Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Introduction

Emerging contaminants are present in the water and need to be monitored and managed as they are of major environmental and health concern universally. Exposure to emerging contaminants in water sources can pose a significant risk to both aquatic species and human health. This study assessed the risks of emerging contaminants in urban and natural water sources.

Methods

A high-performance liquid chromatography connected to a hybrid triple quadrupole ion trap mass spectrometer was used to analyse the targeted emerging contaminants. The ecological and human health risk assessment methods were used to assess the possible risks of contaminants.

Results

Emerging contaminants such as 17-ethinyl-estradiol, simazine, ibuprofen, atrazine, carbamazepine, terbuthylazine, and metolachlor showed the possibility of high ecological risks to aquatic species. Risk mixture values in all water sources showed that the aquatic species are at high risk in all seasons. The non-carcinogenic risk of all selected herbicides in all water sources showed risk quotient values below 1 for the entire population, signifying that the population is safe. Atrazine is the only contaminant that showed high carcinogenic risk to the adult group in river water during the summer season.

Conclusion

It can be concluded that aquatic species and public health are at risk. The outcomes of the study may aid in the development of environmental quality standards for regulatory and environmental sustainability purposes.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110306162240527050732
2024-06-04
2025-12-16
Loading full text...

Full text loading...

References

  1. FawellJ. NieuwenhuijsenM.J. Contaminants in drinking water.Br. Med. Bull.200368119920810.1093/bmb/ldg027 14757718
    [Google Scholar]
  2. BwireG. SackD.A. KagiritaA. ObalaT. DebesA.K. RamM. KomakechH. GeorgeC.M. OrachC.G. The quality of drinking and domestic water from the surface water sources (lakes, rivers, irrigation canals and ponds) and springs in cholera prone communities of Uganda: an analysis of vital physicochemical parameters.BMC Public Health2020201112810.1186/s12889‑020‑09186‑3 32680495
    [Google Scholar]
  3. BabujiP. ThirumalaisamyS. DuraisamyK. PeriyasamyG. Human health risks due to exposure to water pollution: A review.Water20231514253210.3390/w15142532
    [Google Scholar]
  4. TufenkjiN. RyanJ.N. ElimelechM. The promise of bank filtration.Environ. Sci. Technol.20023621422A428A10.1021/es022441j 12433153
    [Google Scholar]
  5. Torres-PadrónM.E. Montesdeoca-EspondaS. Santana-VieraS. Guedes-AlonsoR. Herrera-MeliánJ.A. Sosa-FerreraZ. Santana-RodríguezJ.J. An update of the occurrence of organic contaminants of emerging concern in the canary islands (Spain).Water2020129254810.3390/w12092548
    [Google Scholar]
  6. Barton-MaclarenT.S. WadeM. BasuN. BayenS. GrundyJ. MarlattV. MooreR. ParentL. ParrottJ. GrigorovaP. Pinsonnault-CooperJ. LangloisV.S. Innovation in regulatory approaches for endocrine disrupting chemicals: The journey to risk assessment modernization in Canada.Environ. Res.2022204Pt C11222510.1016/j.envres.2021.112225 34666016
    [Google Scholar]
  7. BrackW. HollenderJ. de AldaM.L. MüllerC. SchulzeT. SchymanskiE. SlobodnikJ. KraussM. High-resolution mass spectrometry to complement monitoring and track emerging chemicals and pollution trends in European water resources.Environ. Sci. Eur.20193116210.1186/s12302‑019‑0230‑0
    [Google Scholar]
  8. LiP. SabarathinamC. ElumalaiV. Groundwater pollution and its remediation for sustainable water management.Chemosphere202332913862110.1016/j.chemosphere.2023.138621 37031835
    [Google Scholar]
  9. KumarL. KumariR. KumarA. TunioI.A. SassanelliC. Water quality assessment and monitoring in pakistan: A comprehensive review.Sustainability2023157624610.3390/su15076246
    [Google Scholar]
  10. GhoshS. SinhaJ.K. GhoshS. VashisthK. HanS. BhaskarR. Microplastics as an emerging threat to the global environment and human health.Sustainability202315141082110.3390/su151410821
    [Google Scholar]
  11. MirajiH. OthmanO.C. NgassapaF.N. MureithiE.W. Research trends in emerging contaminants on the aquatic environments of tanzania.Scientifica201620161610.1155/2016/3769690 26998381
    [Google Scholar]
  12. Morin-CriniN. LichtfouseE. FourmentinM. RibeiroA.R.L. NoutsopoulosC. MapelliF. FenyvesiÉ. VieiraM.G.A. Picos-CorralesL.A. Moreno-PirajánJ.C. GiraldoL. SohajdaT. HuqM.M. SoltanJ. TorriG. MagureanuM. BraduC. CriniG. Removal of emerging contaminants from wastewater using advanced treatments. A review.Environ. Chem. Lett.20222021333137510.1007/s10311‑021‑01379‑5
    [Google Scholar]
  13. SelweK.P. ThornJ.P.R. DesrousseauxA.O.S. DessentC.E.H. SallachJ.B. Emerging contaminant exposure to aquatic systems in the Southern African Development Community.Environ. Toxicol. Chem.202241238239510.1002/etc.5284 35020964
    [Google Scholar]
  14. LiuY. ShiX. ChenX. DingP. ZhangL. YangJ. PanJ. YuY. WuJ. HuG. Spatial distribution and risk assessment of antibiotics in 15 pharmaceutical plants in the pearl river delta.Toxics202311438210.3390/toxics11040382 37112609
    [Google Scholar]
  15. Ramírez-MaluleH. Quiñones-MurilloD.H. Manotas-DuqueD. Emerging contaminants as global environmental hazards. A bibliometric analysis.Emerg. Contam.2020617919310.1016/j.emcon.2020.05.001
    [Google Scholar]
  16. MercantiT. El HachmiM. FalcinelliS. SebastianiB. Occurrence of persistent organochlorine pollutants in sediments from lake piediluco, Italy.Environments202310712010.3390/environments10070120
    [Google Scholar]
  17. ArcherW. HoltonE. FidalJ. Kasprzyk-HordernB. CarstensA. BrockeraL. KjeldsenT.R. WolfaardG.M. Occurrence of contaminants of emerging concern in the Eerste River, South Africa: Towards the optimisation of an urban water profiling approach for public and ecological health risk characterisation.Sci. Total Environ.2023859Pt 116025410.1016/j.scitotenv.2022.160254
    [Google Scholar]
  18. BagnisS. BoxallA. GachanjaA. FitzsimonsM. MurigiM. SnapeJ. TappinA. WilkinsonJ. ComberS. Characterization of the Nairobi River catchment impact zone and occurrence of pharmaceuticals: Implications for an impact zone inclusive environmental risk assessment.Sci. Total Environ.202070313492510.1016/j.scitotenv.2019.134925 31726303
    [Google Scholar]
  19. CastiglioniS. ZuccatoE. FattoreE. RivaF. TerzaghiE. KoenigR. PrincipiP. Di GuardoA. Micropollutants in Lake Como water in the context of circular economy: A snapshot of water cycle contamination in a changing pollution scenario.J. Hazard. Mater.202038412144110.1016/j.jhazmat.2019.121441 31630863
    [Google Scholar]
  20. Kasprzyk-HordernB. ProctorK. JagadeesanK. WatkinsS. StanderwickR. BardenR. BarnettJ. Diagnosing down-the-drain disposal of unused pharmaceuticals at a river catchment level: Unrecognized sources of environmental contamination that require nontechnological solutions.Environ. Sci. Technol.20215517116571166610.1021/acs.est.1c01274 34423978
    [Google Scholar]
  21. StyszkoK. ProctorK. CastrignanòE. Kasprzyk-HordernB. Occurrence of pharmaceutical residues, personal care products, lifestyle chemicals, illicit drugs and metabolites in wastewater and receiving surface waters of Krakow agglomeration in South Poland.Sci. Total Environ.202176814436010.1016/j.scitotenv.2020.144360 33450690
    [Google Scholar]
  22. OgunbanwoO.M. KayP. BoxallA.B. WilkinsonJ. SinclairC.J. ShabiR.A. FasasiA.E. LewisG.A. AmodaO.A. BrownL.E. High concentrations of pharmaceuticals in a Nigerian river catchment.Environ. Toxicol. Chem.202241355155810.1002/etc.4879 32955757
    [Google Scholar]
  23. OkoyeC.O. OkekeE.S. OkoyeK.C. EchudeD. AndongF.A. ChukwudozieK.I. OkoyeH.U. EzeonyejiakuC.D. Occurrence and fate of pharmaceuticals, personal care products (PPCPs) and pesticides in African water systems: A need for timely intervention.Heliyon202283e0914310.1016/j.heliyon.2022.e09143 35345397
    [Google Scholar]
  24. MalisaR. SchwellaE. KiddM. From ‘government’ to ‘governance’: A quantitative transition analysis of urban wastewater management principles in Stellenbosch Municipality.Sci. Total Environ.201967449451110.1016/j.scitotenv.2019.04.194 31022540
    [Google Scholar]
  25. MadikizelaL.M. NcubeS. ChimukaL. Analysis, occurrence and removal of pharmaceuticals in African water resources: A current status.J. Environ. Manage.202025310974110.1016/j.jenvman.2019.109741 31665691
    [Google Scholar]
  26. MadikizelaL.M. NuapiaY.B. ChimukaL. NcubeS. EtaleA. Target and suspect screening of pharmaceuticals and their transformation products in the Klip River, South Africa, using ultra-high–performance liquid chromatography-mass spectrometry.Environ. Toxicol. Chem.202241243744710.1002/etc.5265 34888926
    [Google Scholar]
  27. ArcherE. VolschenkM. BrockerL. WolfaardtG.M. A two-year study of emerging micro-pollutants and drugs of abuse in two Western Cape wastewater treatment works (South Africa).Chemosphere202128513146010.1016/j.chemosphere.2021.131460 34265704
    [Google Scholar]
  28. MhukaV. DubeS. NindiM.M. Occurrence of pharmaceutical and personal care products (PPCPs) in wastewater and receiving waters in South Africa using LC-Orbitrap™ MS.Emerg. Contam.20206625025810.1016/j.emcon.2020.07.002
    [Google Scholar]
  29. WilkinsonJ.L. BoxallA.B.A. KolpinD.W. LeungK.M.Y. LaiR.W.S. Galbán-MalagónC. AdellA.D. MondonJ. MetianM. MarchantR.A. Bouzas-MonroyA. Cuni-SanchezA. CoorsA. CarriquiribordeP. RojoM. GordonC. CaraM. MoermondM. LuarteT. PetrosyanV. PerikhanyanY. MahonC.S. McGurkC.J. HofmannT. KormokerT. IniguezV. Guzman-OtazoJ. TavaresJ.L. Gildasio De FigueiredoF. RazzoliniM.T.P. DougnonV. GbaguidiG. TraoréO. BlaisJ.M. KimpeL.E. WongM. WongD. NtchantchoR. PizarroJ. YingG.G. ChenC.E. PáezM. Martínez-LaraJ. OtamongaJ.P. PotéJ. IfoS.A. WilsonP. Echeverría-SáenzS. Udikovic-KolicN. MilakovicM. Fatta-KassinosD. Ioannou-TtofaL. BelušováV. VymazalJ. Cárdenas-BustamanteM. KassaB.A. GarricJ. ChaumotA. GibbaP. KunchuliaI. SeidenstickerS. LyberatosG. HalldórssonH.P. MellingM. ShashidharT. LambaM. NastitiA. SupriatinA. PourangN. AbediniA. AbdullahO. GharbiaS.S. PillaF. ChefetzB. TopazT. YaoK.M. AubakirovaB. BeisenovaR. OlakaL. MuluJ.K. ChatangaP. NtuliV. BlamaN.T. SherifS. ArisA.Z. LooiL.J. NiangM. TraoreS.T. OldenkampR. OgunbanwoO. AshfaqM. IqbalM. AbdeenZ. O’DeaA. Morales-SaldañaJ.M. CustodioM. de la CruzH. NavarreteI. CarvalhoF. GograA.B. KoromaB.M. Cerkvenik-FlajsV. GombačM. ThwalaM. ChoiK. KangH. LaduJ.L.C. RicoA. AmerasingheP. SobekA. HorlitzG. ZenkerA.K. KingA.C. JiangJ.J. KariukiR. TumboM. TezelU. OnayT.T. LejjuJ.B. VystavnaY. VergelesY. HeinzenH. Pérez-ParadaA. SimsD.B. FigyM. GoodD. TetaC. Pharmaceutical pollution of the world’s rivers.Proc. Natl. Acad. Sci.20221198e211394711910.1073/pnas.2113947119 35165193
    [Google Scholar]
  30. Galindo-MirandaJ.M. Guízar-GonzálezC. Becerril-BravoE.J. Moeller-ChávezG. León-BecerrilE. Vallejo-RodríguezR. Occurrence of emerging contaminants in environmental surface waters and their analytical methodology: A review.Water Sci. Technol. Water Supply20191971871188410.2166/ws.2019.087
    [Google Scholar]
  31. MugudamaniI. OkeS.A. GumedeT.P. SenboreS. Herbicides in water sources: Communicating potential risks to the population of mangaung metropolitan municipality, South Africa.Toxics202311653810.3390/toxics11060538 37368638
    [Google Scholar]
  32. Mangaung Metropolitan Municipality Integrated Development Plan (MMM), “Final Integrated Plan 2022/2027”.2022Available online: http://www.mangaung.co.za/wp-content/uploads/2022/05/2-Final-IDP-2022-2027-24.05.2022-Signed.pdf (accessed on 03 August 2023).
  33. OdendaalC. SeamanM.T. KempG. PattertonH.E. PattertonH.G. An LC-MS/MS based survey of contaminants of emerging concern in drinking water in South Africa.South Afric J. Sci.20151119/10610.17159/sajs.2015/20140401
    [Google Scholar]
  34. European Commission. Technical Guidance Document on Risk Assessment in Support of Commission Directive 93/67/ EEC on Risk Assessment for New Notified Substances and Commission Regulation (EC) No. 1488/94 on Risk Assessment for Existing Substances. Part II. EUR 20418 EN/2. European Chemicals Bureau Part II, 2003, pp. 7-179.Available online: https://echa.europa.eu/documents/10162/987906/tgdpart2_2ed_en.pdf/138b7b71-a069-428e-9036-62f4300b752f (Accessed on: 10 August 2023).
  35. ZhouS. Di PaoloC. WuX. ShaoY. SeilerT.B. HollertH. Optimization of screening-level risk assessment and priority selection of emerging pollutants: The case of pharmaceuticals in European surface waters.Environ. Int.201912811010.1016/j.envint.2019.04.034 31029973
    [Google Scholar]
  36. RivaF. ZuccatoE. DavoliE. FattoreE. CastiglioniS. Risk assessment of a mixture of emerging contaminants in surface water in a highly urbanized area in Italy.J. Hazard. Mater.201936110311010.1016/j.jhazmat.2018.07.099 30176408
    [Google Scholar]
  37. GossetA. WiestL. FildierA. LibertC. GiroudB. HammadaM. HervéM. SibeudE. VullietE. PoloméP. PerrodinY. Ecotoxicological risk assessment of contaminants of emerging concern identified by “suspect screening” from urban wastewater treatment plant effluents at a territorial scale.Sci. Total Environ.202177814627510.1016/j.scitotenv.2021.146275 33714835
    [Google Scholar]
  38. NannouC. KapraraE. PsaltouS. SalapasidouM. PalasantzaP.A. DiamantopoulosP. LambropoulouD.A. MitrakasM. ZouboulisA. Monitoring of a broad set of pharmaceuticals in wastewaters by high-resolution mass spectrometry and evaluation of heterogenous catalytic ozonation for their removal in a pre-industrial level unit.Analytica20223219521210.3390/analytica3020014
    [Google Scholar]
  39. ECOTOX (Ecotoxicology). ECOTOX. In USEPA database.2018Available online: https://cfpub.epa.gov/ecotox/search.cfm (Accessed on 26 July 2023).
  40. BrunG.L. BernierM. LosierR. DoeK. JackmanP. LeeH.B. Pharmaceutically active compounds in Atlantic Canadian sewage treatment plant effluents and receiving waters, and potential for environmental effects as measured by acute and chronic Aquatic Toxicity.Environ. Toxicol. Chem.20062582163217610.1897/05‑426R.1 16916036
    [Google Scholar]
  41. EricsonH. ThorsénG. KumbladL. Physiological effects of diclofenac, ibuprofen and propranolol on Baltic Sea blue mussels.Aquat. Toxicol.201099222323110.1016/j.aquatox.2010.04.017 20554059
    [Google Scholar]
  42. DavidA. PancharatnaK. Developmental anomalies induced by a non-selective COX inhibitor (ibuprofen) in zebrafish (Danio rerio).Environ. Toxicol. Pharmacol.200927339039510.1016/j.etap.2009.01.002 21783969
    [Google Scholar]
  43. KosmaC.I. LambropoulouD.A. AlbanisT.A. Investigation of PPCPs in wastewater treatment plants in Greece: Occurrence, removal and environmental risk assessment.Sci. Total Environ.2014466-46742143810.1016/j.scitotenv.2013.07.044 23933429
    [Google Scholar]
  44. BrauschJ.M. RandG.M. A review of personal care products in the aquatic environment: Environmental concentrations and toxicity.Chemosphere201182111518153210.1016/j.chemosphere.2010.11.018 21185057
    [Google Scholar]
  45. LiuN. JinX. FengC. WangZ. WuF. JohnsonA.C. XiaoH. HollertH. GiesyJ.P. Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: A proposed multiple-level system.Environ. Int.202013610545410.1016/j.envint.2019.105454 32032889
    [Google Scholar]
  46. Australian National Registration Authority for Agricultural and Veterinary chemicals (NRA). Evaluation of the Active Terbuthylazine in the Product Swimcareot Swimming Pool Algaecide; National Registration Authority for Agricultural and Veterinary Chemicals: Armidale, NSW, Australia.2001Available online: https://apvma.gov.au/sites/default/files/publication/14061-prs-terbuthylazine.pdf (accessed on 24 December 2022).
  47. PeiS. LiB. WangB. LiuJ. SongX. Distribution and ecological risk assessment of pharmaceuticals and personal care products in sediments of north canal, China.Water20221413199910.3390/w14131999
    [Google Scholar]
  48. BackhausT. FaustM. Predictive environmental risk assessment of chemical mixtures: A conceptual framework.Environ. Sci. Technol.20124652564257310.1021/es2034125 22260322
    [Google Scholar]
  49. BackhausT. AltenburgerR. FaustM. FreinD. FrischeT. JohanssonP. KehrerA. PorsbringT. Proposal for environmental mixture risk assessment in the context of the biocidal product authorization in the EU.Environ. Sci. Eur.2013251410.1186/2190‑4715‑25‑4
    [Google Scholar]
  50. BackhausT. KarlssonM. Screening level mixture risk assessment of pharmaceuticals in STP effluents.Water Res.20144915716510.1016/j.watres.2013.11.005
    [Google Scholar]
  51. KienzlerA. BoppS. HalderM. EmbryM. WorthA. Application of new statistical distribution approaches for environmental mixture risk assessment: A case study.Sci. Total Environ.201969369313351010.1016/j.scitotenv.2019.07.316 31357034
    [Google Scholar]
  52. MaaszG. MayerM. ZrinyiZ. MolnarE. KuzmaM. FodorI. PirgerZ. TakácsP. Spatiotemporal variations of pharmacologically active compounds in surface waters of a summer holiday destination.Sci. Total Environ.201967754555510.1016/j.scitotenv.2019.04.286 31063896
    [Google Scholar]
  53. Białk-BielińskaA. GrabarczykŁ. MulkiewiczE. PuckowskiA. StolteS. StepnowskiP. Mixture toxicity of six pharmaceuticals towards Aliivibrio fischeri, Daphnia magna, and Lemna minor.Environ. Sci. Pollut. Res. Int.20222918269772699110.1007/s11356‑021‑17928‑y 34907475
    [Google Scholar]
  54. FinckhS. BeckersL.M. BuschW. CarmonaE. DulioV. KramerL. KraussM. PosthumaL. SchulzeT. SlootwegJ. Von der OheP.C. BrackW. A risk based assessment approach for chemical mixtures from wastewater treatment plant effluents.Environ. Int.202216416410723410.1016/j.envint.2022.107234 35483182
    [Google Scholar]
  55. USEPA (United State Environmental Protection Agency). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment); USEPA: Washington, DC, USA.2004Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part-e (accessed on 10 July 2023).
  56. USEPA (United State Environmental Protection Agency). Regional Screening Levels (RSLs); USEPA: Washington, DC, USA.2021Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed on 27 July 2023).
  57. CK. MM. MM. Potential human risk of dissolved heavy metals in gold mine waters of Gauteng Province, South Africa.J. Toxicol. Environment. Heal. Sci.2018106566310.5897/JTEHS2018.0422
    [Google Scholar]
  58. MugudamaniI. OkeS.A. GumedeT.P. Influence of urban informal settlements on trace element accumulation in road dust and their possible health implications in ekurhuleni metropolitan municipality, South Africa.Toxics202210525310.3390/toxics10050253 35622666
    [Google Scholar]
  59. USEPA (United States Environmental Protection Agency), 2016, Chemical Search (IRIS); USEPA: Washington, DC, USA.2016Available online: https://cfpub.epa.gov/ncea/iris/search/index.cfm?keyword=atrazine (accessed on 13 July 2023).
  60. USEPA (United States Environmental Protection Agency), Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; Office of Emergency and Remedial Response: Washington, DC, USA.2002Available online: https://epa.gov/superfund/superfund-soil-screening-guidance (accessed on 13 July 2023).
  61. ShahidM. KhalidS. MurtazaB. AnwarH. ShahA.H. SaiderA. ShabbirZ. NiaziN.K. A critical analysis of wastewater use in agriculture and associated health risks in Pakistan.Environ. Geochem. Health2020312010.1007/s10653‑020‑00702‑3
    [Google Scholar]
  62. SantosJ.L. AparicioI. AlonsoE. Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants. A case study: Seville city (Spain).Environ. Int.200733459660110.1016/j.envint.2006.09.014 17084895
    [Google Scholar]
  63. YingG.G. KookanaR.S. KolpinD.W. Occurrence and removal of pharmaceutically active compounds in sewage treatment plants with different technologies.J. Environ. Monit.20091181498150510.1039/b904548a 19657534
    [Google Scholar]
  64. ShaoY. ChenZ. HollertH. ZhouS. DeutschmannB. SeilerT.B. Toxicity of 10 organic micropollutants and their mixture: Implications for aquatic risk assessment.Sci. Total Environ.20196661273128210.1016/j.scitotenv.2019.02.047 30970492
    [Google Scholar]
  65. LinX. XuJ. KellerA.A. HeL. GuY. ZhengW. SunD. LuZ. HuangJ. HuangX. LiG. Occurrence and risk assessment of emerging contaminants in a water reclamation and ecological reuse project.Sci. Total Environ.202074474414097710.1016/j.scitotenv.2020.140977 32755786
    [Google Scholar]
  66. CardiniA. PellegrinoE. ErcoliL. Predicted and measured concentration of pharmaceuticals in surface water of areas with increasing anthropic pressure: A case study in the coastal area of central Italy.Water20211320280710.3390/w13202807
    [Google Scholar]
  67. VeldhoenN. SkirrowR.C. BrownL.L.Y. van AggelenG. HelbingC.C. Effects of acute exposure to the non-steroidal anti-inflammatory drug ibuprofen on the developing North American Bullfrog (Rana catesbeiana) tadpole.Environ. Sci. Technol.20144817104391044710.1021/es502539g 25111458
    [Google Scholar]
  68. OlujimiO.O. FatokiO.S. OdendaalJ.P. OkonkwoJ.O. Endocrine disrupting chemicals (phenol and phthalates) in the South African environment: A need for more monitoring.Review. Water South Africa2010365671682
    [Google Scholar]
  69. YazdanM.M.S. KumarR. LeungS.W. The environmental and health impacts of steroids and hormones in wastewater effluent, as well as existing removal technologies: A review.Ecologies20223220622410.3390/ecologies3020016
    [Google Scholar]
  70. JinY. WangL. ChenG. LinX. MiaoW. FuZ. Exposure of mice to atrazine and its metabolite diaminochlorotriazine elicits oxidative stress and endocrine disruption.Environ. Toxicol. Pharmacol.201437782790
    [Google Scholar]
  71. WangY. ZhangS. CuiW. MengX. TangX. Polycyclic aromatic hydrocarbons and organochlorine pesticides in surface water from the Yongding River basin, China: Seasonal distribution, source apportionment, and potential risk assessment.Sci. Total Environ.201861841942910.1016/j.scitotenv.2017.11.066 29136593
    [Google Scholar]
  72. HernandoM. MezcuaM. FernándezalbaA. BarcelóD. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments.Talanta200669233434210.1016/j.talanta.2005.09.037 18970571
    [Google Scholar]
  73. GrungM. KällqvistT. SakshaugS. SkurtveitS. ThomasK.V. Environmental assessment of Norwegian priority pharmaceuticals based on the EMEA guideline.Ecotoxicol. Environ. Saf.200871232834010.1016/j.ecoenv.2007.10.015 18068226
    [Google Scholar]
  74. NannouC.I. KosmaC.I. AlbanisT.A. Occurrence of pharmaceuticals in surface waters: analytical method development and environmental risk assessment.Int. J. Environ. Anal. Chem.201595131242126210.1080/03067319.2015.1085520
    [Google Scholar]
  75. GurugeK.S. GoswamiP. TanoueR. NomiyamaK. WijesekaraR.G.S. DharmaratneT.S. First nationwide investigation and environmental risk assessment of 72 pharmaceuticals and personal care products from Sri Lankan surface waterways.Sci. Total Environ.201969068369510.1016/j.scitotenv.2019.07.042 31301508
    [Google Scholar]
  76. ČelićM. Jaén-GilA. Briceño-GuevaraS. Rodríguez-MozazS. GrosM. PetrovićM. Extended suspect screening to identify contaminants of emerging concern in riverine and coastal ecosystems and assessment of environmental risks.J. Hazard. Mater.2021404Pt A12410210.1016/j.jhazmat.2020.124102 33049635
    [Google Scholar]
  77. DuarteD.J. NiebaumG. LämmchenV. van HeijnsbergenE. OldenkampR. Hernández-LealL. SchmittH. RagasA.M.J. KlasmeierJ. Ecological risk assessment of pharmaceuticals in the transboundary vecht river (germany and the netherlands).Environ. Toxicol. Chem.202241364866210.1002/etc.5062 33818825
    [Google Scholar]
  78. WuJ. LiuJ. PanZ. WangB. ZhangD. Spatiotemporal distributions and ecological risk assessment of pharmaceuticals and personal care products in groundwater in North China.Nord. Hydrol.202051591192410.2166/nh.2020.001
    [Google Scholar]
  79. WandaE. NyoniH. MambaB. MsagatiT. Occurrence of emerging micropollutants in water systems in Gauteng, Mpumalanga and North West provinces, South Africa.Int. J. Environ. Res. Public Health20171417910.3390/ijerph14010079 28098799
    [Google Scholar]
  80. SyafrudinM. KristantiR.A. YuniartoA. HadibarataT. RheeJ. Al-onaziW.A. AlgarniT.S. AlmarriA.H. Al-MohaimeedA.M. Pesticides in drinking water: A review.Int. J. Environ. Res. Public Health202118246810.3390/ijerph18020468 33430077
    [Google Scholar]
  81. SathiakumarN. MacLennanP.A. MandelJ. DelzellE. A review of epidemiologic studies of triazine herbicides and cancer.Crit. Rev. Toxicol.201141sup1)(Suppl. 113410.3109/10408444.2011.554793 21425949
    [Google Scholar]
  82. NgqwalaN.P. MuchesaP. Occurrence of pharmaceuticals in aquatic environments: A review and potential impacts in South Africa.S. Afr. J. Sci.20201167/8573010.17159/sajs.2020/5730
    [Google Scholar]
  83. PérezD.J. IturburuF.G. CalderonG. OyesquiL.A.E. De GerónimoE. AparicioV.C. Ecological risk assessment of current-use pesticides and biocides in soils, sediments and surface water of a mixed land-use basin of the Pampas region, Argentina.Chemosphere202126312806110.1016/j.chemosphere.2020.128061 33297067
    [Google Scholar]
  84. GanaieM.I. JanI. MayerA.N. DarA.A. MayerI.A. AhmedP. SofiJ.A. Health risk assessment of pesticide residues in drinking water of upper jhelum region in kashmir valley-India by GC-MS/MS.Int. J. Anal. Chem.20232023680278211610.1155/2023/6802782 36741419
    [Google Scholar]
  85. ChenC. ZouW. ChenS. ZhangK. MaL. Ecological and health risk assessment of organochlorine pesticides in an urbanized river network of Shanghai, China.Environ. Sci. Eur.20203214210.1186/s12302‑020‑00322‑9
    [Google Scholar]
  86. AberaB. Van EchelpoelW. De CockA. TytgatB. KibretM. SpanogheP. MengistuD. AdgoE. NyssenJ. GoethalsP.L.M. VerleyenE. Environmental and human health risks of pesticide presence in the lake tana basin (Ethiopia).Sustainability202214211400810.3390/su142114008
    [Google Scholar]
  87. ShipinganaL.N.N. ShivarajuH.P. YashasS.R. Quantitative assessment of pharmaceutical drugs in a municipal wastewater and overview of associated risks.Appl. Water Sci.20221221610.1007/s13201‑022‑01570‑1
    [Google Scholar]
  88. KumarS. SharmaA.K. RawatS. JainD. GhoshS. Use of pesticides in agriculture and livestock animals and its impact on environment of India.Asian J. Environ. Sci.201385157
    [Google Scholar]
  89. Nicolopoulou-StamatiP. MaipasS. KotampasiC. StamatisP. HensL. Chemical pesticides and human health: The urgent need for a new concept in agriculture.Front. Public Health2016414810.3389/fpubh.2016.00148 27486573
    [Google Scholar]
  90. Rapp-WrightH. ReganF. WhiteB. BarronL.P. A year-long study of the occurrence and risk of over 140 contaminants of emerging concern in wastewater influent, effluent and receiving waters in the Republic of Ireland.Sci. Total Environ.202386016037910.1016/j.scitotenv.2022.160379 36427717
    [Google Scholar]
  91. HeysK.A. ShoreR.F. PereiraM.G. JonesK.C. MartinF.L. FrancisL. MartinF.L. Risk assessment of environmental mixture effects.RSC Advances2016653478444785710.1039/C6RA05406D
    [Google Scholar]
  92. Bouzas-MonroyA. WilkinsonJ.L. MellingM. BoxallA.B.A. Assessment of the potential ecotoxicological effects of pharmaceuticals in the world’s rivers.Environ. Toxicol. Chem.20224182008202010.1002/etc.5355 35730333
    [Google Scholar]
  93. MarkertN. RhiemS. TrimbornM. GuhlB. Mixture toxicity in the Erft River: assessment of ecological risks and toxicity drivers.Environ. Sci. Eur.20203215110.1186/s12302‑020‑00326‑5
    [Google Scholar]
  94. ThruppT.J. RunnallsT.J. ScholzeM. KugathasS. KortenkampA. SumpterJ.P. The consequences of exposure to mixtures of chemicals: Something from ‘nothing’ and ‘a lot from a little’ when fish are exposed to steroid hormones.Sci. Total Environ.2018619-62014821492
    [Google Scholar]
  95. ShoreR.F. TaggartM.A. SmitsJ. MateoR. RichardsN.L. FrydayS. Detection and drivers of exposure and effects of pharmaceuticals in higher vertebrates.Philos. Trans. R. Soc. Lond. B Biol. Sci.201436916562013057010.1098/rstb.2013.0570 25405960
    [Google Scholar]
  96. PaunI. PirvuF. IancuV.I. ChiriacF.L. Occurrence and transport of isothiazolinone-type biocides from commercial products to aquatic environment and environmental risk assessment.Int. J. Environ. Res. Public Health20221913777710.3390/ijerph19137777 35805435
    [Google Scholar]
  97. GozzoS. MolesS. KińskaK. OrmadM.P. MosteoR. GómezJ. LabordaF. SzpunarJ. Screening for antibiotics and their degradation products in surface and wastewaters of the POCTEFA territory by solid-phase extraction-UPLC-electrospray MS/MS.Water20221511410.3390/w15010014
    [Google Scholar]
  98. OjemayeC.Y. PampaninD.M. SydnesM.O. GreenL. PetrikL. The burden of emerging contaminants upon an Atlantic Ocean marine protected reserve adjacent to Camps Bay, Cape Town, South Africa.Heliyon2022812e1262510.1016/j.heliyon.2022.e12625 36619409
    [Google Scholar]
  99. BeldenJ.B. GilliomR.J. LydyM.J. How well can we predict the toxicity of pesticide mixtures to aquatic life?Integr. Environ. Assess. Manag.20073336437210.1002/ieam.5630030307 17695109
    [Google Scholar]
  100. HuntP.A. SathyanarayanaS. FowlerP.A. TrasandeL. Female reproductive disorders, diseases, and costs of exposure to endocrine disrupting chemicals in the European union.J. Clin. Endocrinol. Metab.201610141562157010.1210/jc.2015‑2873 27003299
    [Google Scholar]
  101. SelvarajuV. BaskaranS. AgarwalA. HenkelR. Environmental contaminants and male infertility: Effects and mechanisms.Andrologia2021531e1364610.1111/and.13646 32447772
    [Google Scholar]
  102. WaniA.A. DarA.A. JanI. SofiK.A. SofiJ.A. DarI.H. Method validation and simultaneous quantification of eight organochlorines/organophosphates in apple by gas chromatography.J. Sci. Food Agric.20199973687369210.1002/jsfa.9599 30666637
    [Google Scholar]
/content/journals/cac/10.2174/0115734110306162240527050732
Loading
/content/journals/cac/10.2174/0115734110306162240527050732
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test