Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Abstracts
Background

, an indigenous medicinal herb native to the Qinghai-Tibet Plateau of China, has traditionally been associated with treating various inflammation-related diseases. While its therapeutic potential is recognized, a comprehensive characterization of its metabolite molecules and their anti-inflammatory properties has not been undertaken.

Objective

This study aimed to comprehensively profile the metabolite molecules of and identify potential anti-inflammatory active molecules using the Activity Labelled Molecular Networking (ALMN) approach.

Methods

The ALMN approach was employed to visually label activity to the feature-based molecular network, allowing for the profiling of potential anti-inflammatory active molecules in . Through correlating activity levels with the respective molecules, a detailed profiling was achieved.

Results

Out of the 8,644 metabolite molecules in , ten were identified as the most potent anti-inflammatory molecules. Among these, Spiraeoside was notably annotated along with its structure.

Conclusion

This research successfully identified ten potent anti-inflammatory molecules from the vast metabolite profile of , including a detailed annotation of Spiraeoside. This marked a significant step in bridging traditional therapeutic knowledge with modern molecular profiling techniques.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110289479240220061031
2024-03-06
2025-12-08
Loading full text...

Full text loading...

References

  1. PengcuoT.D. Jingzhu Materia Medica.ShanghaiShanghai Science and Technology Publishing House19867576
    [Google Scholar]
  2. National Administration of Traditional Chinese Medicine.E.C.O.C.M.M. Chinese Materia Medica.ShanghaiShanghai Science and Technology Publishing House199818141815
    [Google Scholar]
  3. ChenS. WangY. ZhangL. HanY. LiangC. WangS. QiL. PangX. LiJ. ChangY. Therapeutic effects of columbianadin from angelicae pubescentis radix on the progression of collagen-induced rheumatoid arthritis by regulating inflammation and oxidative stress.J. Ethnopharmacol.202331611672710.1016/j.jep.2023.116727 37277080
    [Google Scholar]
  4. XuW.F. WangY. HuangH. WuJ.W. CheY. DingC.J. ZhangQ. CaoW.L. CaoL.J. Octreotide-based therapies effectively protect mice from acute and chronic gastritis.Eur. J. Pharmacol.202292817497610.1016/j.ejphar.2022.174976 35487253
    [Google Scholar]
  5. ShinJ.H. LeeC.W. OhS.J. YunJ. LeeK. ParkS.K. KimH.M. HanS.B. KimY. KimH.C. KangJ.S. Protective effect of silymarin against ethanol-induced gastritis in rats: Role of sulfhydryls, nitric oxide and gastric sensory afferents.Food Chem. Toxicol.20135535335710.1016/j.fct.2013.01.019 23357565
    [Google Scholar]
  6. KobayashiS.D. MalachowaN. DeLeoF.R. Pathogenesis of Staphylococcus aureus abscesses.Am. J. Pathol.201518561518152710.1016/j.ajpath.2014.11.030 25749135
    [Google Scholar]
  7. van SorgeN.M. BeasleyF.C. GusarovI. GonzalezD.J. von Köckritz-BlickwedeM. AnikS. BorkowskiA.W. DorresteinP.C. NudlerE. NizetV. Methicillin-resistant Staphylococcus aureus bacterial nitric-oxide synthase affects antibiotic sensitivity and skin abscess development.J. Biol. Chem.201328896417642610.1074/jbc.M112.448738 23322784
    [Google Scholar]
  8. LibbyP. RidkerP.M. HanssonG.K. Inflammation in atherosclerosis.J. Am. Coll. Cardiol.200954232129213810.1016/j.jacc.2009.09.009 19942084
    [Google Scholar]
  9. TaquetiV.R. ShahA.M. EverettB.M. PradhanA.D. PiazzaG. BibboC. HainerJ. MorganV. Carolina do A H de Souza, A.; Skali, H.; Blankstein, R.; Dorbala, S.; Goldhaber, S.Z.; Le May, M.R.; Chow, B.J.W.; deKemp, R.A.; Hage, F.G.; Beanlands, R.S.; Libby, P.; Glynn, R.J.; Solomon, S.D.; Ridker, P.M.; Di Carli, M.F. Coronary flow reserve, inflammation, and myocardial strain: The CIRT-CFR trial.JACC Basic Transl. Sci.20228214115110.1016/j.jacbts.2022.08.009 36908662
    [Google Scholar]
  10. RaiH. FitzgeraldS. CoughlanJ.J. SpenceM. ColleranR. JonerM. ByrneR.A. Glu298Asp variant of the endothelial nitric oxide synthase gene and acute coronary syndrome or premature coronary artery disease: A systematic review and meta-analysis.Nitric Oxide2023138-139859510.1016/j.niox.2023.07.001 37451608
    [Google Scholar]
  11. LinT. WangL. ZhangY. ZhangJ. ZhouD. FangF. LiuL. LiuB. JiangY. Uses, chemical compositions, pharmacological activities and toxicology of Clematidis Radix et Rhizome- A Review.J. Ethnopharmacol.202127011383110.1016/j.jep.2021.113831 33476714
    [Google Scholar]
  12. ChawlaR. KumarS. SharmaA. The genus Clematis (Ranunculaceae): Chemical and pharmacological perspectives.J. Ethnopharmacol.2012143111615010.1016/j.jep.2012.06.014 22728167
    [Google Scholar]
  13. ChuC. LiJ. LiC. LvY. YeH. LvH. LiX. WangJ. PengX. A new efficient multi-stage strategy based on the complementarity of ultrafiltration and high resolution biochromatogram for the screening of skin-whitening candidates from the fibrous root of Bletilla striata.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2023122412372810.1016/j.jchromb.2023.123728 37182408
    [Google Scholar]
  14. ZhaoA. LiL. LiB. ZhengM. TsaoR. Ultrafiltration LC-ESI-MSn screening of 5-lipoxygenase inhibitors from selected chinese medicinal herbs saposhnikovia divaricata, smilax glabra, pueraria lobata and carthamus tinctorius.J. Funct. Foods20162424425310.1016/j.jff.2016.04.011
    [Google Scholar]
  15. ZhuC.S. LinZ.J. XiaoM.L. NiuH.J. ZhangB. The spectrum-effect relationship—a rational approach to screening effective compounds, reflecting the internal quality of Chinese herbal medicine.Chin. J. Nat. Med.201614317718410.1016/S1875‑5364(16)30014‑0 27025364
    [Google Scholar]
  16. SunS. YuA. ChengR. WangL. HeT. XuX. SongR. ShanD. LvF. ZhongX. DengQ. LiX. HeY. ZhengY. RenX. XiaQ. SheG. Similarities and differences between Ziqin and Kuqin in anti-inflammatory, analgesic, and antioxidant activities and their core chemical composition based on the zebrafish model and spectrum-effect relationship.J. Ethnopharmacol.202330411604910.1016/j.jep.2022.116049 36529251
    [Google Scholar]
  17. KanH. ZhangD. ChenW. WangS. HeZ. PangS. QuS. WangY. Identification of anti-inflammatory components in Panax ginseng of Sijunzi Decoction based on spectrum-effect relationship.Chin. Herb. Med.202315112313110.1016/j.chmed.2022.04.003 36875431
    [Google Scholar]
  18. WangM. CarverJ.J. PhelanV.V. SanchezL.M. GargN. PengY. NguyenD.D. WatrousJ. KaponoC.A. Luzzatto-KnaanT. PortoC. BouslimaniA. MelnikA.V. MeehanM.J. LiuW.T. CrüsemannM. BoudreauP.D. EsquenaziE. Sandoval-CalderónM. KerstenR.D. PaceL.A. QuinnR.A. DuncanK.R. HsuC.C. FlorosD.J. GavilanR.G. KleigreweK. NorthenT. DuttonR.J. ParrotD. CarlsonE.E. AigleB. MichelsenC.F. JelsbakL. SohlenkampC. PevznerP. EdlundA. McLeanJ. PielJ. MurphyB.T. GerwickL. LiawC.C. YangY.L. HumpfH.U. MaanssonM. KeyzersR.A. SimsA.C. JohnsonA.R. SidebottomA.M. SedioB.E. KlitgaardA. LarsonC.B. Boya PC.A. Torres-MendozaD. GonzalezD.J. SilvaD.B. MarquesL.M. DemarqueD.P. PociuteE. O’NeillE.C. BriandE. HelfrichE.J.N. GranatoskyE.A. GlukhovE. RyffelF. HousonH. MohimaniH. KharbushJ.J. ZengY. VorholtJ.A. KuritaK.L. CharusantiP. McPhailK.L. NielsenK.F. VuongL. ElfekiM. TraxlerM.F. EngeneN. KoyamaN. ViningO.B. BaricR. SilvaR.R. MascuchS.J. TomasiS. JenkinsS. MacherlaV. HoffmanT. AgarwalV. WilliamsP.G. DaiJ. NeupaneR. GurrJ. RodríguezA.M.C. LamsaA. ZhangC. DorresteinK. DugganB.M. AlmalitiJ. AllardP.M. PhapaleP. NothiasL.F. AlexandrovT. LitaudonM. WolfenderJ.L. KyleJ.E. MetzT.O. PeryeaT. NguyenD.T. VanLeerD. ShinnP. JadhavA. MüllerR. WatersK.M. ShiW. LiuX. ZhangL. KnightR. JensenP.R. PalssonB.Ø. PoglianoK. LiningtonR.G. GutiérrezM. LopesN.P. GerwickW.H. MooreB.S. DorresteinP.C. BandeiraN. Sharing and community curation of mass spectrometry data with global natural products social molecular networking.Nat. Biotechnol.201634882883710.1038/nbt.3597 27504778
    [Google Scholar]
  19. WangQ. ChenT. LaM. SongZ. GaoM. YangT. LiY. HeL. ZouD. Activity labelled molecular networking fuels the antioxidation active molecules profile of Ginger.Food Chem.202342413634310.1016/j.foodchem.2023.136343 37229896
    [Google Scholar]
  20. AronA.T. GentryE.C. McPhailK.L. NothiasL.F. Nothias-EspositoM. BouslimaniA. PetrasD. GauglitzJ.M. SikoraN. VargasF. van der HooftJ.J.J. ErnstM. KangK.B. AcevesC.M. Caraballo-RodríguezA.M. KoesterI. WeldonK.C. BertrandS. RoullierC. SunK. TehanR.M. Boya PC.A.. ChristianM.H. GutiérrezM. UlloaA.M. Tejeda MoraJ.A. Mojica-FloresR. Lakey-BeitiaJ. Vásquez-ChavesV. ZhangY. CalderónA.I. TaylerN. KeyzersR.A. TugizimanaF. NdlovuN. AksenovA.A. JarmuschA.K. SchmidR. TrumanA.W. BandeiraN. WangM. DorresteinP.C. Reproducible molecular networking of untargeted mass spectrometry data using GNPS.Nat. Protoc.20201561954199110.1038/s41596‑020‑0317‑5 32405051
    [Google Scholar]
  21. QuinnR.A. NothiasL.F. ViningO. MeehanM. EsquenaziE. DorresteinP.C. Molecular networking as a drug discovery, drug metabolism, and precision medicine strategy.Trends Pharmacol. Sci.201738214315410.1016/j.tips.2016.10.011 27842887
    [Google Scholar]
  22. KatajamaaM. MiettinenJ. OrešičM. MZmine: Toolbox for processing and visualization of mass spectrometry based molecular profile data.Bioinformatics200622563463610.1093/bioinformatics/btk039 16403790
    [Google Scholar]
  23. SchoberP. BoerC. SchwarteL.A. Correlation coefficients: Appropriate use and interpretation.Anesth. Analg.201812651763176810.1213/ANE.0000000000002864 29481436
    [Google Scholar]
  24. NothiasL.F. PetrasD. SchmidR. DührkopK. RainerJ. SarvepalliA. ProtsyukI. ErnstM. TsugawaH. FleischauerM. AichelerF. AksenovA.A. AlkaO. AllardP.M. BarschA. CachetX. Caraballo-RodriguezA.M. Da SilvaR.R. DangT. GargN. GauglitzJ.M. GurevichA. IsaacG. JarmuschA.K. KameníkZ. KangK.B. KesslerN. KoesterI. KorfA. Le GouellecA. LudwigM. Martin HC. McCallL.I. McSaylesJ. MeyerS.W. MohimaniH. MorsyM. MoyneO. NeumannS. NeuwegerH. NguyenN.H. Nothias-EspositoM. PaoliniJ. PhelanV.V. PluskalT. QuinnR.A. RogersS. ShresthaB. TripathiA. van der HooftJ.J.J. VargasF. WeldonK.C. WittingM. YangH. ZhangZ. ZubeilF. KohlbacherO. BöckerS. AlexandrovT. BandeiraN. WangM. DorresteinP.C. Feature-based molecular networking in the GNPS analysis environment.Nat. Methods202017990590810.1038/s41592‑020‑0933‑6 32839597
    [Google Scholar]
  25. ChangY. ZhangP. ZhangX. ChenJ. RauschW.D. GulaA. BaoB. Cytotoxic activities of flavonoids from a traditional Mongolian medicinal herb Clematis aethusifolia Turcz.Nat. Prod. Res.201731101223122710.1080/14786419.2016.1230112 27616072
    [Google Scholar]
  26. ZhuY. DiS. HuW. FengY. ZhouQ. GongB. TangX. LiuJ. ZhangW. XiM. JiangL. GuoC. CaoJ. FanC. MaZ. YangY. WenA. A new flavonoid glycoside (APG) isolated from Clematis tangutica attenuates myocardial ischemia/reperfusion injury via activating PKCε signaling.Biochim. Biophys. Acta Mol. Basis Dis.20171863370171110.1016/j.bbadis.2016.12.013 28024940
    [Google Scholar]
  27. YesiladaE. KüpeliE. Clematis vitalba L. aerial part exhibits potent anti-inflammatory, antinociceptive and antipyretic effects.J. Ethnopharmacol.2007110350451510.1016/j.jep.2006.10.016 17118593
    [Google Scholar]
  28. FengY.D. YeW. TianW. MengJ.R. ZhangM. SunY. ZhangH.N. WangS.J. WuK.H. LiuC.X. LiuS.Y. CaoW. LiX.Q. Old targets, new strategy: Apigenin-7-O-β-d-(-6″-p-coumaroyl)-glucopyranoside prevents endothelial ferroptosis and alleviates intestinal ischemia-reperfusion injury through HO-1 and MAO-B inhibition.Free Radic. Biol. Med.2022184748810.1016/j.freeradbiomed.2022.03.033 35398494
    [Google Scholar]
  29. AlamK. FarrajD.A.A. Mah-e-FatimaS. YameenM.A. ElshikhM.S. AlkufeidyR.M. MustafaA.E.Z.M.A. BhasmeP. AlshammariM.K. AlkubaisiN.A. AbbasiA.M. NaqviT.A. Anti-biofilm activity of plant derived extracts against infectious pathogen-Pseudomonas aeruginosa PAO1.J. Infect. Public Health202013111734174110.1016/j.jiph.2020.07.007 32753311
    [Google Scholar]
  30. SaidiR. KhanousL. Khadim AllahS. HamdiB. AyadiA. DamakM. HammamiH. Mezghani-JarrayaR. Antifungal, molluscicidal and larvicidal assessment of anemonin and Clematis flammula L. extracts against mollusc Galba truncatula, intermediate host of Fasciola hepatica in Tunisia.Asian Pac. J. Trop. Med.2017101096797310.1016/j.apjtm.2017.09.008 29111192
    [Google Scholar]
  31. MaY.L. LiQ.M. Van den HeuvelH. ClaeysM. Characterization of flavone and flavonol aglycones by collision-induced dissociation tandem mass spectrometry.Rapid Commun. Mass Spectrom.199711121357136410.1002/(SICI)1097‑0231(199708)11:12<1357::AID‑RCM983>3.0.CO;2‑9
    [Google Scholar]
  32. de VilliersA. VenterP. PaschH. Recent advances and trends in the liquid-chromatography–mass spectrometry analysis of flavonoids.J. Chromatogr. A20161430167810.1016/j.chroma.2015.11.077 26718188
    [Google Scholar]
  33. Abad-GarcíaB. BerruetaL.A. Garmón-LobatoS. GalloB. VicenteF. A general analytical strategy for the characterization of phenolic compounds in fruit juices by high-performance liquid chromatography with diode array detection coupled to electrospray ionization and triple quadrupole mass spectrometry.J. Chromatogr. A20091216285398541510.1016/j.chroma.2009.05.039 19500791
    [Google Scholar]
  34. TsolmonB. FangY. YangT. GuoL. HeK. LiG.Y. ZhaoH. Structural identification and UPLC-ESI-QTOF-MS2 analysis of flavonoids in the aquatic plant Landoltia punctata and their in vitro and in vivo antioxidant activities.Food Chem.202134312839210.1016/j.foodchem.2020.128392 33191012
    [Google Scholar]
  35. LiuH. ZhangZ. ZhangL. YaoX. ZhongX. ChengG. WangL. WanQ. Spiraeoside protects human cardiomyocytes against high glucose‐induced injury, oxidative stress, and apoptosis by activation of PI3K/Akt/Nrf2 pathway.J. Biochem. Mol. Toxicol.20203410e2254810.1002/jbt.22548 32602595
    [Google Scholar]
  36. KimB.H. ChoJ.Y. Anti-inflammatory effect of honokiol is mediated by PI3K/Akt pathway suppression.Acta Pharmacol. Sin.200829111312210.1111/j.1745‑7254.2008.00725.x 18158873
    [Google Scholar]
  37. Acosta-MartinezM. CabailM.Z. The PI3K/Akt pathway in meta-inflammation.Int. J. Mol. Sci.202223231533010.3390/ijms232315330 36499659
    [Google Scholar]
  38. WeichhartT. SäemannM.D. The PI3K/Akt/mTOR pathway in innate immune cells: Emerging therapeutic applications.Ann. Rheum. Dis.200867Suppl. 3iii70iii7410.1136/ard.2008.098459 19022819
    [Google Scholar]
/content/journals/cac/10.2174/0115734110289479240220061031
Loading
/content/journals/cac/10.2174/0115734110289479240220061031
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test