Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

The rapid detection of food-borne pathogens is increasing to ensure the safety of consumers, as the major food-borne illnesses are caused by pathogenic bacteria. Salmonellosis caused by is one of the primary concerns in many countries. is capable of generating toxins that can produce food poisoning in the human body.

Aims

The present study aimed to investigate the prevalence of and in seafood sample using multiplex polymerase chain reaction (mPCR). The thermostable nuclease (nuc) gene of and enterotoxin (stn) gene of were used as target genes for mPCR detection.

Methods and Material

In total, 10 seafood items, including fish, crabs, and prawns, which are generally available in Indian fish markets, were selected for the present study. Samples that carried both the strains and were selected for mPCR by targeting the stn and nuc genes.

Results

Among 10 seafood samples collected, 7 of them carried strain and 5 of them carried strains. The results showed that 75% of the salmonella strains carried stn gene, and 75% of the strains carried the nuc gene.

Conclusion

This study suggests that mPCR can be used for simultaneous detection by targeting the stn gene and nuc gene of salmonella and food-borne pathogens in seafood.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110306807240724064141
2024-07-29
2025-12-24
Loading full text...

Full text loading...

References

  1. TidwellJ.H. AllanG.L. Fish as food: aquaculture’s contribution.EMBO Rep.200121195896310.1093/embo‑reports/kve236 11713181
    [Google Scholar]
  2. VianaD.F. Zamborain-MasonJ. GainesS.D. SchmidhuberJ. GoldenC.D. Nutrient supply from marine small-scale fisheries.Sci. Rep.20231311135710.1038/s41598‑023‑37338‑z 37443165
    [Google Scholar]
  3. OehlenschlägerJ. Seafood: nutritional benefits and risk aspects.Int. J. Vitam. Nutr. Res.201282316817610.1024/0300‑9831/a000108 23258397
    [Google Scholar]
  4. BarrettK.A. NakaoJ.H. TaylorE.V. EggersC. GouldL.H. Fish-associated foodborne disease outbreaks: United States, 1998–2015.Foodborne Pathog. Dis.201714953754310.1089/fpd.2017.2286 28682115
    [Google Scholar]
  5. NovoslavskijA. TerentjevaM. EizenbergaI. ValciņaO. BartkevičsV. BērziņšA. Major foodborne pathogens in fish and fish products: a review.Ann. Microbiol.201666111510.1007/s13213‑015‑1102‑5
    [Google Scholar]
  6. AliA. ParisiA. ConversanoM.C. IannacciA. D’EmilioF. MercurioV. NormannoG. Food-Borne bacteria associated with seafoods: A brief review.J. Food Qual. Hazards Control20207141010.18502/jfqhc.7.1.2446
    [Google Scholar]
  7. Pal.; Mahendra & Ketchakmadze.; Dimitri & Durglishvili.; Nino & Ketchakmadze.; Ivane. Staphylococcus Aureus: A major pathogen of food poisoning.Nutrit. Food Process.2022574
    [Google Scholar]
  8. KadariyaJ. SmithT.C. ThapaliyaD. Staphylococcus aureus and staphylococcal food-borne disease: An ongoing challenge in public health.BioMed Res. Int.201420141910.1155/2014/827965 24804250
    [Google Scholar]
  9. ScallanE. HoekstraR.M. AnguloF.J. TauxeR.V. WiddowsonM.A. RoyS.L. JonesJ.L. GriffinP.M. Foodborne illness acquired in the United States--major pathogens.Emerg. Infect. Dis.201117171510.3201/eid1701.P11101 21192848
    [Google Scholar]
  10. Kadariya.; Alka & Smith.; Tara & Thapaliya Md Mph.; Dipendra. Staphylococcus aureus and Staphylococcal food-borne disease: An ongoing challenge in public health.BioMed Res. Int.2014827965
    [Google Scholar]
  11. ChaibenjawongP. FosterS.J. Desiccation tolerance in Staphylococcus aureus.Arch. Microbiol.2011193212513510.1007/s00203‑010‑0653‑x 21088825
    [Google Scholar]
  12. TuckerP.W. HazenE.E.Jr CottonF.A. Staphylococcal nuclease reviewed: A prototypic study in contemporary enzymology. I isolation; physical and enzymatic properties.Mol. Cell. Biochem.1978222-3677810.1007/BF00496235 370553
    [Google Scholar]
  13. AndradeN.C. LaranjoM. CostaM.M. QueirogaM.C. Virulence factors in staphylococcus associated with small ruminant mastitis: Biofilm production and antimicrobial resistance genes.Antibiotics (Basel)202110663310.3390/antibiotics10060633 34070557
    [Google Scholar]
  14. LachicaR.V.F. HoeprichP.D. GenigeorgisC. Metachromatic agar-diffusion microslide technique for detecting staphylococcal nuclease in foods.Appl. Microbiol.197223116816910.1128/am.23.1.168‑169.1972 4621793
    [Google Scholar]
  15. AlarcónB. VicedoB. AznarR. PCR-based procedures for detection and quantification of Staphylococcus aureus and their application in food.J. Appl. Microbiol.2006100235236410.1111/j.1365‑2672.2005.02768.x 16430512
    [Google Scholar]
  16. KarimzadehR. GhassabR.K. Identification of nuc nuclease and sea enterotoxin genes in Staphylococcus aureus isolates from nasal mucosa of burn hospital staff: A cross-sectional study.New Microbes New Infect.20224710099210.1016/j.nmni.2022.100992 35800028
    [Google Scholar]
  17. HussH.H. Assessment and management of seafood safety and quality (No. 444); Daya Books.Rome, FAO.2007230
    [Google Scholar]
  18. HeY. WangJ. ZhangR. ChenL. ZhangH. QiX. ChenJ. Epidemiology of foodborne diseases caused by Salmonella in Zhejiang Province, China, between 2010 and 2021.Front. Public Health202311112792510.3389/fpubh.2023.1127925 36817893
    [Google Scholar]
  19. Galán-RelañoÁ. Valero DíazA. Huerta LorenzoB. Gómez-GascónL. Mena RodríguezM.Á. Carrasco JiménezE. Pérez RodríguezF. Astorga MárquezR.J. Salmonella and salmonellosis: An update on public health implications and control strategies.Animals (Basel)20231323366610.3390/ani13233666 38067017
    [Google Scholar]
  20. NgogoF.A. JoachimA. AbadeA.M. RumishaS.F. MizindukoM.M. MajigoM.V. Factors associated with Salmonella infection in patients with gastrointestinal complaints seeking health care at regional hospital in Southern Highland of Tanzania.BMC Infect. Dis.202020113510.1186/s12879‑020‑4849‑7 32050928
    [Google Scholar]
  21. MauluS. NawanziK. Abdel-TawwabM. KhalilH.S. Fish nutritional value as an approach to children’s nutrition.Front. Nutr.2021878084410.3389/fnut.2021.780844 34977125
    [Google Scholar]
  22. ZiaratiM. ZorriehzahraM.J. HassantabarF. MehrabiZ. DhawanM. SharunK. EmranT.B. DhamaK. ChaicumpaW. ShamsiS. Zoonotic diseases of fish and their prevention and control.Vet. Q.20224219511810.1080/01652176.2022.2080298 35635057
    [Google Scholar]
  23. AberoumandA. A research work on chemical composition and quality of some fishes meals in Iran.World J. Fish and Marine Sci.201026505507
    [Google Scholar]
  24. ChopraA.K. HuangJ.H. XuX.J. BurdenK. NieselD.W. RosenbaumM.W. PopovV.L. PetersonJ.W. Role of Salmonella enterotoxin in overall virulence of the organism.Microb. Pathog.199927315517110.1006/mpat.1999.0294 10455006
    [Google Scholar]
  25. NakanoM. YamasakiE. IchinoseA. ShimohataT. TakahashiA. AkadaJ.K. NakamuraK. MossJ. HirayamaT. KurazonoH. Salmonella enterotoxin (Stn) regulates membrane composition and integrity.Dis. Model. Mech.201254515521 22301710
    [Google Scholar]
  26. MurugkarH.V. RahmanH. DuttaP.K. Distribution of virulence genes in Salmonella serovars isolated from man & animals.Indian J. Med. Res.20031176670 12931840
    [Google Scholar]
  27. SalamF. LekshmiM. PrabhakarP. KumarS.H. NayakB.B. Physiological characteristics and virulence gene composition of selected serovars of seafood-borne Salmonella enterica.Vet. World202316343143810.14202/vetworld.2023.431‑438 37041837
    [Google Scholar]
  28. SinghY. TiwariA. KumarR. SaxenaM.K. Cloning, sequencing and phylogenetic analysis of stn gene of Salmonella typhimurium.Biosci. Biotechnol. Res. Asia20171441387139310.13005/bbra/2583
    [Google Scholar]
  29. XuH. LeeH.Y. AhnJ. Growth and virulence properties of biofilm-forming Salmonella enterica serovar typhimurium under different acidic conditions.Appl. Environ. Microbiol.201076247910791710.1128/AEM.01508‑10 20971873
    [Google Scholar]
  30. AlociljaE.C. Zhang, D. and Shi, C. AuNP-DNA biosensor for rapid detection of Salmonella enterica serovar enteritidis.Advances in Applied Nanotechnology for Agriculture.American Chemical Society2013435310.1021/bk‑2013‑1143.ch003
    [Google Scholar]
  31. MandalP.K. BiswasA.K. ChoiK. PalU.K. Methods for rapid detection of foodborne pathogens: An overview.Am. J. Food Technol.2011628710210.3923/ajft.2011.87.102
    [Google Scholar]
  32. ParkS.H. AydinM. KhatiwaraA. DolanM.C. GilmoreD.F. BouldinJ.L. AhnS. RickeS.C. Current and emerging technologies for rapid detection and characterization of Salmonella in poultry and poultry products.Food Microbiol.20143825026210.1016/j.fm.2013.10.002 24290649
    [Google Scholar]
  33. KumarR. SurendranP.K. ThampuranN. Rapid quantification of Salmonella in seafood by real-time PCR assay.J. Microbiol. Biotechnol.2010203569573 20372029
    [Google Scholar]
  34. LimH.J. KangE.R. ParkM.Y. KimB.K. KimM.J. JungS. RohK.H. SungN. YangJ.H. LeeM.W. LeeS.H. YangY.J. Development of a multiplex real-time PCR assay for the simultaneous detection of four bacterial pathogens causing pneumonia.PLoS One2021166e025340210.1371/journal.pone.0253402 34138947
    [Google Scholar]
  35. SimonS.S. SanjeevS. Prevalence of enterotoxigenic Staphylococcus aureus in fishery products and fish processing factory workers.Food Control200718121565156810.1016/j.foodcont.2006.12.007
    [Google Scholar]
  36. G AbrilA. G VillaT. Barros-VelázquezJ. CañasB. Sánchez-PérezA. Calo-MataP. CarreraM. Staphylococcus aureus exotoxins and their detection in the dairy industry and mastitis.Toxins (Basel)202012953710.3390/toxins12090537 32825515
    [Google Scholar]
  37. AkbarA. AnalA.K. Prevalence and antibiogram study of Salmonella and Staphylococcus aureus in poultry meat.Asian Pac. J. Trop. Biomed.20133216316810.1016/S2221‑1691(13)60043‑X 23593598
    [Google Scholar]
  38. Sanath KumarH. SunilR. VenugopalM.N. KarunasagarI. KarunasagarI. Detection of Salmonella spp. in tropical seafood by polymerase chain reaction.Int. J. Food Microbiol.2003881919510.1016/S0168‑1605(03)00144‑2 14527790
    [Google Scholar]
  39. KumarY. SharmaA. SehgalR. KumarS. Distribution trends of Salmonella serovars in India (2001–2005).Trans. R. Soc. Trop. Med. Hyg.2009103439039410.1016/j.trstmh.2008.09.009 18950825
    [Google Scholar]
  40. ShabarinathS. Sanath KumarH. KhushiramaniR. KarunasagarI. KarunasagarI. Detection and characterization of Salmonella associated with tropical seafood.Int. J. Food Microbiol.2007114222723310.1016/j.ijfoodmicro.2006.09.012 17141346
    [Google Scholar]
  41. BakrW.M. HazzahW.A. AbazaA.F. Detection of Salmonella and Vibrio species in some seafood in Alexandria.J. Am. Sci.201179663668
    [Google Scholar]
  42. SivaramanG.K. GuptaS.S. VisnuvinayagamS. MuthulakshmiT. ElangovanR. PerumalV. BalasubramaniumG. LodhaT. YadavA. Prevalence of S. aureus and/or MRSA from seafood products from Indian seafood products.BMC Microbiol.202222123310.1186/s12866‑022‑02640‑9 36183083
    [Google Scholar]
  43. Vázquez-SánchezD. López-CaboM. Saá-IbusquizaP. Rodríguez-HerreraJ.J. Incidence and characterization of Staphylococcus aureus in fishery products marketed in Galicia (Northwest Spain).Int. J. Food Microbiol.2012157228629610.1016/j.ijfoodmicro.2012.05.021
    [Google Scholar]
  44. KumarR. DattaT.K. LalithaK.V. Salmonella grows vigorously on seafood and expresses its virulence and stress genes at different temperature exposure.BMC Microbiol.201515125410.1186/s12866‑015‑0579‑1 26531707
    [Google Scholar]
  45. Elkenany, Prevalence and antibiotic resistance of Aeromonas hydrophila and Staphylococcus aureus isolated from seafood in Egypt.Mans. Veter. Medi. J.202021417317910.21608/mvmj.2020.47607.1009
    [Google Scholar]
  46. NaikV. ShakyaS. Patyal. Anil & Gade. Nitin & Bhoomika. Isolation and molecular characterization of Salmonella spp. from chevon and chicken meat collected from different districts of Chhattisgarh, India.Vet. World2015870270610.14202/vetworld.2015.702‑706
    [Google Scholar]
  47. LiangT. LongH. ZhanZ. ZhuY. KuangP. MoN. WangY. CuiS. WuX. Simultaneous detection of viable Salmonella spp., Escherichia coli, and Staphylococcus aureus in bird's nest, donkey-hide gelatin, and wolfberry using PMA with multiplex realtime quantitative PCR.Food Sci Nutr.20221093165317410.1002/fsn3.291636171769PMC9469859
    [Google Scholar]
/content/journals/cac/10.2174/0115734110306807240724064141
Loading
/content/journals/cac/10.2174/0115734110306807240724064141
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test