Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Glycerol, sucrose, lactose, glucose, and fructose are important biomarkers in human sweat because their contents can reflect physiological status and health conditions. It is of high importance to determine them in sweat for health monitoring, disease diagnosis, physical training, .

Aim

The aim of this work is to develop a method based on capillary electrophoresis and amperometric detection for the simultaneous determination of glycerol and carbohydrates in sweat.

Objective

A capillary electrophoretic method based on pipette-tip-based detection electrodes and micro-injectors was developed for the simultaneous determination of glycerol, sucrose, lactose, glucose, and fructose in sweat samples.

Methods

Sweat samples diluted in the background electrolyte of 75 mM NaOH aqueous solution were electrokinetically introduced into a piece of separation capillary pipette tip-based micro-injectors. Glycerol, sucrose, lactose, glucose, and fructose were determined by capillary electrophoresis in combination with a pipette-tip-based copper electrode.

Results

At a DC voltage of 12 kV, the capillary electrophoretic separation of the five analytes could be achieved in less than 11 min in a piece of 40 cm long fused silica capillary containing 75 mM NaOH aqueous solution. Linearity was observed between the currents and concentrations, with the limits of detection ranging from 0.21 to 0.72 µM at a detection potential of 0.65 V. Glycerol, sucrose, lactose, glucose, and fructose in sweat samples were positively identified and accurately measured.

Conclusion

The method was successfully applied in the simultaneous determination of glycerol and carbohydrates in sweat samples with satisfactory assay results. It will find a wide range of applications in clinical diagnosis, health monitoring, and drug and food analysis.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110309623240628071103
2024-07-09
2025-12-25
Loading full text...

Full text loading...

References

  1. YangX. XiongM. FuX. SunX. Bioactive materials for in vivo sweat gland regeneration.Bioact. Mater.20243124727110.1016/j.bioactmat.2023.07.02537637080
    [Google Scholar]
  2. SongW. YaoB. ZhuD. ZhangY. LiZ. HuangS. FuX. 3D-bioprinted microenvironments for sweat gland regeneration.Burns Trauma202210tkab04410.1093/burnst/tkab04435071651
    [Google Scholar]
  3. MacagnoN. SohierP. KervarrecT. PissalouxD. JullieM.L. CribierB. BattistellaM. Recent advances on immunohistochemistry and molecular biology for the diagnosis of adnexal sweat gland tumors.Cancers202214347610.3390/cancers1403047635158743
    [Google Scholar]
  4. WineJ.J. How the sweat gland reveals levels of CFTR activity.J. Cyst. Fibros.202221339640610.1016/j.jcf.2022.02.00135184981
    [Google Scholar]
  5. FroehlichM.H. ContiK.R. NorrisI.I. AllensworthJ.J. UfkesN.A. NguyenS.A. BrunerE.T. CookJ. DayT.A. Endocrine mucin-producing sweat gland carcinoma: A systematic review and meta-analysis.J. Dermatolog. Treat.20223342182219110.1080/09546634.2021.193747934057875
    [Google Scholar]
  6. ZhangL. NomiyamaS. BedranR.M. AlvimC.G. RibeiroJ.D. CamargosP. Sweat conductivity diagnostic accuracy for cystic fibrosis: A systematic review and meta-analysis.Arch. Dis. Child.20231081190490910.1136/archdischild‑2023‑32562937451832
    [Google Scholar]
  7. CaiS.W. ShenN. LiD.X. WeiB. AnJ. ZhangJ.H. Compensatory sweating after restricting or lowering the level of sympathectomy: A systematic review and meta-analysis.Clinics201570321421910.6061/clinics/2015(03)1126017654
    [Google Scholar]
  8. JadoonS. KarimS. AkramM.R. Kalsoom KhanA. ZiaM.A. SiddiqiA.R. MurtazaG. Recent developments in sweat analysis and its applications.Int. J. Anal. Chem.201520151710.1155/2015/16497425838824
    [Google Scholar]
  9. BandodkarA.J. JeangW.J. GhaffariR. RogersJ.A. Wearable sensors for biochemical sweat analysis.Annu. Rev. Anal. Chem.201912112210.1146/annurev‑anchem‑061318‑11491030786214
    [Google Scholar]
  10. HengW. YangG. KimW.S. XuK. Emerging wearable flexible sensors for sweat analysis.Biodes. Manuf.202251648410.1007/s42242‑021‑00171‑2
    [Google Scholar]
  11. RelfR. EichhornG. WaldockK. FlintM.S. BealeL. MaxwellN. Validity of a wearable sweat rate monitor and routine sweat analysis techniques using heat acclimation.J. Therm. Biol.20209010257710.1016/j.jtherbio.2020.10257732479383
    [Google Scholar]
  12. FutaneA. SenthilM. SJ. SrinivasanA. RK. NarayanamurthyV. Sweat analysis for urea sensing: Trends and challenges.Anal. Methods202315354405442610.1039/D3AY01089A37646163
    [Google Scholar]
  13. JoS. SungD. KimS. KooJ. A review of wearable biosensors for sweat analysis.Biomed. Eng. Lett.202111211712910.1007/s13534‑021‑00191‑y34150348
    [Google Scholar]
  14. LiuW. ChengH. WangX. Skin-interfaced colorimetric microfluidic devices for on-demand sweat analysis.npj Flexible Electronics2023714310.1038/s41528‑023‑00275‑y
    [Google Scholar]
  15. GaoF. LiuC. ZhangL. LiuT. WangZ. SongZ. CaiH. FangZ. ChenJ. WangJ. HanM. WangJ. LinK. WangR. LiM. MeiQ. MaX. LiangS. GouG. XueN. Wearable and flexible electrochemical sensors for sweat analysis: A review.Microsyst. Nanoeng.202391110.1038/s41378‑022‑00443‑636597511
    [Google Scholar]
  16. NagamineK. NomuraA. IchimuraY. IzawaR. SasakiS. FurusawaH. MatsuiH. TokitoS. Printed organic transistor-based biosensors for non-invasive sweat Analysis.Anal. Sci.202036329130210.2116/analsci.19R00731904007
    [Google Scholar]
  17. McCaulM. GlennonT. DiamondD. Challenges and opportunities in wearable technology for biochemical analysis in sweat.Curr. Opin. Electrochem.201731465010.1016/j.coelec.2017.06.001
    [Google Scholar]
  18. GualandiI. TessaroloM. MarianiF. PossanziniL. ScavettaE. FraboniB. Textile chemical sensors based on conductive polymers for the analysis of sweat.Polymers202113689410.3390/polym1306089433799437
    [Google Scholar]
  19. GanesanS. RamajayamK. KokulnathanT. PalaniappanA. Advances in Two-dimensional Mxene-based electrochemical biosensors for sweat analysis.Molecules20232812461710.3390/molecules2812461737375172
    [Google Scholar]
  20. CorrieS.R. CoffeyJ.W. IslamJ. MarkeyK.A. KendallM.A.F. Blood, sweat, and tears: Developing clinically relevant protein biosensors for integrated body fluid analysis.Analyst2015140134350436410.1039/C5AN00464K25909342
    [Google Scholar]
  21. LegnerC. KalwaU. PatelV. ChesmoreA. PandeyS. Sweat sensing in the smart wearables era: Towards integrative, multifunctional and body-compliant perspiration analysis.Sens. Actuators A Phys.201929620022110.1016/j.sna.2019.07.020
    [Google Scholar]
  22. Castillo-PeinadoL.S. Calderón-SantiagoM. Jurado-GámezB. Priego-CapoteF. Changes in human sweat metabolome conditioned by severity of obstructive sleep apnea and intermittent hypoxemia.J. Sleep Res.2023e14075e1407510.1111/jsr.1407537877569
    [Google Scholar]
  23. KutyshenkoV.P. MolchanovM. BeskaravaynyP. UverskyV.N. TimchenkoM.A. Analyzing and mapping sweat metabolomics by high-resolution NMR spectroscopy.PLoS One2011612e2882410.1371/journal.pone.002882422194922
    [Google Scholar]
  24. MoyerJ. WilsonD. FinkelshteinI. WongB. PottsR. Correlation between sweat glucose and blood glucose in subjects with diabetes.Diabetes Technol. Ther.201214539840210.1089/dia.2011.026222376082
    [Google Scholar]
  25. HaukeA. SimmersP. OjhaY.R. CameronB.D. BallwegR. ZhangT. TwineN. BrothersM. GomezE. HeikenfeldJ. Complete validation of a continuous and blood-correlated sweat biosensing device with integrated sweat stimulation.Lab Chip201818243750375910.1039/C8LC01082J30443648
    [Google Scholar]
  26. SakharovD.A. ShkurnikovM.U. VaginM.Y. YashinaE.I. KaryakinA.A. TonevitskyA.G. Relationship between lactate concentrations in active muscle sweat and whole blood.Bull. Exp. Biol. Med.20101501838510.1007/s10517‑010‑1075‑021161059
    [Google Scholar]
  27. ZhongB. QinX. XuH. LiuL. LiL. LiZ. CaoL. LouZ. JackmanJ.A. ChoN.J. WangL. Interindividual- and blood-correlated sweat phenylalanine multimodal analytical biochips for tracking exercise metabolism.Nat. Commun.202415162410.1038/s41467‑024‑44751‑z38245507
    [Google Scholar]
  28. BuonoM.J. Sweat ethanol concentrations are highly correlated with co-existing blood values in humans.Exp. Physiol.199984240140410.1111/j.1469‑445X.1999.01798.x10226180
    [Google Scholar]
  29. BilbaoE. GarateO. Rodríguez CamposT. RobertiM. MassM. LozanoA. LonginottiG. MonsalveL. YbarraG. Electrochemical sweat sensors.Chemosensors202311424410.3390/chemosensors11040244
    [Google Scholar]
  30. DavisN. HeikenfeldJ. MillaC. JaveyA. The challenges and promise of sweat sensing.Nat. Biotechnol.202410.1038/s41587‑023‑02059‑1
    [Google Scholar]
  31. YinJ. LiJ. ReddyV.S. JiD. RamakrishnaS. XuL. Flexible textile-based sweat sensors for wearable applications.Biosensors202313112710.3390/bios1301012736671962
    [Google Scholar]
  32. MeihuaS. JiahuiJ. YujiaL. ShuangZ. JingjingZ. Research on sweat metabolomics of athlete’s fatigue induced by high intensity interval training.Front. Physiol.202314126988510.3389/fphys.2023.126988538033334
    [Google Scholar]
  33. Abellán-LlobregatA. JeerapanI. BandodkarA. VidalL. CanalsA. WangJ. MorallónE. A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration.Biosens. Bioelectron.20179188589110.1016/j.bios.2017.01.05828167366
    [Google Scholar]
  34. YangM. SunN. LaiX. ZhaoX. ZhouW. Advances in non-electrochemical sensing of human sweat biomarkers: From sweat sampling to signal reading.Biosensors20231411710.3390/bios1401001738248394
    [Google Scholar]
  35. ShiY. ZhangZ. HuangQ. LinY. ZhengZ. Wearable sweat biosensors on textiles for health monitoring.J. Semicond.202344202160110.1088/1674‑4926/44/2/021601
    [Google Scholar]
  36. ClarkK.M. RayT.R. Recent Advances in Skin-interfaced wearable sweat sensors: opportunities for equitable personalized medicine and global health diagnostics.ACS Sens.20238103606362210.1021/acssensors.3c0151237747817
    [Google Scholar]
  37. SaldanhaD.J. CaiA. Dorval CourchesneN.M. The evolving role of proteins in wearable sweat biosensors.ACS Biomater. Sci. Eng.2023952020204710.1021/acsbiomaterials.1c0069934491052
    [Google Scholar]
  38. YuanX. LiC. YinX. YangY. JiB. NiuY. RenL. Epidermal wearable biosensors for monitoring biomarkers of chronic disease in sweat.Biosensors202313331310.3390/bios1303031336979525
    [Google Scholar]
  39. MinJ. TuJ. XuC. LukasH. ShinS. YangY. SolomonS.A. MukasaD. GaoW. Skin-interfaced wearable sweat sensors for precision medicine.Chem. Rev.202312385049513810.1021/acs.chemrev.2c0082336971504
    [Google Scholar]
  40. XingZ. HuiJ. LinB. WuZ. MaoH. Recent advances in wearable sensors for the monitoring of sweat: A comprehensive tendency summary.Chemosensors202311947010.3390/chemosensors11090470
    [Google Scholar]
  41. EhtesabiH. KaljiS.O. Carbon nanomaterials for sweat-based sensors: A review.Mikrochim. Acta202419117710.1007/s00604‑023‑06162‑738177621
    [Google Scholar]
  42. LinP.H. SheuS.C. ChenC.W. HuangS.C. LiB.R. Wearable hydrogel patch with noninvasive, electrochemical glucose sensor for natural sweat detection.Talanta202224112318710.1016/j.talanta.2021.12318735030501
    [Google Scholar]
  43. ShuY. ShangZ. SuT. ZhangS. LuQ. XuQ. HuX. A highly flexible Ni–Co MOF nanosheet coated Au/PDMS film based wearable electrochemical sensor for continuous human sweat glucose monitoring.Analyst202214771440144810.1039/D1AN02214H35262099
    [Google Scholar]
  44. Van HoovelsK. XuanX. CuarteroM. GijsselM. SwarénM. CrespoG.A. Can Wearable sweat lactate sensors contribute to sports physiology?ACS Sens.20216103496350810.1021/acssensors.1c0140334549938
    [Google Scholar]
  45. QiaoY. QiaoL. ChenZ. LiuB. GaoL. ZhangL. Wearable sensor for continuous sweat biomarker monitoring.Chemosensors202210727310.3390/chemosensors10070273
    [Google Scholar]
  46. XuJ. FangY. ChenJ. Wearable biosensors for non-invasive sweat diagnostics.Biosensors202111824510.3390/bios1108024534436047
    [Google Scholar]
  47. KomkovaM.A. EliseevA.A. PoyarkovA.A. DabossE.V. EvdokimovP.V. EliseevA.A. KaryakinA.A. Simultaneous monitoring of sweat lactate content and sweat secretion rate by wearable remote biosensors.Biosens. Bioelectron.202220211397010.1016/j.bios.2022.11397035032921
    [Google Scholar]
  48. CostaN.G. AntunesJ.C. PaleoA.J. RochaA.M. A Review on flexible electrochemical biosensors to monitor alcohol in sweat.Biosensors202212425210.3390/bios1204025235448313
    [Google Scholar]
  49. VaquerA. BarónE. de la RicaR. Detection of low glucose levels in sweat with colorimetric wearable biosensors.Analyst2021146103273327910.1039/D1AN00283J33999074
    [Google Scholar]
  50. ZhuC. BingY. ChenQ. PangB. LiJ. ZhangT. nonenzymatic flexible wearable biosensors for vitamin C monitoring in sweat.ACS Appl. Mater. Interfaces20231515193841939210.1021/acsami.2c2234537036913
    [Google Scholar]
  51. PourS.R.S. CalabriaD. EmamiaminA. LazzariniE. PaceA. GuardigliM. ZangheriM. MirasoliM. Microfluidic-based non-invasive wearable biosensors for real-time monitoring of sweat biomarkers.Biosensors20241412910.3390/bios1401002938248406
    [Google Scholar]
  52. MarvelliA. CampiB. MergniG. Di CiccoM.E. TuriniP. ScardinaP. ZucchiR. PifferiM. TaccettiG. PaolicchiA. la MarcaG. SabaA. Sweat chloride assay by inductively coupled plasma mass spectrometry: A confirmation test for cystic fibrosis diagnosis.Anal. Bioanal. Chem.2020412256909691610.1007/s00216‑020‑02821‑332691087
    [Google Scholar]
  53. SotomM. BowdlerP. HoneychurchK.C. Determination of licit and illicit drugs and metabolites in human sweat by liquid chromatography-tandem mass spectrometry.Anal. Methods202315334085409310.1039/D3AY00678F37545330
    [Google Scholar]
  54. de la MataA.P. McQueenR.H. NamS.L. HarynukJ.J. Comprehensive two-dimensional gas chromatographic profiling and chemometric interpretation of the volatile profiles of sweat in knit fabrics.Anal. Bioanal. Chem.201740971905191310.1007/s00216‑016‑0137‑128028595
    [Google Scholar]
  55. MaidodouL. ClarotI. LeemansM. FromantinI. MarchioniE. SteyerD. Unraveling the potential of breath and sweat VOC capture devices for human disease detection: A systematic-like review of canine olfaction and GC-MS analysis.Front Chem.202311128245010.3389/fchem.2023.128245038025078
    [Google Scholar]
  56. DubotP. LiangJ. DubsJ. MissiakY. SarazinC. CoudercF. CausséE. Sweat chloride quantification using capillary electrophoresis.Pract. Lab. Med.201913e0011410.1016/j.plabm.2018.e0011430623007
    [Google Scholar]
  57. HirokawaT. OkamotoH. GosyoY. TsudaT. TimerbaevA.R. Simultaneous monitoring of inorganic cations, amines and amino acids in human sweat by capillary electrophoresis.Anal. Chim. Acta20075811838810.1016/j.aca.2006.07.07717386429
    [Google Scholar]
  58. RochaK.N. Capillary electrophoresis with capacitively coupled contactless conductivity detection (C4D) for rapid and simple determination of lactate in sweat.Electrophoresis2023202320230017910.1002/elps.20230017938072648
    [Google Scholar]
  59. MaláM. ItterheimováP. HomolaL. VinohradskáJ. KubáňP. 3D printed skin-wash sampler for sweat sampling in cystic fibrosis diagnosis using capillary electrophoretic ion ratio analysis.Separations202181223410.3390/separations8120234
    [Google Scholar]
  60. PahadeP. BoseD. Peris-VicenteJ. Goberna-BravoM.Á. Albiol ChivaJ. Esteve RomeroJ. Carda-BrochS. DurgbanshiA. Screening of some banned aromatic amines in textile products from Indian bandhani and gamthi fabric and in human sweat using micellar liquid chromatography.Microchem. J.202116510613410.1016/j.microc.2021.106134
    [Google Scholar]
  61. MathiaparanamS. de MacedoA.N. GillB. KeenanK. GonskaT. PedderL. HillS. Britz-McKibbinP. Rapid chloride and bicarbonate determination by capillary electrophoresis for confirmatory testing of cystic fibrosis infants with volume-limited sweat specimens.J. Cyst. Fibros.2023221667210.1016/j.jcf.2022.05.00435577746
    [Google Scholar]
  62. ObmaA. NookaewK. SongsaengR. PhonchaiA. HauserP.C. WilairatP. ChantiwasR. Measurement of sweat lactate levels in exercise and non-exercise activities using capillary electrophoresis system with contactless conductivity detection and cyclodextrin-modified buffer.Arab. J. Chem.2023161110525510.1016/j.arabjc.2023.105255
    [Google Scholar]
  63. Van LierdeV. ChéryC.C. MoensL. VanhaeckeF. Capillary electrophoresis hyphenated to inductively coupled plasma-sector field-mass spectrometry for the detection of chromium species after incubation of chromium in simulated sweat.Electrophoresis20052691703171110.1002/elps.20041022115800966
    [Google Scholar]
  64. ĎurčP. ForetF. PokojováE. HomolaL. SkřičkováJ. HeroutV. DastychM. VinohradskáH. KubáňP. New approach for cystic fibrosis diagnosis based on chloride/potassium ratio analyzed in non-invasively obtained skin-wipe sweat samples by capillary electrophoresis with contactless conductometric detection.Anal. Bioanal. Chem.2017409143507351410.1007/s00216‑017‑0318‑628357484
    [Google Scholar]
  65. JinM. DongQ. DongR. JinW. Direct electrochemical determination of pyruvate in human sweat by capillary zone electrophoresis.Electrophoresis200122132793279610.1002/1522‑2683(200108)22:13<2793::AID‑ELPS2793>3.0.CO;2‑A11545410
    [Google Scholar]
  66. SunM. PeiX. XinT. LiuJ. MaC. CaoM. ZhouM. A flexible microfluidic chip-based universal fully integrated nanoelectronic system with point-of-care raw sweat, tears, or saliva glucose monitoring for potential noninvasive glucose management.Anal. Chem.20229431890190010.1021/acs.analchem.1c0517435006672
    [Google Scholar]
  67. HarkerM. CoulsonH. FairweatherI. TaylorD. DaykinC.A. Study of metabolite composition of eccrine sweat from healthy male and female human subjects by 1H NMR spectroscopy.Metabolomics20062310511210.1007/s11306‑006‑0024‑4
    [Google Scholar]
  68. JorgensonJ.W. LukacsK.D. Zone electrophoresis in open-tubular glass capillaries.Anal. Chem.19815381298130210.1021/ac00231a037
    [Google Scholar]
  69. JorgensonJ.W. LukacsK.D. Capillary zone electrophoresis.Science1983222462126627210.1126/science.66230766623076
    [Google Scholar]
  70. SeyfinejadB. JouybanA. Capillary electrophoresis-mass spectrometry in pharmaceutical and biomedical analyses.J. Pharm. Biomed. Anal.202222111505910.1016/j.jpba.2022.11505936191459
    [Google Scholar]
  71. KubáňP. KubáňP. Novel developments in capillary electrophoresis miniaturization, sampling, detection and portability: An overview of the last decade.Trends Analyt. Chem.202315911694110.1016/j.trac.2023.116941
    [Google Scholar]
  72. HartungS. MinknerR. OlabiM. WätzigH. Performance of capillary electrophoresis instruments: State of the art and outlook.Trends Analyt. Chem.202316311705610.1016/j.trac.2023.117056
    [Google Scholar]
  73. VoetenR.L.C. VentouriI.K. HaselbergR. SomsenG.W. Capillary electrophoresis: Trends and recent advances.Anal. Chem.20189031464148110.1021/acs.analchem.8b0001529298038
    [Google Scholar]
  74. ChenG. LiZ. WuQ. ZhangX. Advances in the applications of capillary electrophoresis to tobacco analysis.Curr. Anal. Chem.2023191779910.2174/1573411018666220927094137
    [Google Scholar]
  75. ChenG. ZhuY. WangY. XuX. LuT. Determination of bioactive constituents in traditional Chinese medicines by CE with electrochemical detection.Curr. Med. Chem.200613212467248510.2174/09298670677820165717017905
    [Google Scholar]
  76. MaoH. ZhangY. ChenG. Determination of three phenolic acids in Cimicifugae rhizoma by capillary electrophoresis with a graphene–phenolic resin composite electrode.Anal. Methods201911330330810.1039/C8AY01942H
    [Google Scholar]
  77. ChenQ. ZhangL. ChenG. Facile preparation of graphene-copper nanoparticle composite by in situ chemical reduction for electrochemical sensing of carbohydrates.Anal. Chem.201284117117810.1021/ac202277222098222
    [Google Scholar]
  78. Mena-BravoA. Luque de CastroM.D. Sweat: A sample with limited present applications and promising future in metabolomics.J. Pharm. Biomed. Anal.20149013914710.1016/j.jpba.2013.10.04824378610
    [Google Scholar]
/content/journals/cac/10.2174/0115734110309623240628071103
Loading
/content/journals/cac/10.2174/0115734110309623240628071103
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test