Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

PYX-106 is a fully human monoclonal antibody (mAb), targeting sialic acid binding immunoglobulin-like lectin-15 (Siglec-15), an immunosuppressive agent with widespread expression across various tumor types.

Methods

To facilitate the evaluation of immunogenicity for PYX-106 in human serum, a validated method was established to enable the detection (screening, confirmatory, and titration) of antibodies to PYX-106 in human serum samples.

Results

The Screening Cut-Point Factor (SCPF), Confirmatory Cut-Point (CCP), and Titration Cut-Point Factor (TCPF) were found to be 1.51, 26.9%, and 1.86, respectively. Sensitivity was determined to be 1.81 ng/mL in the screening assay and 1.25 ng/mL in the confirmatory assay. Low Positive Control (LPC) was set at 6.00 ng/mL, and High Positive Control (HPC) was set at 1000 ng/mL. The drug tolerance was up to 500 µg/mL at the HPC level, up to 241 µg/mL at the ADA 100 ng/mL level, and up to 38.9 µg/mL at the LPC level. The intra-assay percent coefficient of variation (%CV) was ≤ 2.1% for Positive Controls (PCs) in the screening assay and ≤ 1.0% for PCs in the confirmatory assay. The inter-assay %CV was ≤ 15.3% for PCs in the screening assay and ≤ 2.1% for PCs in the confirmatory assay. No hook effect, hemolysis effect, lipemia effect, or bilirubin interference was found in this ADA method. Anti-PYX-106 antibodies were found stable in human serum for at least 23 hours 51 minutes at room temperature or after six freeze/thaw cycles.

Conclusion

Anti-PYX-106 ADA bioanalytical assay validation was reported for the first time in any biological matrix. This ADA method has been successfully applied to human sample analysis to support a clinical study.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110295203240903045117
2024-09-10
2025-11-04
Loading full text...

Full text loading...

References

  1. WangJ. SunJ. LiuL.N. FliesD.B. NieX. TokiM. ZhangJ. SongC. ZarrM. ZhouX. HanX. ArcherK.A. O’NeillT. HerbstR.S. BotoA.N. SanmamedM.F. LangermannS. RimmD.L. ChenL. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy.Nat. Med.201925465666610.1038/s41591‑019‑0374‑x 30833750
    [Google Scholar]
  2. CaoG. XiaoZ. YinZ. Normalization cancer immunotherapy: Blocking Siglec-15!Signal Transduct. Target. Ther.2019411010.1038/s41392‑019‑0045‑x 31016034
    [Google Scholar]
  3. GuoZ. ZhangR. YangA.G. ZhengG. Diversity of immune checkpoints in cancer immunotherapy.Front. Immunol.202314112128510.3389/fimmu.2023.1121285 36960057
    [Google Scholar]
  4. RenX. Immunosuppressive checkpoint Siglec-15: A vital new piece of the cancer immunotherapy jigsaw puzzle.Cancer Biol. Med.201916220521010.20892/j.issn.2095‑3941.2018.0141 31516742
    [Google Scholar]
  5. LiB. ZhangB. WangX. ZengZ. HuangZ. ZhangL. WeiF. RenX. YangL. Expression signature, prognosis value, and immune characteristics of Siglec-15 identified by pan-cancer analysis.OncoImmunology202091180729110.1080/2162402X.2020.1807291 32939323
    [Google Scholar]
  6. LiQ. HuangZ. ChenY. YaoH. KeZ. HeX. QiuM. WangM. XiongZ. YangS. Integrative analysis of Siglec-15 mRNA in human cancers based on data mining.J. Cancer20201192453246410.7150/jca.38747 32201516
    [Google Scholar]
  7. SunJ. LuQ. SanmamedM.F. WangJ. Siglec-15 as an emerging target for next-generation cancer immunotherapy.Clin. Cancer Res.202127368068810.1158/1078‑0432.CCR‑19‑2925 32958700
    [Google Scholar]
  8. AngataT. TabuchiY. NakamuraK. NakamuraM. Siglec-15: An immune system Siglec conserved throughout vertebrate evolution.Glycobiology200717883884610.1093/glycob/cwm049 17483134
    [Google Scholar]
  9. PohA. Siglec-15: an attractive immunotherapy target.Cancer Discov.20201017810.1158/2159‑8290.CD‑NB2019‑136 31806628
    [Google Scholar]
  10. TakamiyaR. OhtsuboK. TakamatsuS. TaniguchiN. AngataT. The interaction between Siglec-15 and tumor-associated sialyl-Tn antigen enhances TGF-β secretion from monocytes/macrophages through the DAP12-Syk pathway.Glycobiology201323217818710.1093/glycob/cws139 23035012
    [Google Scholar]
  11. AngataT. Siglec-15: a potential regulator of osteoporosis, cancer, and infectious diseases.J. Biomed. Sci.20202711010.1186/s12929‑019‑0610‑1 31900164
    [Google Scholar]
  12. HaoJ.Q. NongJ.Y. ZhaoD. LiH.Y. SuD. ZhouL.J. DongY.J. ZhangC. CheN.Y. ZhangS.C. LinJ.Z. YangJ.B. ZhangH.T. WangJ.H. The significance of Siglec-15 expression in resectable non-small cell lung cancer.Neoplasma20206761204122210.4149/neo_2020_200220N161 32749846
    [Google Scholar]
  13. HuangR. ZhengJ. ShaoY. ZhuL. YangT. Siglec-15 as multifunctional molecule involved in osteoclast differentiation, cancer immunity and microbial infection.Prog. Biophys. Mol. Biol.2023177344110.1016/j.pbiomolbio.2022.10.006 36265694
    [Google Scholar]
  14. LuZ. ChengP. HuangF. LiJ. WangB. ZouS. ZhengZ. PengC. Significance of Siglec‐15 expression in colorectal cancer: association with advanced disease stage and fewer tumor‐infiltrating lymphocytes.J. Pathol. Clin. Res.20239212112810.1002/cjp2.303 36424637
    [Google Scholar]
  15. ShengK. WuY. LinH. FangM. XueC. LinX. LinX. Transcriptional regulation of Siglec-15 by ETS-1 and ETS-2 in hepatocellular carcinoma cells.Int. J. Mol. Sci.202324179210.3390/ijms24010792 36614238
    [Google Scholar]
  16. PillsburyC.E. FonsecaJ.A. DouganJ. AbukharmaH. LiuL.N. PorterC.C. Siglec-15 is a novel immunomodulatory protein and therapeutic target in childhood leukemia.Blood2020136Suppl. 16710.1182/blood‑2020‑142833
    [Google Scholar]
  17. KangF. ChenW. WangL. ZhangY. The diverse functions of Siglec-15 in bone remodeling and antitumor responses.Pharmacol. Res.202015510472810.1016/j.phrs.2020.104728 32112821
    [Google Scholar]
  18. HuJ. YuA. OthmaneB. QiuD. LiH. LiC. LiuP. RenW. ChenM. GongG. GuoX. ZhangH. ChenJ. ZuX. Siglec15 shapes a non-inflamed tumor microenvironment and predicts the molecular subtype in bladder cancer.Theranostics20211173089310810.7150/thno.53649 33537076
    [Google Scholar]
  19. MurugesanG. CorreiaV.G. PalmaA.S. ChaiW. LiC. FeiziT. MartinE. LauxB. FranzA. FuchsK. WeigleB. CrockerP.R. Siglec-15 recognition of sialoglycans on tumor cell lines can occur independently of sialyl Tn antigen expression.Glycobiology2020311445410.1093/glycob/cwaa048 32501471
    [Google Scholar]
  20. PillsburyC.E. FonsecaJ.A. DouganJ. AbukharmaH. Gonzalez-FlamencoG. ParkS.I. LiuL.N. PorterC.C. Siglec-15 is a novel immunomodulatory protein and therapeutic target in acute lymphoblastic leukemia.Blood2021138Suppl. 151551610.1182/blood‑2021‑153647
    [Google Scholar]
  21. LiangH. ChenQ. HuZ. ZhouL. MengQ. ZhangT. WangB. GeY. LuS. DingW. ZhouX. LiX. LinH. JiangL. DongJ. Siglec15 facilitates the progression of non-small cell lung cancer and is correlated with spinal metastasis.Ann. Transl. Med.202210628110.21037/atm‑22‑764 35434017
    [Google Scholar]
  22. HouX. ChenC. LanX. HeX. Unveiling the molecular features, relevant immune and clinical characteristics of SIGLEC15 in thyroid cancer.Front. Immunol.20221397578710.3389/fimmu.2022.975787 36159823
    [Google Scholar]
  23. LiangH. ZhouL. HuZ. GeY. ZhangT. ChenQ. WangB. LuS. DingW. DongJ. XueF. JiangL. Siglec15 checkpoint blockade for simultaneous immunochemotheraphy and osteolysis inhibition in lung adenocarcinoma spinal metastasis via a hollow nanoplatform.Small20221829210778710.1002/smll.202107787 35751455
    [Google Scholar]
  24. ShafiS. AungT.N. RobbinsC. ZugazagoitiaJ. VathiotisI. GavrielatouN. YaghoobiV. FernandezA. NiuS. LiuL.N. CusumanoZ.T. LeelatianN. ColeK. WangH. HomerR. HerbstR.S. LangermannS. RimmD.L. Development of an immunohistochemical assay for Siglec-15.Lab. Invest.2022102777177810.1038/s41374‑022‑00785‑9 35459795
    [Google Scholar]
  25. CaoX. ZhouY. MaoF. LinY. ZhouX. SunQ. Identification and characterization of three Siglec15-related immune and prognostic subtypes of breast-invasive cancer.Int. Immunopharmacol.202210610856110.1016/j.intimp.2022.108561 35151947
    [Google Scholar]
  26. LiT.J. JinK.Z. LiH. YeL.Y. LiP.C. JiangB. LinX. LiaoZ.Y. ZhangH.R. ShiS.M. LinM.X. FeiQ.L. XiaoZ.W. XuH.X. LiuL. YuX.J. WuW.D. SIGLEC15 amplifies immunosuppressive properties of tumor-associated macrophages in pancreatic cancer.Cancer Lett.202253014215510.1016/j.canlet.2022.01.026 35077803
    [Google Scholar]
  27. ZhangC. ZhouL. LiS. ZhaoJ. MengX. MaL. WangY. LiC. ZhengL. MingL. Obesity accelerates immune evasion of non-small cell lung carcinoma via TFEB-dependent upregulation of Siglec-15 and glycolytic reprogramming.Cancer Lett.202255021591810.1016/j.canlet.2022.215918 36150633
    [Google Scholar]
  28. JiangK.Y. QiL.L. LiuX.B. WangY. WangL. Prognostic value of Siglec-15 expression in patients with solid tumors: A meta-analysis.Front. Oncol.202312107393210.3389/fonc.2022.1073932 36713548
    [Google Scholar]
  29. LiuX. ZhangQ. LiangY. XiongS. CaiY. CaoJ. XuY. XuX. WuY. LuQ. XuX. LuoB. Nanoparticles (NPs)-mediated Siglec15 silencing and macrophage repolarization for enhanced cancer immunotherapy.Acta Pharm. Sin. B202313125048505910.1016/j.apsb.2023.07.012 38045048
    [Google Scholar]
  30. LenzaM.P. Egia-MendikuteL. Antoñana-VildosolaA. SoaresC.O. CoelhoH. CorzanaF. BoschA. ManishaP. QuintanaJ.I. OyenarteI. UnioneL. MoureM.J. AzkargortaM. AtxabalU. SobczakK. ElortzaF. SutherlandJ.D. BarrioR. MarceloF. Jiménez-BarberoJ. PalazonA. Ereño-OrbeaJ. Structural insights into Siglec-15 reveal glycosylation dependency for its interaction with T cells through integrin CD11b.Nat. Commun.2023141349610.1038/s41467‑023‑39119‑8 37311743
    [Google Scholar]
  31. WangJ. XuL. DingQ. LiX. WangK. XuS. LiuB. Siglec15 is a prognostic indicator and a potential tumor-related macrophage regulator that is involved in the suppressive immunomicroenvironment in gliomas.Front. Immunol.202314106506210.3389/fimmu.2023.1065062 37325664
    [Google Scholar]
  32. ChenQ. ChenB. WangC. HuL. WuQ. ZhuY. ZhangQ. Dynamic change in Siglec-15 expression in peritumoral macrophages confers an immunosuppressive microenvironment and poor outcome in glioma.Front. Immunol.202314115908510.3389/fimmu.2023.1159085 37234161
    [Google Scholar]
  33. AhmadM.S. BraoudakiM. PatelH. AhmadI. Shagufta; Siddiqui, S.S. Novel Siglec-15-Sia axis inhibitor leads to colorectal cancer cell death by targeting miR-6715b-3p and oncogenes.Front. Immunol.202314125491110.3389/fimmu.2023.1254911 37869015
    [Google Scholar]
  34. LiB. GuoY. YiY. HuangZ. RenY. WangH. YangL. Non-spatial and spatial heterogeneity revealed a suppressive immune feature of Siglec-15 in lung adenocarcinomas.J. Transl. Med.202321159910.1186/s12967‑023‑04489‑6 37674198
    [Google Scholar]
  35. HuangS. JiZ. XuJ. YangY. WuB. ChenQ. GengS. SiY. ChenJ. WeiY. WangC. AiZ. JiangJ. Siglec15 promotes the migration of thyroid carcinoma cells by enhancing the EGFR protein stability.Glycobiology202333646447510.1093/glycob/cwad037 37129515
    [Google Scholar]
  36. FrancisD.B. DouganJ. PillsburyC. ParkS. LangermannS. KoffJ.L. LiZ. FlowersC.R. PorterC.C. The immune checkpoint Siglec-15 in promoting immune dysregulation in non-Hodgkin’s lymphomas.Blood2023142Suppl. 14367436910.1182/blood‑2023‑190405
    [Google Scholar]
  37. MoreiraR.S. da SilvaM.M. de Melo VasconcelosC.F. da SilvaT.D. CordeiroG.G. Mattos-JrL.A. da Rocha PittaM.G. de Melo RêgoM.J.B. PereiraM.C. Siglec 15 as a biomarker or a druggable molecule for non-small cell lung cancer.J. Cancer Res. Clin. Oncol.202314919176511766110.1007/s00432‑023‑05437‑z 37843557
    [Google Scholar]
  38. HuangZ. GuoY. LiB. ShenM. YiY. LiL. ZhaoX. YangL. Siglec-15 on macrophages suppress the immune microenvironment in patients with PD-L1 negative non-metastasis lung adenocarcinoma.Cancer Gene Ther.202431342743810.1038/s41417‑023‑00713‑z 38072971
    [Google Scholar]
  39. FudabaH. MomiiY. HirakawaT. OnishiK. AsouD. MatsushitaW. KawasakiY. SugitaK. FujikiM. Sialic acid-binding immunoglobulin-like lectin-15 expression on peritumoral macrophages is a favorable prognostic factor for primary central nervous system lymphoma patients.Sci. Rep.2021111120610.1038/s41598‑020‑79742‑9 33441719
    [Google Scholar]
  40. ZhaoJ. YangH. HuH. LiuC. WeiM. ZhaoY. ChenY. CuiY. ChenP. XiongK. LuY. YangH. YangL. Prognostic value of PD-L1 and Siglec-15 expression in patients with nasopharyngeal carcinoma.Sci. Rep.20221211040110.1038/s41598‑022‑13997‑2 35729260
    [Google Scholar]
  41. ChenX. MoS. ZhangY. MaH. LuZ. YuS. ChenJ. Analysis of a novel immune checkpoint, Siglec‐15, in pancreatic ductal adenocarcinoma.J. Pathol. Clin. Res.20228326827810.1002/cjp2.260 35083884
    [Google Scholar]
  42. RashidS. SongD. YuanJ. MullinB.H. XuJ. Molecular structure, expression, and the emerging role of Siglec‐15 in skeletal biology and cancer.J. Cell. Physiol.202223731711171910.1002/jcp.30654 34893976
    [Google Scholar]
  43. ShafiS. AungT.N. XirouV. GavrielatouN. VathiotisI.A. FernandezA. MoutafiM. YaghoobiV. HerbstR.S. LiuL.N. LangermannS. RimmD.L. Quantitative assessment of Siglec-15 expression in lung, breast, head, and neck squamous cell carcinoma and bladder cancer.Lab. Invest.2022102101143114910.1038/s41374‑022‑00796‑6 35581307
    [Google Scholar]
  44. PonceR. AbadL. AmaravadiL. GelzleichterT. GoreE. GreenJ. GuptaS. HerzykD. HurstC. IvensI.A. KawabataT. MaierC. MounhoB. RupB. ShankarG. SmithH. ThomasP. WierdaD. Immunogenicity of biologically-derived therapeutics: Assessment and interpretation of nonclinical safety studies.Regul. Toxicol. Pharmacol.200954216418210.1016/j.yrtph.2009.03.012 19345250
    [Google Scholar]
  45. SchellekensH. Immunogenicity of therapeutic proteins: Clinical implications and future prospects.Clin. Ther.200224111720174010.1016/S0149‑2918(02)80075‑3 12501870
    [Google Scholar]
  46. KorenE. ZuckermanL. Mire-SluisA. Immune responses to therapeutic proteins in humans--clinical significance, assessment and prediction.Curr. Pharm. Biotechnol.20023434936010.2174/1389201023378175 12463417
    [Google Scholar]
  47. DucretA. AckaertC. BessaJ. BunceC. HicklingT. JawaV. KroenkeM.A. LamberthK. ManinA. PennyH.L. SmithN. TerszowskiG. TourdotS. SpindeldreherS. Assay format diversity in pre-clinical immunogenicity risk assessment: Toward a possible harmonization of antigenicity assays.MAbs2022141199352210.1080/19420862.2021.1993522 34923896
    [Google Scholar]
  48. DuJ. YangY. ZhuL. WangS. YuC. LiuC. LongC. ChenB. XuG. ZouL. WangL. Method validation of a bridging immunoassay in combination with acid-dissociation and bead treatment for detection of anti-drug antibody.Heliyon202393e1399910.1016/j.heliyon.2023.e13999 36915535
    [Google Scholar]
  49. HoofringS.A. LopezR. HockM.B. KaliyaperumalA. PatelS.K. SwansonS.J. ChirmuleN. StarcevicM. Immunogenicity testing strategy and bioanalytical assays for antibody-drug conjugates.Bioanalysis2013591041105510.4155/bio.13.10 23641695
    [Google Scholar]
  50. MylerH. Pedras-VasconcelosJ. PhillipsK. HottensteinC.S. ChamberlainP. DevanaryanV. GleasonC. GoodmanJ. ManningM.S. PurushothamaS. RichardsS. ShenH. ZoghbiJ. AmaravadiL. BargerT. BowenS. BowsherR.R. Clements-EganA. GengD. GoletzT.J. GunnG.R. HallettW. HodsdonM.E. JanelsinsB.M. JawaV. KamondiS. KirshnerS. KramerD. LiangM. LindleyK. LiuS. LiuZ. McNallyJ. MikulskisA. NelsonR. AhbariM.R. QuQ. RuppelJ. SnoeckV. SongA. YanH. WareM. Anti-drug antibody validation testing and reporting harmonization.AAPS J.2022241410.1208/s12248‑021‑00649‑y 34853961
    [Google Scholar]
  51. CivoliF. KasinathA. CaiX.Y. WadhwaM. ExleyA. OldfieldP. AlvandkouhiS. SchaffarG. ChappellJ. BowsherR. DevanarayanV. MariniJ. RebarchakS. AndersonM. KoppenburgV. LesterT. Recommendations for the development and validation of immunogenicity assays in support of biosimilar programs.AAPS J.2020221710.1208/s12248‑019‑0386‑y 31792633
    [Google Scholar]
  52. WadhwaM. KnezevicI. KangH.N. ThorpeR. Immunogenicity assessment of biotherapeutic products: An overview of assays and their utility.Biologicals201543529830610.1016/j.biologicals.2015.06.004 26144595
    [Google Scholar]
  53. XiangD. LiN. LiuL. YuH. LiX. ZhaoT. LiuD. GongX. Development and validation of enzyme-linked immunosorbent assays for the measurement of infliximab and anti-drug antibody levels.Heliyon2023911e2185810.1016/j.heliyon.2023.e21858 38034789
    [Google Scholar]
  54. ShankarG. DevanarayanV. AmaravadiL. BarrettY.C. BowsherR. Finco-KentD. FiscellaM. GorovitsB. KirschnerS. MoxnessM. ParishT. QuarmbyV. SmithH. SmithW. ZuckermanL.A. KorenE. Recommendations for the validation of immunoassays used for detection of host antibodies against biotechnology products.J. Pharm. Biomed. Anal.20084851267128110.1016/j.jpba.2008.09.020 18993008
    [Google Scholar]
  55. Mire-SluisA.R. BarrettY.C. DevanarayanV. KorenE. LiuH. MaiaM. ParishT. ScottG. ShankarG. ShoresE. SwansonS.J. TaniguchiG. WierdaD. ZuckermanL.A. Recommendations for the design and optimization of immunoassays used in the detection of host antibodies against biotechnology products.J. Immunol. Methods20042891-211610.1016/j.jim.2004.06.002 15251407
    [Google Scholar]
  56. LeeK. LeeS. JungS. ChinH.S. Analysis of ocular fluid in patients with ranibizumab-recalcitrant neovascular age-related macular degeneration who have serum anti-ranibizumab antibodies.Graefes Arch. Clin. Exp. Ophthalmol.2023261123581358710.1007/s00417‑023‑06146‑6 37318582
    [Google Scholar]
  57. QinQ. GongL. Current analytical strategies for antibody-drug conjugates in biomatrices.Molecules20222719629910.3390/molecules27196299 36234836
    [Google Scholar]
  58. LiuT. TongY. GaoJ. FangW. WuJ. PengX. FanX. ChenX. SunJ. CaoS. LiZ. GongL. QinQ. JuD. Development of a bridging ELISA for detection of antibodies against ZV0203 in cynomolgus monkey serum.J. Pharmacol. Toxicol. Methods202311910721010.1016/j.vascn.2022.107210 36028046
    [Google Scholar]
  59. WyantT. YangL. RosarioM. Comparison of the ELISA and ECL assay for vedolizumab anti-drug antibodies: assessing the impact on pharmacokinetics and safety outcomes of the phase 3 gemini trials.AAPS J.2021231310.1208/s12248‑020‑00518‑0 33200296
    [Google Scholar]
  60. AoyamaM. ManoY. Quantification of anti-drug antibodies against E6011, an anti-fractalkine monoclonal antibody, in monkey and human serum, by an electrochemiluminescence assay.J. Pharmacol. Toxicol. Methods202312410747010.1016/j.vascn.2023.107470 37689367
    [Google Scholar]
  61. JohnsonD. SimmonsE. AbdeenS. KinneA. ParmerE. RinkerS. ThystrupJ. RamaswamyS. BowsherR.R. Sensitive assay design for detection of anti-drug antibodies to biotherapeutics that lack an immunoglobulin Fc domain.Sci. Rep.20211111546710.1038/s41598‑021‑95055‑x 34326436
    [Google Scholar]
  62. ShibataH. NishimuraK. MiyamaC. TadaM. SuzukiT. SaitoY. Ishii-WatabeA. Comparison of different immunoassay methods to detect human anti-drug antibody using the WHO erythropoietin antibody reference panel for analytes.J. Immunol. Methods2018452737710.1016/j.jim.2017.09.009 28970009
    [Google Scholar]
  63. WuY. LiuX. ChenY. WoodsR. LeeN. YangH. ChowdhuryP. RoskosL.K. WhiteW.I. An electrochemiluminescence (ECL)-based assay for the specific detection of anti-drug antibodies of the IgE isotype.J. Pharm. Biomed. Anal.201386738110.1016/j.jpba.2013.06.005 23988731
    [Google Scholar]
  64. SwansonS.J. BussiereJ. Immunogenicity assessment in non-clinical studies.Curr. Opin. Microbiol.201215333734710.1016/j.mib.2012.05.015 22770538
    [Google Scholar]
  65. WhittinghamS. A solid phase radioimmunoassay for detection of antibodies to extractable nuclear antigens.J. Immunol. Methods1983611738110.1016/0022‑1759(83)90010‑8 6406611
    [Google Scholar]
  66. BeegM. NobiliA. OrsiniB. RogaiF. GilardiD. FiorinoG. DaneseS. SalmonaM. GarattiniS. GobbiM. A Surface Plasmon Resonance-based assay to measure serum concentrations of therapeutic antibodies and anti-drug antibodies.Sci. Rep.201991206410.1038/s41598‑018‑37950‑4 30765716
    [Google Scholar]
  67. LofgrenJ.A. DhandapaniS. PennucciJ.J. AbbottC.M. MytychD.T. KaliyaperumalA. SwansonS.J. MullenixM.C. Comparing ELISA and surface plasmon resonance for assessing clinical immunogenicity of panitumumab.J. Immunol.2007178117467747210.4049/jimmunol.178.11.7467 17513798
    [Google Scholar]
  68. Real-FernándezF. CimazR. RossiG. SimoniniG. GianiT. PagniniI. PapiniA.M. RoveroP. Surface plasmon resonance-based methodology for anti-adalimumab antibody identification and kinetic characterization.Anal. Bioanal. Chem.2015407247477748510.1007/s00216‑015‑8915‑8 26210546
    [Google Scholar]
  69. WyantT. YangL. LirioR.A. RosarioM. Vedolizumab immunogenicity with long-term or interrupted treatment of patients with inflammatory bowel disease.J. Clin. Pharmacol.20216191174118110.1002/jcph.1877 33908636
    [Google Scholar]
  70. Mojtahed PoorS. UlshöferT. GabrielL.A. HenkeM. KöhmM. BehrensF. GeisslingerG. ParnhamM.J. BurkhardtH. SchiffmannS. Immunogenicity assay development and validation for biological therapy as exemplified by ustekinumab.Clin. Exp. Immunol.2019196225927510.1111/cei.13261 30656642
    [Google Scholar]
  71. FiorottiC.K. Immunogenicity considerations for antibody-drug conjugates: a focus on neutralizing antibody assays.Bioanalysis2018102657010.4155/bio‑2017‑0229 29243486
    [Google Scholar]
  72. BurbeloP.D. HiraiH. IssaA.T. KingmanA. LernmarkÅ. IvarssonS.A. NotkinsA.L. IadarolaM.J. Comparison of radioimmunoprecipitation with luciferase immunoprecipitation for autoantibodies to GAD65 and IA-2β.Diabetes Care201033475475610.2337/dc09‑1938 20086252
    [Google Scholar]
  73. NicolasX. HurbinF. PeriquetM. RichardsS. SensingerC. WelchK. An HaackK. Pharmacokinetics of alglucosidase alfa manufactured at the 4000-L scale in participants with pompe disease: A phase 3/4 open-label study.Clin. Pharmacol. Drug Dev.202312121185119310.1002/cpdd.1314 37705424
    [Google Scholar]
  74. SathiyaV. KumarV.R. Harmonised methods for detection of insulin immunogenicity.Int. J. Pharm. Investig.202414230631610.5530/ijpi.14.2.38
    [Google Scholar]
  75. YinF. AdhikariD. LiuX.F. WangJ. YangW. BaloghG.A. SimonT. LeiW. SquicciariniM. BruceL. KeY. DyszelM. HarrimanS. PinkasJ. A novel electrochemiluminescence (ECL) immunoassay for the quantitation of monoclonal antibody (mAb) PYX-106 in human serum.Curr. Anal. Chem.202420643844810.2174/0115734110293837240320042928
    [Google Scholar]
  76. U.S. FDA. Guidance on immunogenicity testing of therapeutic protein products – developing and validating assays for anti-drug antibody detection.2019Available from https://www.fda.gov/media/119788/download
    [Google Scholar]
  77. Guideline on immunogenicity assessment of therapeutic proteins. 2017. Available from:https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-immunogenicity-assessment-therapeutic-proteins-revision-1_en.pdf
/content/journals/cac/10.2174/0115734110295203240903045117
Loading
/content/journals/cac/10.2174/0115734110295203240903045117
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ADA; ECL; immunogenicity; mAb; MSD; oncology; PYX-106; siglec-15; validation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test