60. RosiN.L. MirkinC.A. Nanostructures in Biodiagnostics.Chem. Rev.200510541547156210.1021/cr030067f 15826019
    [Google Scholar]
  61. GorjikhahF. DavaranS. SalehiR. BakhtiariM. HasanzadehA. PanahiY. EmamverdyM. AkbarzadehA. Improving “lab-on-a-chip” techniques using biomedical nanotechnology: A review.Artif. Cells Nanomed. Biotechnol.20164471609161410.3109/21691401.2015.1129619 26758969
    [Google Scholar]
  62. Abu-SalahK. ZourobM. MouffoukF. AlrokayanS. AlaameryM. AnsariA. DNA-based nanobiosensors as an emerging platform for detection of disease.Sensors2015156145391456810.3390/s150614539 26102488
    [Google Scholar]
  63. HowesP.D. RanaS. StevensM.M. Plasmonic nanomaterials for biodiagnostics.Chem. Soc. Rev.201443113835385310.1039/C3CS60346F 24323079
    [Google Scholar]
  64. GouM. WeiX. MenK. WangB. LuoF. ZhaoX. WeiY. QianZ. PCL/PEG copolymeric nanoparticles: Potential nanoplatforms for anticancer agent delivery.Curr. Drug Targets20111281131115010.2174/138945011795906642 21443476
    [Google Scholar]
  65. ElsabahyM. HeoG.S. LimS.M. SunG. WooleyK.L. Polymeric nanostructures for imaging and therapy.Chem. Rev.201511519109671101110.1021/acs.chemrev.5b00135 26463640
    [Google Scholar]
  66. TomlinsonB. LinT. Dall’EraM. PanC.X. Nanotechnology in bladder cancer: Current state of development and clinical practice.Nanomedicine20151071189120110.2217/nnm.14.212 25929573
    [Google Scholar]
  67. WangY. YuL. KongX. SunL. Application of nanodiagnostics in point-of-care tests for infectious diseases.Int. J. Nanomedicine2017124789480310.2147/IJN.S137338 28740385
    [Google Scholar]
  68. ZharovV.P. KimJ.W. CurielD.T. EvertsM. Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy.Nanomedicine20051432634510.1016/j.nano.2005.10.006 17292107
    [Google Scholar]
  69. ShindeS.B. FernandesC. PatravaleV. Recent trends in in-vitro nanodiagnostics for detection of pathogens.J. Control. Release2012159216418010.1016/j.jconrel.2011.11.033
    [Google Scholar]
  70. JacksonT.C. PataniB.O. EkpaD.E. Nanotechnology in diagnosis: A review.Adv. Nanopart.2017639310210.4236/anp.2017.63008
    [Google Scholar]
  71. WuY. WeilT. Recent developments of nanodiamond quantum sensors for biological applications.Adv. Sci.2022919220005910.1002/advs.202200059 35343101
    [Google Scholar]
  72. SyedM.A. Advances in nanodiagnostic techniques for microbial agents.Biosens. Bioelectron.20145139140010.1016/j.bios.2013.08.010 24012709
    [Google Scholar]
  73. RafiqZ. PatelP. KumarS. SofiH.S. MacossayJ. SheikhF.A. Advancements of nanotechnology in diagnostic applications. SheikhF. Application of Nanotechnology in Biomedical Sciences.SingaporeSpringer202011510.1007/978‑981‑15‑5622‑7_1
    [Google Scholar]
  74. JainK.K. Applications of nanobiotechnology in clinical diagnostics.Clin. Chem.200753112002200910.1373/clinchem.2007.090795 17890442
    [Google Scholar]
  75. MadduN. Nanoparticle mediated diagnosis of clinical biomarkers of different diseases: a medical application of nanotechnology.Nanoparticles in Analytical and Medical Devices202115517310.1016/B978‑0‑12‑821163‑2.00009‑1
    [Google Scholar]
  76. KhanF. Khan, FA Major nano-based products: nanomedicine, nanosensors, and nanodiagnostics.Applications of Nanomaterials in Human Health.SingaporeSpringer202020921810.1007/978‑981‑15‑4802‑4_11
    [Google Scholar]
  77. FalzaranoM.S. FlesiaC. CavalliR. GuiotC. FerliniA. Nanodiagnostics and nanodelivery applications in genetic alterations.Curr. Pharm. Des.201824151717172610.2174/1381612824666180110151318 29318963
    [Google Scholar]
  78. LengF. LiuF. YangY. WuY. TianW. Strategies on nanodiagnostics and nanotherapies of the three common cancers.Nanomaterials20188420210.3390/nano8040202 29597315
    [Google Scholar]
  79. ChhikaraB.S. KumarR. RathiB. KrishnamoorthyS. KumarA. Prospects of applied nanomedicine: potential clinical and (bio) medical interventions via nanoscale research advances. J. Mat.NanoSci.2016325056
    [Google Scholar]
  80. CondeJ. RosaJ. LimaJ.C. BaptistaP.V. Nanophotonics for molecular diagnostics and therapy applications.Int. J. Photoenergy20121e410.1155/2012/619530
    [Google Scholar]
  81. SrivastavaR. SharmaS. SrivastavaA. SumanP. ChandraP. Omics and its application in clinical nanotechnology and nanodiagnostics.ACS Nano2016597555756410.1201/9781315372303‑27
    [Google Scholar]
  82. JainK.K. Nanomedicine: Application of nanobiotechnology in medical practice.Med. Princ. Pract.20081728910110.1159/000112961 18287791
    [Google Scholar]
  83. AlemuA.G. AlemuA.T. Recent advances of nanomaterial sensor for point-of care diagnostics applications and research.Advanced Nanomaterials for Point of Care Diagnosis and Therapy.Elsevier202218120210.1016/B978‑0‑323‑85725‑3.00009‑X
    [Google Scholar]
/content/journals/cac/10.2174/0115734110311450240612051821
Loading
/content/journals/cac/10.2174/0115734110311450240612051821
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test