Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Introduction

Leishmaniasis caused by Leishmania protozoa can be fatal if left untreated. An effective and safe human vaccine has still not been produced to eradicate the disease. Among vaccine development studies, dead vaccines are still known as the most reliable and cheapest method. The selection of an effective and safe adjuvant is important for killed vaccines. We have not found any studies in which hydroxyapatite particles were used as adjuvants in vaccine research against leishmaniasis.

Methods

In this study, spherical Hydroxyapatite (HAp) nanoparticles with dimensions of 100nm were synthesized. Then, these particles were combined with autoclaved antigens (ALA) to prepare vaccine formulations at different concentrations. To determine the immunogenicity of HAp, MTT cell viability analysis, nitric oxide (NO), and cytokine production abilities were investigated in J774 macrophage cells.

Results

According to the study results, it was determined that the cell viability level was 97% at a concentration of 200 µg/ml, and there was a 10-fold increase in NO production and an approximately 8.5-fold increase in IL-12 cytokine production ability compared to the control group.

Conclusion

Considering the study results and the non-toxic properties of HAp, we have shown that HAp can be used as an adjuvant in the development of new leishmania vaccines.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110308794240515063752
2024-05-21
2025-11-05
Loading full text...

Full text loading...

References

  1. KelleciK. Determination of immunostimulatory efficacy of benzimidazole derivatives against leishmania infantum.Sys Rev Pharm2022131282683010.21203/rs.3.rs‑1827207/v1
    [Google Scholar]
  2. KelleciK. GölebatmazE. In vitro determination of antileshmanial activities of benzimidazolium derivatives on l. major promastigotes and amastigotes.Acta Parasitol.2023681515510.1007/s11686‑022‑00632‑3 36348181
    [Google Scholar]
  3. BhorR. RafatiS. PaiK. Cytokine saga in visceral leishmaniasis.Cytokine202114715532210.1016/j.cyto.2020.155322 33127259
    [Google Scholar]
  4. KelleciK. AllahverdiyevA. BağirovaM. IhlamurM. AbamorE.Ş. Particulate and non-particle adjuvants in Leishmaniasis vaccine designs: A review.J. Vector Borne Dis.2023602125141 37417162
    [Google Scholar]
  5. MutisoJ.M. MachariaJ.C. GicheruM.M. A review of adjuvants for Leishmania vaccine candidates.J. Biomed. Res.2010241162510.1016/S1674‑8301(10)60004‑8 23554607
    [Google Scholar]
  6. MassonJ.D. ThibaudonM. BélecL. CrépeauxG. Calcium phosphate: A substitute for aluminum adjuvants?Expert Rev. Vaccines201716328929910.1080/14760584.2017.1244484 27690701
    [Google Scholar]
  7. KurodaE. CobanC. IshiiK.J. Particulate adjuvant and innate immunity: Past achievements, present findings, and future prospects.Int. Rev. Immunol.201332220922010.3109/08830185.2013.773326 23570316
    [Google Scholar]
  8. JiangD. PremachandraG.S. JohnstonC. HemS.L. Structure and adsorption properties of commercial calcium phosphate adjuvant.Vaccine200423569369810.1016/j.vaccine.2004.06.029 15542192
    [Google Scholar]
  9. HayashiM. AoshiT. KogaiY. NomiD. HasedaY. KurodaE. KobiyamaK. IshiiK.J. Optimization of physiological properties of hydroxyapatite as a vaccine adjuvant.Vaccine201634330631210.1016/j.vaccine.2015.11.059 26667613
    [Google Scholar]
  10. ZhangL. LiangZ. ChenC. YangX. FuD. BaoH. LiM. ShiS. YuG. ZhangY. ZhangC. ZhangW. XueC. SunB. Engineered hydroxyapatite nanoadjuvants with controlled shape and aspect ratios reveal their immunomodulatory potentials.ACS Appl. Mater. Interfaces20211350596625967210.1021/acsami.1c17804 34894655
    [Google Scholar]
  11. AgoltsovV.A. PopovaO.M. VeselovskyS.Y. ChastovA.A. SemivolosA.M. SolotovaN.V. Results of pre-clinical and clinical tests of organic hydroxyapatite as adjuvant of bacterial vaccine.Adv. Anim. Vet. Sci.20197758359210.17582/journal.aavs/2019/7.7.583.592
    [Google Scholar]
  12. Grandjean-LaquerriereA. TabaryO. JacquotJ. RichardD. FrayssinetP. GuenounouM. Laurent-MaquinD. LaquerriereP. GangloffS. Involvement of toll-like receptor 4 in the inflammatory reaction induced by hydroxyapatite particles.Biomaterials200728340040410.1016/j.biomaterials.2006.09.015 17010424
    [Google Scholar]
  13. LebreF. SridharanR. SawkinsM.J. KellyD.J. O’BrienF.J. LavelleE.C. The shape and size of hydroxyapatite particles dictate inflammatory responses following implantation.Sci. Rep.201771292210.1038/s41598‑017‑03086‑0 28592868
    [Google Scholar]
  14. WangX. LiX. ItoA. WatanabeY. TsujiN.M. Rod-shaped and fluorine-substituted hydroxyapatite free of molecular immunopotentiators stimulates anti-cancer immunity in vivo.Chem. Commun.201652447078708110.1039/C6CC02848A 27121009
    [Google Scholar]
  15. WangX. LiX. ItoA. WatanabeY. SogoY. HiroseM. OhnoT. TsujiN.M. Rod-shaped and substituted hydroxyapatite nanoparticles stimulating type 1 and 2 cytokine secretion.Colloids Surf. B Biointerfaces2016139101610.1016/j.colsurfb.2015.12.004 26700228
    [Google Scholar]
  16. ChandrasekarA. SagadevanS. DakshnamoorthyA. Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique.Int. J. Phys. Sci.201383216391645
    [Google Scholar]
  17. RyabenkovaY. JadavN. ConteM. HipplerM.F.A. Reeves-McLarenN. CoatesP.D. TwiggP. ParadkarA. Mechanism of hydrogen-bonded complex formation between ibuprofen and nanocrystalline hydroxyapatite.Langmuir201733122965297610.1021/acs.langmuir.6b04510 28267340
    [Google Scholar]
  18. OkadaM. FuruzonoT. Nano-sized ceramic particles of hydroxyapatite calcined with an anti-sintering agent.J. Nanosci. Nanotechnol.20077384885110.1166/jnn.2007.505 17450845
    [Google Scholar]
  19. Lara-OchoaS. Ortega-LaraW. Guerrero-BeltránC.E. Hydroxyapatite nanoparticles in drug delivery: Physicochemistry and applications.Pharmaceutics20211310164210.3390/pharmaceutics13101642 34683935
    [Google Scholar]
  20. GheisariH. KaramianE. AbdellahiM. A novel hydroxyapatite –Hardystonite nanocomposite ceramic.Ceram. Int.20154145967597510.1016/j.ceramint.2015.01.033
    [Google Scholar]
  21. MannS. FrascaK. ScherrerS. Henao-MartínezA.F. NewmanS. RamananP. SuarezJ.A. A review of leishmaniasis: Current knowledge and future directions.Curr. Trop. Med. Rep.20218212113210.1007/s40475‑021‑00232‑7 33747716
    [Google Scholar]
  22. VillarrealR. CasaleT.B. Commonly used adjuvant human vaccines: Advantages and side effects.J. Allergy Clin. Immunol. Pract.2020892953295710.1016/j.jaip.2020.04.045 32360184
    [Google Scholar]
  23. MasinaS.M. GicheruM. DemotzS.O. FaselN.J. Protection against cutaneous leishmaniasis in outbred vervet monkeys using a recombinant histone H1 antigen.J. Infect. Dis.200318881250125710.1086/378677 14551897
    [Google Scholar]
  24. MargaroniM. AgallouM. AthanasiouE. KammonaO. KiparissidesC. GaitanakiC. KaragouniE. Vaccination with poly(D,L-lactide-co-glycolide) nanoparticles loaded with soluble Leishmania antigens and modified with a TNFα-mimicking peptide or monophosphoryl lipid A confers protection against experimental visceral leishmaniasis.Int. J. Nanomedicine2017126169618410.2147/IJN.S141069 28883727
    [Google Scholar]
  25. RossiJ.F. FrayssinetP. MatciyakM. TupitsynN. Azoximer bromide and hydroxyapatite: Promising immune adjuvants in cancer.Cancer Biol. Med.202420121021103410.20892/j.issn.2095‑3941.2023.0222 38318840
    [Google Scholar]
  26. ZhangX. WeiM. ZhangZ. ZengY. ZouF. ZhangS. WangZ. ChenF. XiongH. LiY. ZhouL. LiT. ZhengQ. YuH. ZhangJ. GuY. ZhaoQ. LiS. XiaN. Risedronate-functionalized manganese-hydroxyapatite amorphous particles: A potent adjuvant for subunit vaccines and cancer immunotherapy.J. Control. Release2024367132610.1016/j.jconrel.2024.01.033 38244843
    [Google Scholar]
  27. RodríguezK. VillaltaM. MarínE. BriceñoM. LeónG. MonteroM.L. Physical characteristics of nano-Hydroxyapatite Pickering-emulsions and their adjuvant activity on the antibody response towards the Bothros asper snake venom.Mater. Sci. Eng. C2019100232910.1016/j.msec.2019.02.088 30948057
    [Google Scholar]
  28. AokiH. OhgakiM. KanoS. Effects of Adriacin-absorbing hydroxyapatite-sol on Ca-9 cell growth.Rep Inst Med Dent Eng19932713944
    [Google Scholar]
  29. MeenaR. KesariK.K. RaniM. PaulrajR. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human breast cancer cells (MCF-7).J. Nanopart. Res.201214271210.1007/s11051‑011‑0712‑5
    [Google Scholar]
  30. TangW. YuanY. LiuC. WuY. LuX. QianJ. Differential cytotoxicity and particle action of hydroxyapatite nanoparticles in human cancer cells.Nanomedicine20149339741210.2217/nnm.12.217 23614636
    [Google Scholar]
  31. HanY. LiS. CaoX. YuanL. WangY. YinY. QiuT. DaiH. WangX. Different inhibitory effect and mechanism of hydroxyapatite nanoparticles on normal cells and cancer cells in vitro and in vivo.Sci. Rep.201441713410.1038/srep07134 25409543
    [Google Scholar]
  32. WangX. IharaS. LiX. ItoA. SogoY. WatanabeY. TsujiN.M. YamazakiA. Si-doping increases the adjuvant activity of hydroxyapatite nanorods.Colloids Surf. B Biointerfaces201917430030710.1016/j.colsurfb.2018.11.026 30469051
    [Google Scholar]
  33. AllahverdiyevA. AbamorE.S. TosyaliO. BagirovaM. AcarT. MustafaevaZ. DermanS. Evaluation of in vitro and in vivo immunostimulatory activities of poly (lactic-co-glycolic acid) nanoparticles loaded with soluble and autoclaved Leishmania infantum antigens: A novel vaccine candidate against visceral leishmaniasis.Asian Pac. J. Trop. Med.201912835336410.4103/1995‑7645.262564
    [Google Scholar]
  34. Belkhelfa-SlimaniR. DjerdjouriB. Caffeic acid combined with autoclaved Leishmania major boosted the protection of infected BALB/c mice by enhancing IgG2 production, IFN-γ/TGF-β and iNO synthase/arginase1 ratios, and the death of infected phagocytes.Inflammopharmacology201826262163410.1007/s10787‑017‑0399‑z 28988279
    [Google Scholar]
  35. TosyaliO.A. AllahverdiyevA. BagirovaM. AbamorE.S. AydogduM. DinparvarS. AcarT. MustafaevaZ. DermanS. Nano-co-delivery of lipophosphoglycan with soluble and autoclaved leishmania antigens into PLGA nanoparticles: Evaluation of in vitro and in vivo immunostimulatory effects against visceral leishmaniasis.Mater. Sci. Eng. C202112011168410.1016/j.msec.2020.111684 33545846
    [Google Scholar]
  36. AskarizadehA. BadieeA. KhamesipourA. Development of nano-carriers for Leishmania vaccine delivery.Expert Opin. Drug Deliv.202017216718710.1080/17425247.2020.1713746 31914821
    [Google Scholar]
  37. RatnapriyaS. Keerti; Sahasrabuddhe, A.A.; Dube, A. Visceral leishmaniasis: An overview of vaccine adjuvants and their applications.Vaccine201937273505351910.1016/j.vaccine.2019.04.092 31103364
    [Google Scholar]
  38. BenneN. van DuijnJ. KuiperJ. JiskootW. SlütterB. Orchestrating immune responses: How size, shape and rigidity affect the immunogenicity of particulate vaccines.J. Control. Release201623412413410.1016/j.jconrel.2016.05.033 27221070
    [Google Scholar]
  39. GuerriniG. ViviA. GioriaS. PontiJ. MagrìD. HoevelerA. MedagliniD. CalzolaiL. Physicochemical characterization cascade of nanoadjuvant–antigen systems for improving vaccines.Vaccines20219654410.3390/vaccines9060544 34064212
    [Google Scholar]
  40. St.Pierre ,C.A. Endocytosis, phagocytosis, and innate immune responsesA dissertation.. Doctoral Dissertation, Immunology and Microbiology2010
    [Google Scholar]
  41. ShahR.R. O’HaganD.T. AmijiM.M. BritoL.A. The impact of size on particulate vaccine adjuvants.Nanomedicine20149172671268110.2217/nnm.14.193 25529570
    [Google Scholar]
  42. YanS. GuW. XuZ.P. Re-considering how particle size and other properties of antigen–adjuvant complexes impact on the immune responses.J. Colloid Interface Sci.201339511010.1016/j.jcis.2012.11.061 23312582
    [Google Scholar]
  43. ZhaoL. SethA. WibowoN. ZhaoC.X. MitterN. YuC. MiddelbergA.P.J. Nanoparticle vaccines.Vaccine201432332733710.1016/j.vaccine.2013.11.069 24295808
    [Google Scholar]
  44. NiikuraK. MatsunagaT. SuzukiT. KobayashiS. YamaguchiH. OrbaY. KawaguchiA. HasegawaH. KajinoK. NinomiyaT. IjiroK. SawaH. Gold nanoparticles as a vaccine platform: Influence of size and shape on immunological responses in vitro and in vivo.ACS Nano2013753926393810.1021/nn3057005 23631767
    [Google Scholar]
  45. WinkD.A. HinesH.B. ChengR.Y.S. SwitzerC.H. Flores-SantanaW. VitekM.P. RidnourL.A. ColtonC.A. Nitric oxide and redox mechanisms in the immune response.J. Leukoc. Biol.201189687389110.1189/jlb.1010550 21233414
    [Google Scholar]
/content/journals/cac/10.2174/0115734110308794240515063752
Loading
/content/journals/cac/10.2174/0115734110308794240515063752
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test