Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Since the mid-20th century, polychlorinated biphenyls (PCBs) have emerged as one of the foremost anthropogenic organic pollutants in aquatic environments. Microphytobenthic algae of the genus have been recurrently employed in laboratory experiments to assess sediment toxicity. Recently, a novel strain of benthic diatoms belonging to the genus has been identified and characterized from PCB-contaminated sediments in the coastal region of Sevastopol Bay (Black Sea). This species of algae has high biomass productivity, the ability to synthesize fucoxanthin, and a variety of fatty acids. is capable of metabolizing organic pollutants in bottom sediments.

Objective

The objective of the study was to investigate the effects of PCBs on the growth patterns and physiological responses of through a 9-day experiment, subjecting the microalgae to varying concentrations of PCBs ranging from 0.0003 to 100 mg/L.

Results

The experiments revealed that could grow in environments containing concentrations of PCBs ranging from 0.0003 to 10 mg/L, indicating its resilience to moderate levels of PCB exposure. Additionally, adaptive biochemical processes were observed in under PCB exposure. Notably, on the sixth day of the experiment, the culture transitioned into a stationary growth phase, accompanied by significant increases in total lipid content by 1.6 times and fucoxanthin by 4.6 times compared to the control. However, a pronounced decrease in culture growth was observed at a PCB concentration of 100 mg/L, coinciding with reductions in total lipid and fucoxanthin content, suggesting a tolerance threshold of between 10 and 100 mg/L PCB concentrations. Furthermore, alterations in the fatty acid profile of were noted, characterized by a decrease in polyene content and an increase in monoene fatty acids, under PCB exposure.

Conclusion

The study underscores the resilience of to moderate PCB concentrations and highlights the complex physiological responses and adaptive mechanisms initiated in response to PCB exposure. The findings contribute to understanding the toxic effects of PCBs on and provide insights into potential mechanisms underlying these effects.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110315375240628051809
2024-07-08
2025-11-02
Loading full text...

Full text loading...

References

  1. NgoubeyouP.S.K. WolkersdorferC. NdibewuP.P. AugustynW. Toxicity of polychlorinated biphenyls in aquatic environments: A review.Aquat. Toxicol.2022251910628410.1016/j.aquatox.2022.106284 36087490
    [Google Scholar]
  2. CuiX. DongJ. HuangZ. LiuC. QiaoX. WangX. ZhaoX. ZhengB. ShenJ. Polychlorinated biphenyls in the drinking water source of the Yangtze River: characteristics and risk assessment.Environ. Sci. Eur.20203212910.1186/s12302‑020‑00309‑6
    [Google Scholar]
  3. MalakhovaL.V. EgorovV.N. MalakhovaT.V. Organochlorine compounds in the ecosystem components of the Sevastopol bays, the marine area of the Cape Martyan nature reserve and the Yalta port. Water: chem. ecol.,20191-2, 57-62. Available from: https://elibrary.ru/item.asp?id=37613775
    [Google Scholar]
  4. MalakhovaL.V. VoitsekhovskaiaV.V. MalakhovaT.V. Organochlorine pollutants in components of the black sea coastal areas ecosystem of crimea from 2010 to 2022.Oceanol. Acad. Sci.202363S1Suppl. 1S165S17310.1134/S0001437023070093
    [Google Scholar]
  5. MadgettA.S. YatesK. WebsterL. McKenzieC. BrownlowA. MoffatC.F. The concentration and biomagnification of PCBs and PBDEs across four trophic levels in a marine food web.Environ. Pollut.2022309311975210.1016/j.envpol.2022.119752 35841989
    [Google Scholar]
  6. Oregel-ZamudioE. Alvarez-BernalD. Franco-HernandezM.O. Buelna-OsbenH.R. MoraM. Bioaccumulation of PCBs and PBDEs in fish from a tropical lake Chapala, Mexico.Toxics202191024110.3390/toxics9100241 34678937
    [Google Scholar]
  7. PrinceK.D. CrottyS.M. CettaA. DelfinoJ.J. PalmerT.M. DenslowN.D. AngeliniC. Mussels drive polychlorinated biphenyl (PCB) biomagnification in a coastal food web.Sci. Rep.2021111918010.1038/s41598‑021‑88684‑9 33911140
    [Google Scholar]
  8. LogominovaI.V. MalakhovaL.V. MalakhovaT.V. ArtovA.M. KorostelevaA.V. PostnikovaA.N. New data on organochlorine pollutants in the subcutaneous fat of Black Sea cetaceans. nat. res.Russ. Acad. Sci.2018481625Available from: https://elibrary.ru/download/elibrary_36646167_77457101.pdf
    [Google Scholar]
  9. MillsS.A.III ThalD.I. BarneyJ. A summary of the 209 PCB congener nomenclature.Chemosphere20076891603161210.1016/j.chemosphere.2007.03.052 17499337
    [Google Scholar]
  10. ElnarA.A. DesorF. MarinF. SoulimaniR. NemosC. Lactational exposure to low levels of the six indicator non-dioxin-like polychlorinated biphenyls induces DNA damage and repression of neuronal activity, in juvenile male mice.Toxicology2015328576510.1016/j.tox.2014.12.011 25510870
    [Google Scholar]
  11. Peivasteh-roudsariL. Barzegar-bafroueiR. SharifiK.A. AzimisalimS. KaramiM. AbedinzadehS. AsadinezhadS. Tajdar-oranjB. MahdaviV. AlizadehA.M. SadigharaP. FerranteM. ContiG.O. AliyevaA. Mousavi KhaneghahA. Origin, dietary exposure, and toxicity of endocrine-disrupting food chemical contaminants: A comprehensive review.Heliyon202397e1814010.1016/j.heliyon.2023.e18140 37539203
    [Google Scholar]
  12. BurkhardL.P. LukasewyczM.T. Toxicity equivalency values for polychlorinated biphenyl mixtures.Environ. Toxicol. Chem.200827352953410.1897/07‑349.1 17967071
    [Google Scholar]
  13. JayarajR. MeghaP. SreedevP. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment.Interdiscip. Toxicol.201693-49010010.1515/intox‑2016‑0012
    [Google Scholar]
  14. PuniaA. SinghR.P. ChauhanN.S. Impact of xenobiotics under changing climate scenario.Xenobiotics in urban ecosystems; Singh, R.; Singh, P.; Tripathi, S.; Chandra, K.K. BhadouriaR. ChamSpringer202332610.1007/978‑3‑031‑35775‑6_1
    [Google Scholar]
  15. MontanoL. PirontiC. PintoG. RicciardiM. BuonoA. BrognaC. VenierM. PiscopoM. AmoresanoA. MottaO. Polychlorinated biphenyls (PCBs) in the environment: Occupational and exposure events, effects on human health and fertility.Toxics202210736510.3390/toxics10070365 35878270
    [Google Scholar]
  16. BrumleyC.M. HaritosV.S. AhokasJ.T. HoldwayD.A. Validation of biomarkers of marine pollution exposure in sand flathead using Aroclor 1254.Aquat. Toxicol.199531324926210.1016/0166‑445X(94)00074‑Z
    [Google Scholar]
  17. SkotvoldT. SavinovV. Regional distribution of PCBs and presence of technical PCB mixtures in sediments from Norwegian and Russian Arctic Lakes.Sci. Total Environ.20033061-3859710.1016/S0048‑9697(02)00486‑2 12699920
    [Google Scholar]
  18. LynnS.G. PriceD.J. BirgeW.J. KilhamS.S. Effect of nutrient availability on the uptake of PCB congener 2,2′,6,6′-tetrachlorobiphenyl by a diatom (Stephanodiscus minutulus) and transfer to a zooplankton (Daphnia pulicaria).Aquat. Toxicol.2007831243210.1016/j.aquatox.2007.03.007 17452056
    [Google Scholar]
  19. MouatJ.S. LiX. NeierK. ZhuY. MordauntC.E. La MerrillM.A. LehmlerH.J. JonesM.P. LeinP.J. SchmidtR.J. LaSalleJ.M. Networks of placental DNA methylation correlate with maternal serum PCB concentrations and child neurodevelopment.Environ. Res.202322011522710.1016/j.envres.2023.115227 36608759
    [Google Scholar]
  20. DeVitoM. BokkersB. van DuursenM.B.M. van EdeK. FeeleyM. Antunes Fernandes GáspárE. HawsL. KennedyS. PetersonR.E. HoogenboomR. NoharaK. PetersenK. RiderC. RoseM. SafeS. SchrenkD. WheelerM.W. WikoffD.S. ZhaoB. van den BergM. The 2022 world health organization reevaluation of human and mammalian toxic equivalency factors for polychlorinated dioxins, dibenzofurans and biphenyls.Regul. Toxicol. Pharmacol.202414610552510.1016/j.yrtph.2023.105525 37972849
    [Google Scholar]
  21. CurtisS.W. TerrellM.L. JacobsonM.H. CobbD.O. JiangV.S. NeblettM.F. GerkowiczS.A. SpencerJ.B. MarderM.E. BarrD.B. ConneelyK.N. SmithA.K. MarcusM. Thyroid hormone levels associate with exposure to polychlorinated biphenyls and polybrominated biphenyls in adults exposed as children.Environ. Health20191817510.1186/s12940‑019‑0509‑z 31443693
    [Google Scholar]
  22. Vidal-LiñánL. BellasJ. SorianoJ.A. Concha-GrañaE. MuniateguiS. BeirasR. Bioaccumulation of PCB-153 and effects on molecular biomarkers acetylcholinesterase, glutathione-S-transferase and glutathione peroxidase in Mytilus galloprovincialis mussels.Environ. Pollut.201621488589110.1016/j.envpol.2016.04.083 27176625
    [Google Scholar]
  23. LiuM. FanS. RongZ. QiuH. YanS. NiH. DongZ. Exposure to polychlorinated biphenyls (PCBs) affects the histology and antioxidant capability of the clam Cyclina sinensis.Front. Mar. Sci.202310107687010.3389/fmars.2023.1076870
    [Google Scholar]
  24. SchlezingerJ.J. KellerJ. VerbruggeL.A. StegemanJ.J. 3,3′,4,4′-Tetrachlorobiphenyl oxidation in fish, bird and reptile species: Relationship to cytochrome P450 1A inactivation and reactive oxygen production.Comp. Biochem. Physiol. C. Comp. Pharmacol. Toxicol.2000125327328610.1016/S0742‑8413(99)00112‑7 11790349
    [Google Scholar]
  25. ViarengoA. CanesiL. PerticaM. LivingstoneD.R. Seasonal variations in the antioxidant defence systems and lipid peroxidation of the digestive gland of mussels.Comp. Biochem. Physiol. C Comp. Pharmacol.19911001-218719010.1016/0742‑8413(91)90151‑I 1677853
    [Google Scholar]
  26. AliM.E.M. Abd El-AtyA.M. BadawyM.I. AliR.K. Removal of pharmaceutical pollutants from synthetic wastewater using chemically modified biomass of green alga Scenedesmus obliquus.Ecotoxicol. Environ. Saf.201815114415210.1016/j.ecoenv.2018.01.012 29331919
    [Google Scholar]
  27. AmaroH.M. SalgadoE.M. NunesO.C. PiresJ.C.M. EstevesA.F. Microalgae systems environmental agents for wastewater treatment and further potential biomass valorisation.J. Environ. Manage.202333711767810.1016/j.jenvman.2023.117678 36948147
    [Google Scholar]
  28. YuL. XiaW. DuH. The toxic effects of petroleum pollutants to microalgae in marine environment.Mar. Pollut. Bull.202420111623510.1016/j.marpolbul.2024.116235 38508122
    [Google Scholar]
  29. RempelA. GutkoskiJ.P. BiolchiG.N. BiduskiB. HoffR.B. PerinM. TreichelH. CollaL.M. Microalgae growth using treated domestic effluent added to emerging pollutants: Removal mechanism and generation of by products.J. Water Process Eng.20235510417510.1016/j.jwpe.2023.104175
    [Google Scholar]
  30. Galb ́an-Malag ́on, C. J.; Del Vento, S.; Berrojalbiz, N.; Ojeda, M. J. Polychlorinated biphenyls, hexachlorocyclohexanes and hexachlorobenzene in seawater and phytoplankton from the Southern Ocean (Weddell, South Scotia, and Bellingshausen Seas.Environ. Sci. Technol.201347115578558710.1021/es400030q
    [Google Scholar]
  31. FekryA.N. QiblaweyH. AlmomaniF. Mercury removal by microalgae: Recent breakthroughs and prospects.Algal Res.20248010354710.1016/j.algal.2024.103547
    [Google Scholar]
  32. PengJ. CaoK.L. LvS.B. HuY.X. LinJ. ZhouQ.Z. WangJ.H. Algal strains, treatment systems and removal mechanisms for treating antibiotic wastewater by microalgae.J. Water Process Eng.20235610426610.1016/j.jwpe.2023.104266
    [Google Scholar]
  33. ZhouJ.L. YangL. HuangK.X. ChenD.Z. GaoF. Mechanisms and application of microalgae on removing emerging contaminants from wastewater: A review.Bioresour. Technol.202236412804910.1016/j.biortech.2022.128049 36191750
    [Google Scholar]
  34. FitzgeraldS.A. SteuerJ.J. Association of polychlorinated biphenyls (PCBs) with live algae and total lipids in rivers: A field-based approach.Sci. Total Environ.20063541607410.1016/j.scitotenv.2004.11.025 16376697
    [Google Scholar]
  35. SongX. LiuB.F. KongF. SongQ. RenN.Q. RenH.Y. New insights into rare earth element-induced microalgae lipid accumulation: Implication for biodiesel production and adsorption mechanism.Water Res.202425112113410.1016/j.watres.2024.121134 38244297
    [Google Scholar]
  36. FisherN.S. WursterC.F. Individual and combined effects of temperature and polychlorinated biphenyls on the growth of three species of phytoplankton.Environ. Pollut.19735320521210.1016/0013‑9327(73)90089‑X
    [Google Scholar]
  37. Halm-LemeilleM.P. Abbaszadeh FardE. LatireT. FerardJ.F. CostilK. LebelJ.M. BureauR. SerpentiniA. The effect of different polychlorinated biphenyls on two aquatic models, the green alga Pseudokirchneriella subcapitata and the haemocytes from the European abalone Haliotis tuberculata.Chemosphere201411012012810.1016/j.chemosphere.2014.02.023 24630249
    [Google Scholar]
  38. DeanK.E. ShaferM.M. ArmstrongD.E. Particle-mediated transport and fate of a hydrophobic organic contaminant in southern Lake Michigan: the role of major water column particle species.J. Great Lakes Res.199319248049610.1016/S0380‑1330(93)71234‑4
    [Google Scholar]
  39. RyabushkoL.I. BalychevaD.S. BondarenkoA.V. ZheleznovaS.N. BegunA.A. StonikI.V. Different aspects of studying a diatom Cylindrotheca closterium (Ehrenberg) Reimann et Lewin 1964 in natural and laboratory conditions.Mar. Biolog.J.201942526210.21072/mbj.2019.04.2.06
    [Google Scholar]
  40. GevorgizR.G. GontcharovA.A. ZheleznovaS.N. MalakhovaL.V. AlyomovaT.E. MaokaT. NekhoroshevM.V. Biotechnological potential of a new strain of Cylindrotheca fusiformis producing fatty acids and fucoxanthin.Bioresour. Technol. Rep.20221810109810.1016/j.biteb.2022.101098
    [Google Scholar]
  41. AraújoC.V.M. DizF.R. LaizI. LubiánL.M. BlascoJ. Moreno-GarridoI. Sediment integrative assessment of the Bay of Cádiz (Spain): An ecotoxicological and chemical approach.Environ. Int.200935683184110.1016/j.envint.2009.02.003 19318227
    [Google Scholar]
  42. Moreno-GarridoI. HampelM. LubiánL.M. BlascoJ. Sediment toxicity tests using benthic marine microalgae Cylindrotheca closterium (Ehremberg) Lewin and Reimann (Bacillariophyceae).Ecotoxicol. Environ. Saf.200354329029510.1016/S0147‑6513(02)00077‑5 12651184
    [Google Scholar]
  43. BeckerA.E. CopplestoneD. Cadmium uptake from sediment by Cylindrotheca closterium and the effect of diatom presence on partitioning of cadmium between sediment and water: A laboratory study.Limnol. Oceanogr.20196462550256810.1002/lno.11204
    [Google Scholar]
  44. MarellaT.K. López-PachecoI.Y. Parra-SaldívarR. DixitS. TiwariA. Wealth from waste: Diatoms as tools for phycoremediation of wastewater and for obtaining value from the biomass.Sci. Total Environ.2020724113796010.1016/j.scitotenv.2020.137960 32408422
    [Google Scholar]
  45. PiwowarskaD. KiedrzyńskaE. Xenobiotics as a contemporary threat to surface waters.Ecohydrol. Hydrobiol.202222233735410.1016/j.ecohyd.2021.09.003
    [Google Scholar]
  46. SilvestreF. Signaling pathways of oxidative stress in aquatic organisms exposed to xenobiotics.J. Exp. Zool. A Ecol. Integr. Physiol.2020333643644810.1002/jez.2356 32216128
    [Google Scholar]
  47. RyabushkoV.I. ZheleznovaS.N. GevorgizR.G. BobkoN.I. LelekovA.S. The medium for intensive culture of the diatom Cylindrotheca closterium(Ehrenb.) Reimann et Lewin (Bacillariophyta).Int. J. Algae201618327928610.1615/InterJAlgae.v18.i3.70
    [Google Scholar]
  48. KurzJ. BallschmiterK. Vapour pressures, aqueous solubilities, Henry’s law constants, partition coefficients between gas/water (Kgw), N-octanol/water (Kow) and gas/N-octanol (Kgo) of 106 polychlorinated diphenyl ethers (PCDE).Chemosphere199938357358610.1016/S0045‑6535(98)00212‑4 10901675
    [Google Scholar]
  49. MiazekK. KratkyL. SulcR. JiroutT. AguedoM. RichelA. GoffinD. Effect of organic solvents on microalgae growth, metabolism and industrial bioproduct extraction: A review.Int. J. Mol. Sci.2017187142910.3390/ijms18071429 28677659
    [Google Scholar]
  50. AgatovaA.I. ArzhanovaN.V. LapinaN.M. NaletovaI.A. TorgunovaN.I. Guidelines for modern biochemical methods for studying water systems that are promising for fishing and mariculture.MoscowVNIRO publishing house2007120
    [Google Scholar]
  51. ZheleznovaS.N. GevorgizR.G. MalakhovA.S. Relationship of fukoxantine concentrations and common lipids in biomass of diatomic algae Cylindrotheca closterium (Ehrenb.).Reimann et Lewin. Curr. Iss. Biolog. Phys. Chem.201833472475Available from:https://www.elibrary.ru/download/elibrary_36275112_42999856.pdf
    [Google Scholar]
  52. MackayD. SangS. VlahosP. DiamondM. GobasF. DolanD. A rate-constant model of chemical dynamics in a lake ecosystem: PCBs in Lake Ontario.J. Great Lakes Res.199420462564210.1016/S0380‑1330(94)71183‑7
    [Google Scholar]
  53. Konat-StepowiczJ. KowalewskaG. PCBs in phytoplankton in the Odra Estuary.Oceanologia2003453491506
    [Google Scholar]
  54. StapletonH.M. SkubinnaJ. BakerJ.E. Seasonal dynamics of PCB and toxaphene bioaccumulation within a Lake Michigan food web.J. Great Lakes Res.2002281526410.1016/S0380‑1330(02)70562‑5
    [Google Scholar]
  55. HardingL.W.Jr PhillipsJ.H. Jr Polychlorinated biphenyl (PCB) uptake by marine phytoplankton.Mar. Biol.197849210311110.1007/BF00387109
    [Google Scholar]
  56. GojkovicZ. SimanskyS. SanabriaA. MárováI. GarbayoI. VílchezC. Interaction of naturally occurring phytoplankton with the biogeochemical cycling of mercury in aquatic environments and its effects on global hg pollution and public health.Microorganisms2023118203410.3390/microorganisms11082034 37630594
    [Google Scholar]
  57. WangH. KostelJ.A. St. AmandA.L. GrayK.A. 2 The response of a laboratory stream system to PCB exposure: study of periphytic and sediment accumulation patterns.Water Res.199933183749376110.1016/S0043‑1354(99)00126‑8
    [Google Scholar]
  58. BiggsD.C. RowlandR.G. O’ConnorsH.B.Jr PowersC.D. WursterC.F. A comparison of the effects of chlordane and PCB on the growth, photosynthesis, and cell size of estuarine phytoplankton.Environ. Pollut.197815425326310.1016/0013‑9327(78)90002‑2
    [Google Scholar]
  59. KarickhoffS. BrownD. ScottT. Sorption of hydrophobic pollutants on natural sediments.Water Res.197913324124810.1016/0043‑1354(79)90201‑X
    [Google Scholar]
  60. SwackhamerD.L. SkoglundR.S. Bioaccumulation of PCBs by algae: Kinetics versus equilibrium.Environ. Toxicol. Chem.199312583183810.1002/etc.5620120506
    [Google Scholar]
  61. SkoglundR.S. StangeK. SwackhamerD.L. A kinetics model for predicting the accumulation of PCBs in phytoplankton.Environ. Sci. Technol.19963072113212010.1021/es950206d
    [Google Scholar]
  62. MagnussonK. MagnussonM. ÖstbergP. GranbergM. TiseliusP. Bioaccumulation of 14C-PCB 101 and 14C-PBDE 99 in the marine planktonic copepod Calanus finmarchicus under different food regimes.Mar. Environ. Res.2007631678110.1016/j.marenvres.2006.07.001 16949662
    [Google Scholar]
  63. JabuschT.W. SwackhamerD.L. Subcellular accumulation of polychlorinated biphenyls in the green alga Chlamydomonas reinhardtii.Environ. Toxicol. Chem.200423122823283010.1897/03‑431.1
    [Google Scholar]
  64. LedermanT.C. RheeG.Y. Bioconcentration of a hexachlorobiphenyl in Great Lakes planktonic algae.Can. J. Fish. Aquat. Sci.198239338038710.1139/f82‑055
    [Google Scholar]
  65. RyabushkoV.I. ZheleznovaS.N. NekhoroshevM.V. Effect of nitrogen on fucoxanthin accumulation in the diatom Cylindrotheca closterium (Ehrenb.).Reimann et Lewin. Int. J. Algae2017191798410.1615/InterJAlgae.v19.i1.70
    [Google Scholar]
  66. YangS. WuR.S.S. KongR.Y.C. Physiological and cytological responses of the marine diatom Skeletonema costatum to 2,4-dichlorophenol.Aquat. Toxicol.2002601-2334110.1016/S0166‑445X(01)00258‑2 12204585
    [Google Scholar]
  67. Halling-SørensenB. NyholmN. KuskK.O. JacobssonE. Influence of nitrogen status on the bioconcentration of hydrophobic organic compounds to Selenastrum capricornutum.Ecotoxicol. Environ. Saf.2000451334210.1006/eesa.1999.1818 10677265
    [Google Scholar]
  68. SkoglundR.S. SwackhamerD.L. Fate of hydrophobic organic contaminants: processes affecting uptake by phytoplankton.In: Environmental Chemistry of Lakes and Reservoirs; ACS Publications,199423755957310.1021/ba‑1994‑0237.ch018
    [Google Scholar]
  69. SkoglundR.S. SwackhamerD.L. Evidence for the use of organic carbon as the sorbing matrix in the modeling of PCB accumulation on plankton.Environ. Sci. Technol.19993391516151910.1021/es980710t
    [Google Scholar]
  70. MaY. ShenW. TangT. LiZ. DaiR. Environmental estrogens in surface water and their interaction with microalgae: A review.Sci. Total Environ.2022807Pt 115063710.1016/j.scitotenv.2021.150637 34592293
    [Google Scholar]
  71. BaeM. KimM-B. ParkY-K. Health benefits of fucoxanthin in the prevention of chronic diseases.Biochim. Biophys. Acta Mol. Cell Biol. Lipids18651113310.1016/j.bbalip.2020.158618 31931174
    [Google Scholar]
  72. DinN.A.S. Mohd AlayudinS. Sofian-SengN.S. RahmanH.A. Mohd RazaliN.S. LimS.J. Wan MustaphaW.A. Brown algae as functional food source of Fucoxanthin: A review.Foods20221115223510.3390/foods11152235 35954003
    [Google Scholar]
  73. KiokiasS. GordonM.H. Antioxidant properties of carotenoids In Vitro and In Vivo.Food Rev. Int.20042029912110.1081/FRI‑120037155
    [Google Scholar]
  74. LiangY. MaedaY. YoshinoT. MatsumotoM. TanakaT. Profiling of fatty acid methyl esters from the oleaginous diatom Fistulifera sp. strain JPCC DA0580 under nutrition-sufficient and -deficient conditions.J. Appl. Phycol.20142662295230210.1007/s10811‑014‑0265‑y
    [Google Scholar]
  75. GonçalvesS. KahlertM. AlmeidaS.F.P. FigueiraE. A freshwater diatom challenged by Zn: Biochemical, physiological and metabolomic responses of Tabellaria flocculosa(Roth) Kützing.Environ. Pollut.201823895997110.1016/j.envpol.2018.01.111 29715753
    [Google Scholar]
  76. YingL. Kang-senM. Shi-chunS. Effects of harvest stage on the total lipid and fatty acid composition of fourCylindrotheca strains.Chin. J. Oceanology Limnol.200220215716110.1007/BF02849653
    [Google Scholar]
  77. OlofssonM. LamelaT. NilssonE. BergéJ.P. Del PinoV. UronenP. LegrandC. Seasonal variation of lipids and fatty acids of the microalgae Nan-nochloropsis oculata grown in outdoor large-scale photobioreactors.Energies2012551577159210.3390/en5051577
    [Google Scholar]
  78. FilimonovaV. GonçalvesF. MarquesJ.C. De TrochM. GonçalvesA.M.M. Fatty acid profiling as bioindicator of chemical stress in marine organisms: A review.Ecological Indic.20166765767210.1016/j.ecolind.2016.03.044
    [Google Scholar]
  79. HuangZ. QadeerA. ZhengS. GeF. ZhangK. YinD. ZhengB. ZhaoX. Fatty acid profile as an efficient bioindicator of PCB bioaccumulation in a freshwater lake food web: A stable isotope guided investigation. J. Hazard. Mater.,2022423(Pt B), 12712110.1016/j.jhazmat.2021.127121 34534807
    [Google Scholar]
  80. CohenZ. NormanH.A. HeimerY.M. Potential use of substituted pyridazinones for selecting polyunsaturated fatty acid overproducing cell lines of algae.Phytochemistry199332225926410.1016/S0031‑9422(00)94978‑1
    [Google Scholar]
  81. Sicko-GoadL. EvansM.S. LazinskyD. HallJ. SimmonsM.S. Effects of chlorinated benzenes on diatom fatty acid composition and quantitative morphology. IV. Pentachlorobenzene and comparison with trichlorobenzene isomers.Arch. Environ. Contam. Toxicol.198918565666810.1007/BF01225004 2802670
    [Google Scholar]
  82. RobertS. MansourM.P. BlackburnS.I. Metolachlor-mediated selection of a microalgal strain producing novel polyunsaturated fatty acids.Mar. Biotechnol.20079214615310.1007/s10126‑006‑6102‑9 17160636
    [Google Scholar]
  83. DemaillyF. ElfekyI. MalbezinL. Le GuédardM. EonM. BessouleJ.J. Feurtet-MazelA. DelmasF. MazzellaN. GonzalezP. MorinS. Impact of diuron and S-metolachlor on the freshwater diatom Gomphonema gracile: Complementarity between fatty acid profiles and different kinds of ecotoxicological impact-endpoints.Sci. Total Environ.201968896096910.1016/j.scitotenv.2019.06.347 31726578
    [Google Scholar]
  84. KohH.G. RyuA.J. JeonS. JeongK.J. JeongBr. ChangY.K. Photosynthetic improvement of industrial microalgae for biomass and biofuel production.Microbial Photosynthesis. WangQ. SingaporeSpringer202028531710.1007/978‑981‑15‑3110‑1_14
    [Google Scholar]
  85. ConvertiA. CasazzaA.A. OrtizE.Y. PeregoP. Del BorghiM. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production.Chem. Eng. Process.20094861146115110.1016/j.cep.2009.03.006
    [Google Scholar]
  86. HuQ. SommerfeldM. JarvisE. GhirardiM. PosewitzM. SeibertM. DarzinsA. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances.Plant J.200854462163910.1111/j.1365‑313X.2008.03492.x 18476868
    [Google Scholar]
  87. ThompsonG.A.Jr Lipids and membrane function in green algae.Biochim. Biophys. Acta Lipids Lipid Metab.199613021174510.1016/0005‑2760(96)00045‑8 8695653
    [Google Scholar]
  88. FilimonovaV. GonçalvesF. MarquesJ.C. De TrochM. GonçalvesA.M.M. Biochemical and toxicological effects of organic (herbicide Primextra® Gold TZ) and inorganic (copper) compounds on zooplankton and phytoplankton species.Aquat. Toxicol.2016177334310.1016/j.aquatox.2016.05.008 27239776
    [Google Scholar]
/content/journals/cac/10.2174/0115734110315375240628051809
Loading
/content/journals/cac/10.2174/0115734110315375240628051809
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test