Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Aims and Objectives

This study aimed to carry out the green synthesis of palladium nanoparticles (Pd NPs) using the aqueous leaves extract of The appearance of a characteristic surface plasmon resonance peak at 410 nm confirmed the synthesis of Pd NPs.

Methods

The average particle sizes of 13 nm were observed by using the leaf concentrations of 10 mL with a certain amount of PdCl2 (0.001 M) at 25°C. The Pd NPs, as synthesized under the optimized conditions (10 mL extract + 60°C + 0.001 M PdCl), were spherical in shape, small in size, and uniformly distributed, as depicted by HR-TEM images.

Results

FTIR, XRD, DLS, and zeta potential further confirmed the formation of Pd NPs. The Pd NPs synthesized at optimized conditions exhibited strong catalytic activity in dye Eosin yellow, Rose Bengal, Tartrazine, and Ponceau S degradation by discoloration of dyes in 3 hrs. The removal of all dyes by the Pd NPs was optimized by varying specific operating parameters, such as initial dye concentration, solution pH, irradiation time, and temperature.

Conclusion

This high activity of Pd NPs may be due to their small size, high dispersion, and surface-capping phytochemicals.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110333006240910061201
2024-09-20
2025-11-03
Loading full text...

Full text loading...

References

  1. KoraA.J. RastogiL. Catalytic degradation of anthropogenic dye pollutants using palladium nanoparticles synthesized by gum olibanum, a glucuronoarabinogalactan biopolymer.Ind. Crops Prod.20168111010.1016/j.indcrop.2015.11.055
    [Google Scholar]
  2. DaneshvarE. KoushaM. KoutahzadehN. SohrabiM.S. BhatnagarA. Biosorption and bioaccumulation studies of acid Orange 7 dye by Ceratophylum demersum.Environ. Prog. Sustain. Energy201332228529310.1002/ep.11623
    [Google Scholar]
  3. DenizF. Optimization of biosorptive removal of dye from aqueous system by cone shell of Calabrian pine.Sci. World J.2014201411010.1155/2014/138986 25405213
    [Google Scholar]
  4. DahriM.K. KoohM.R.R. LimL.B.L. Remediation of rhodamine b dye from aqueous solution using casuarina equisetifolia cone powder as a low-cost adsorbent.Adv. Phys. Chem.2016201617
    [Google Scholar]
  5. OzdesD. GundogduA. DuranC. SenturkH.B. Evaluation of adsorption characteristics of malachite green onto almond shell (Prunus dulcis).Sep. Sci. Technol.201045142076208510.1080/01496395.2010.504479
    [Google Scholar]
  6. QadaE.N.E. AllenS.J. WalkerG.M. Adsorption of Methylene Blue onto activated carbon produced from steam activated bituminous coal: A study of equilibrium adsorption isotherm.Chem. Eng. J.2008135174184
    [Google Scholar]
  7. GilA. AssisF.C.C. AlbenizS. KoriliS.A. Removal of dyes from wastewaters by adsorption on pillared clays.Chem. Eng. J.201116831032104010.1016/j.cej.2011.01.078
    [Google Scholar]
  8. BasseyR.B. OremosuA.A. OsinubiA.A. The awareness of medical students in Nigerian universities about the use of plastinated specimens for anatomical studies.Maced. J. Med. Sci.20121512629
    [Google Scholar]
  9. MahmoudM.A. PoncheriA. BadrY. Abd El WahedM.G. Photocatalytic degradation of methyl red dye.S. Afr. J. Sci.2009105299303
    [Google Scholar]
  10. JunejoY. SirajuddinB. BaykalA. SafdarM. BalouchA. A novel green synthesis and characterization of Ag NPs with its ultra-rapid catalytic reduction of methyl green dye.Appl. Surf. Sci.201429049950310.1016/j.apsusc.2013.11.106
    [Google Scholar]
  11. GautamP.K. GautamR.K. BanerjeeS. LofranoG. SanromanM.A. ChattopadhyayaM.C. PandeyJ.D. Preparation of activated carbon from Alligator weed (Alternenthera philoxeroids) and its application for tartrazine removal: Isotherm, kinetics and spectroscopic analysis.J. Environ. Chem. Eng.2015342560256810.1016/j.jece.2015.08.004
    [Google Scholar]
  12. HassanS.S. Sirajuddin; Solangi, A.R.; Agheem, M.H.; Junejo, Y.; Kalwar, N.H.; Tagar, Z.A. Ultra-fast catalytic reduction of dyes by ionic liquid recoverable and reusable mefenamic acid derived gold nanoparticles.J. Hazard. Mater.20111901-31030103610.1016/j.jhazmat.2011.04.047 21561710
    [Google Scholar]
  13. ZenasniM.A. MeroufelB. MerlinA. GeorgeB. Adsorption of Congo Red from Aqueous Solution Using CTAB-Kaolin from Bechar Algeria.J. Surf. Eng. Mater. Adv. Technol.20144633234110.4236/jsemat.2014.46037
    [Google Scholar]
  14. WangX.S. ZhouY. JiangY. SunC. The removal of basic dyes from aqueous solutions using agricultural by-products.J. Hazard. Mater.20081572-337438510.1016/j.jhazmat.2008.01.004 18262725
    [Google Scholar]
  15. HameedB. DinA. AhmadA. Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies.J. Hazard. Mater.2007141381982510.1016/j.jhazmat.2006.07.049 16956720
    [Google Scholar]
  16. GongR. JinY. ChenF. ChenJ. LiuZ. Enhanced malachite green removal from aqueous solution by citric acid modified rice straw.J. Hazard. Mater.2006137286587010.1016/j.jhazmat.2006.03.010 16621265
    [Google Scholar]
  17. BulutE. ÖzacarM. Şengilİ.A. Adsorption of malachite green onto bentonite: Equilibrium and kinetic studies and process design.Microporous Mesoporous Mater.2008115323424610.1016/j.micromeso.2008.01.039
    [Google Scholar]
  18. BhakyaS. MuthukrishnanS. SukumaranM. MuthukumarM. Senthil KumarT. RaoM.V. Catalytic Degradation of Organic Dyes using Synthesized Silver Nanoparticles: A Green Approach.Bioremediation & Biodegradation.201565110
    [Google Scholar]
  19. CurriM.L. ComparelliR. CozzoliP.D. MascoloG. AgostianoA. Colloidal oxide nanoparticles for the photocatalytic degradation of organic dye.Mater. Sci. Eng. C2003231-228528910.1016/S0928‑4931(02)00250‑3
    [Google Scholar]
  20. ChengB. LeY. YuJ. Preparation and enhanced photocatalytic activity of Ag@TiO2 core–shell nanocomposite nanowires.J. Hazard. Mater.20101771-397197710.1016/j.jhazmat.2010.01.013 20080343
    [Google Scholar]
  21. ZhangX. ZhangX. FengR. LiuL. MengH. Synthesis, characterization and catalytic activity of Au nanoparticles supported on PANI/α-Fe2O3 composite carriers.Mater. Chem. Phys.20121362-355556010.1016/j.matchemphys.2012.07.025
    [Google Scholar]
  22. GiriS.K. DasN.N. PradhanG.C. Synthesis and characterization of magnetite nanoparticles using waste iron ore tailings for adsorptive removal of dyes from aqueous solution.Colloids Surf. A Physicochem. Eng. Asp.20113891-3434910.1016/j.colsurfa.2011.08.052
    [Google Scholar]
  23. NagarajaR. KottamN. GirijaC.R. NagabhushanaB.M. Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route.Powder Technol.2012215-216216919710.1016/j.powtec.2011.09.014
    [Google Scholar]
  24. SadeghiB. RostamiA. MomeniS.S. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity.Spectrochim. Acta A Mol. Biomol. Spectrosc.201513432633210.1016/j.saa.2014.05.078 25022505
    [Google Scholar]
  25. NaseemT. FarrukhM.A. Antibacterial Activity of Green Synthesis of Iron Nanoparticles Using Lawsonia inermis and Gardenia jasminoides Leaves Extract.J. Chem.201520151710.1155/2015/912342
    [Google Scholar]
  26. RolimW.R. PelegrinoM.T. de Araújo LimaB. FerrazL.S. CostaF.N. BernardesJ.S. RodiguesT. BrocchiM. SeabraA.B. Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity.Appl. Surf. Sci.2019463667410.1016/j.apsusc.2018.08.203
    [Google Scholar]
  27. MubarakAli, D.; Thajuddin, N.; Jeganathan, K.; Gunasekaran, M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens.Colloids Surf. B Biointerfaces201185236036510.1016/j.colsurfb.2011.03.009 21466948
    [Google Scholar]
  28. VelusamyP. DasJ. PachaiappanR. VaseeharanB. PandianK. Greener approach for synthesis of antibacterial silver nanoparticles using aqueous solution of neem gum (Azadirachta indica L.).Ind. Crops Prod.20156610310910.1016/j.indcrop.2014.12.042
    [Google Scholar]
  29. El-RahmanA.F.A. MohammadT.G.M. Green synthesis of silver nanoparticle using Eucalyptus globulus leaf extract and its antibacterial activity.J. Appl. Sci. Res.20131064376440
    [Google Scholar]
  30. NagajyothiP.C. MuthuramanP. SreekanthT.V.M. KimD.H. ShimJ. Green synthesis: In-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells.Arab. J. Chem.201710221522510.1016/j.arabjc.2016.01.011
    [Google Scholar]
  31. SivarajR. RahmanP.K.S.M. RajivP. NarendhranS. VenckateshR. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity.Spectrochim. Acta A Mol. Biomol. Spectrosc.201412925525810.1016/j.saa.2014.03.027 24747845
    [Google Scholar]
  32. NasrollahzadehM. Mohammad SajadiS. Green synthesis of copper nanoparticles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3 + 2] cycloaddition of azides and alkynes at room temperature.J. Colloid Interface Sci.201545714114710.1016/j.jcis.2015.07.004 26164245
    [Google Scholar]
  33. TamulyC. HazarikaM. BordoloiM. Biosynthesis of Au nanoparticles by Gymnocladus assamicus and its catalytic activity.Mater. Lett.201310827627910.1016/j.matlet.2013.07.020
    [Google Scholar]
  34. VijilvaniiC. BindhuM.R. FrincyF.C. AlSalhiM.S. SabithaS. SaravanakumarK. DevanesanS. UmadeviM. AljaafrehM.J. AtifM. Antimicrobial and catalytic activities of biosynthesized gold, silver and palladium nanoparticles from Solanum nigurum leaves. J Photochem.Photobiol. B. Bio.2020202111713
    [Google Scholar]
  35. KalaiselviA. RoopanS.M. MadhumithaG. RamalingamC. ElangoG. Synthesis and characterization of palladium nanoparticles using Catharanthus roseus leaf extract and its application in the photo-catalytic degradation.Spectrochim. Acta A Mol. Biomol. Spectrosc.201513511611910.1016/j.saa.2014.07.010 25062057
    [Google Scholar]
  36. SureshD. ShobharaniR.M. NethravathiP.C. Pavan KumarM.A. NagabhushanaH. SharmaS.C. Artocarpus gomezianus aided green synthesis of ZnO nanoparticles: Luminescence, photocatalytic and antioxidant properties.Spectrochim. Acta A Mol. Biomol. Spectrosc.201514112813410.1016/j.saa.2015.01.048 25668693
    [Google Scholar]
  37. FrancisS. NairK.M. PaulN. KoshyE.P. MathewB. Catalytic activities of green synthesized silver and gold nanoparticles.Mater. Today Proc.201999710410.1016/j.matpr.2019.02.042
    [Google Scholar]
  38. PaulB. BhuyanB. Dhar PurkayasthaD. DeyM. DharS.S. Green synthesis of gold nanoparticles using Pogestemon benghalensis (B) O. Ktz. leaf extract and studies of their photocatalytic activity in degradation of methylene blue.Mater. Lett.2015148374010.1016/j.matlet.2015.02.054
    [Google Scholar]
  39. DauthalP. MukhopadhyayM. Biosynthesis of Palladium Nanoparticles Using Delonix regia Leaf Extract and Its Catalytic Activity for Nitro-aromatics Hydrogenation.Ind. Eng. Chem. Res.20135251181311813910.1021/ie403410z
    [Google Scholar]
  40. BanerjeeS. SharmaG.C. DubeyS. SharmaY.C. Adsorption Characteristics of a Low Cost Activated Carbon for the Removal of Victoria Blue from Aqueous Solutions.J. Mater. Environ. Sci.20156820452052
    [Google Scholar]
  41. IravaniS. Green synthesis of metal nanoparticles using plants.Green Chem.201113102638265010.1039/c1gc15386b
    [Google Scholar]
  42. JhaA.K. PrasadK. PrasadK. KulkarniA.R. Plant system: Nature’s nanofactory.Colloids Surf. B Biointerfaces200973221922310.1016/j.colsurfb.2009.05.018 19539452
    [Google Scholar]
  43. VidhuV.K. AromalS.A. PhilipD. Green synthesis of silver nanoparticles using Macrotyloma uniflorum.Spectrochim. Acta A Mol. Biomol. Spectrosc.201183139239710.1016/j.saa.2011.08.051 21920808
    [Google Scholar]
  44. NasrollahzadehM. MahamM. TohidiM.M. Green synthesis of water-dispersable palladium nanoparticles and their catalytic application in the ligand- and copper-free Sonogashira coupling reaction under aerobic conditions.J. Mol. Catal. Chem.2014391838710.1016/j.molcata.2014.04.004
    [Google Scholar]
  45. MajumdarR. TantayanonS. BagB.G. Synthesis of palladium nanoparticles with leaf extract of Chrysophyllum cainito (Star apple) and their applications as efficient catalyst for C–C coupling and reduction reactions.Int. Nano Lett.20177426727410.1007/s40089‑017‑0220‑4
    [Google Scholar]
  46. Santoshi kumari, A.; Venkatesham, M.; Ayodhya, D.; Veerabhadram, G. Green synthesis, characterization and catalytic activity of palladium nanoparticles by xanthan gum.Appl. Nanosci.20155331532010.1007/s13204‑014‑0320‑7
    [Google Scholar]
  47. KhanM. KhanM. KuniyilM. AdilS.F. Al-WarthanA. AlkhathlanH.Z. TremelW. TahirM.N. SiddiquiM.R.H. Biogenic synthesis of palladium nanoparticles using Pulicaria glutinosa extract and their catalytic activity towards the Suzuki coupling reaction.Dalton Trans.201443249026903110.1039/C3DT53554A 24619034
    [Google Scholar]
  48. GurunathanS. KimE. HanJ. ParkJ. KimJ.H. Green Chemistry Approach for Synthesis of Effective Anticancer Palladium Nanoparticles.Molecules20152012224762249810.3390/molecules201219860 26694334
    [Google Scholar]
  49. JiaL. ZhangQ. LiQ. SongH. The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts for p -nitrotoluene hydrogenation.Nanotechnology2009203838560110.1088/0957‑4484/20/38/385601 19713585
    [Google Scholar]
  50. DasJ. Paul DasM. VelusamyP. Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens.Spectrochim. Acta A Mol. Biomol. Spectrosc.201310426527010.1016/j.saa.2012.11.075 23270884
    [Google Scholar]
  51. SureshA.K. DoktyczM.J. WangW. MoonJ.W. GuB. MeyerH.M.III HensleyD.K. AllisonD.P. PhelpsT.J. PelletierD.A. Monodispersed biocompatible silver sulfide nanoparticles: Facile extracellular biosynthesis using the γ-proteobacterium, Shewanella oneidensis.Acta Biomater.20117124253425810.1016/j.actbio.2011.07.007 21798382
    [Google Scholar]
  52. BrahimiR. BessekhouadY. BougueliaA. TrariM. Improvement of eosin visible light degradation using PbS-sensititized TiO2.J. Photochem. Photobiol. Chem.20081942-317318010.1016/j.jphotochem.2007.08.008
    [Google Scholar]
  53. AdamR.E. PozinaG. WillanderM. NurO. Synthesis of ZnO nanoparticles by co-precipitation method for solar driven photodegradation of Congo red dye at different pH.Photon. Nanostruc. Fund. Appl.201832132
    [Google Scholar]
  54. MohanD. SinghK.P. SinghG. KumarK. Removal of dyes from wastewater using Flyash, a low-cost adsorbent.Ind. Eng. Chem. Res.200241153688369510.1021/ie010667+
    [Google Scholar]
  55. SalamaA. MohamedA. AboameraN.M. OsmanT.A. KhattabA. Photocatalytic degradation of organic dyes using composite nanofibers under UV irradiation.Appl. Nanosci.201881-215516110.1007/s13204‑018‑0660‑9
    [Google Scholar]
  56. PatilB.N. NaikD.B. ShrivastavaV.S. Photocatalytic degradation of hazardous Ponceau-S dye from industrial wastewater using nanosized niobium pentoxide with carbon.Desalination20112691-327628310.1016/j.desal.2010.11.014
    [Google Scholar]
  57. MeenaR.C. PachwaryaR.B. MeenaV.K. AryaS. Degradation of Textile Dyes Ponceau-S and Sudan IV Using RecentlyDeveloped Photocatalyst, Immobilized Resin Dowex-11.Am. J. Environ. Sci.20095344445010.3844/ajessp.2009.444.450
    [Google Scholar]
  58. VenkateshaT.G. NayakaY.A. ChethanaB.K. Adsorption of Ponceau S from aqueous solution by MgO nanoparticles.Appl. Surf. Sci.201327662062710.1016/j.apsusc.2013.03.143
    [Google Scholar]
  59. VaianoV. IervolinoG. SanninoD. Photocatalytic Removal of Tartrazine Dye from Aqueous Samples on LaFeO3/ZnO Photocatalysts.Chem. Eng. Trans.20165288478852
    [Google Scholar]
  60. NaamaS. HadjersiT. MenariH. LamraniS. Kinetics of Tartrazine Photodegradation by Cu-Modified Silicon Nanowires.J. Mater. Sci.2018612734
    [Google Scholar]
  61. AnirudhanT.S. RejeenaS.R. Photocatalytic Degradation of Eosin Yellow Using Poly(pyrrole-co-aniline)-Coated TiO2/Nanocellulose Composite under Solar Light Irradiation. J. Mater., 2015,201511110.1155/2015/636409
    [Google Scholar]
  62. AlzahraniE. Photodegradation of Eosin Y Using Silver-Doped Magnetic Nanoparticles.Int. J. Anal. Chem.2015201511110.1155/2015/797606 26617638
    [Google Scholar]
  63. MesheshaD.S. TirukkovalluriS.R. ChandraA.R. BojjaS. Visible Light Assisted Degradation of Eosin Yellow using Heteroatom Functionalized TiO2 Nanomaterial.Int. J. Eng. Res. Appl.201668110119
    [Google Scholar]
  64. KumarA. PandeyG. Comparative Photocatalytic Degradation of Rose Bengal Dye under Visible Light by TiO2, TiO2/PAni and TiO2/PAni/GO Nanocomposites.Int. J. Res. Appl. Sci. Eng. Technol.20186233935010.22214/ijraset.2018.2049
    [Google Scholar]
  65. KaurJ. SinghalS. Heterogeneous photocatalytic degradation of rose bengal: Effect of operational parameters.Physica B2014450495310.1016/j.physb.2014.05.069
    [Google Scholar]
  66. HankareaP.P. JadhavaA.V. PatilaR.P. GaradkaraK.M. MullabI.S. SasikalacR. Photocatalytic degradation of Rose Bengal in visible light with Cr substituted MnFe2O4 ferrospinel.Arch. Physics Research.201234269276
    [Google Scholar]
  67. RameshP. RajendranA. Photocatalytic dye degradation activities of green synthesis of cuprous oxide nanoparticles from Sargassum wightii extract.Chemical Physics Impact20236June10020810.1016/j.chphi.2023.100208
    [Google Scholar]
  68. AroobS. CarabineiroS.A.C. TajM.B. BibiI. RaheelA. JavedT. YahyaR. AlelwaniW. VerpoortF. KamwilaisakK. Al-FarrajS. SillanpääM. Green Synthesis and Photocatalytic Dye Degradation Activity of CuO Nanoparticles.Catalysts202313350210.3390/catal13030502
    [Google Scholar]
  69. GolmohammadiM. HonarmandM. GhanbariS. A green approach to synthesis of ZnO nanoparticles using jujube fruit extract and their application in photocatalytic degradation of organic dyes.Spectrochim. Acta A Mol. Biomol. Spectrosc.202022911796110.1016/j.saa.2019.117961 31865101
    [Google Scholar]
  70. PengY. JiJ. ZhaoX. WanH. ChenD. Preparation of ZnO nanopowder by a novel ultrasound assisted non-hydrolytic sol–gel process and its application in photocatalytic degradation of C.I. Acid Red 249.Powder Technol.201323332533010.1016/j.powtec.2012.09.018
    [Google Scholar]
  71. AmornpitoksukP. SuwanboonS. SangkanuS. SukhoomA. MuensitN. Morphology, photocatalytic and antibacterial activities of radial spherical ZnO nanorods controlled with a diblock copolymer.Superlattices Microstruct.201251110311310.1016/j.spmi.2011.11.002
    [Google Scholar]
/content/journals/cac/10.2174/0115734110333006240910061201
Loading
/content/journals/cac/10.2174/0115734110333006240910061201
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test