Skip to content
2000
image of Exploring the Multifaceted Health Benefits of Natural Dietary Sources: Antimicrobial, Antioxidant, Anticancer, and Antidiabetic Properties

Abstract

The lifestyle of today's generation contributes to various health issues like cancer, diabetes, obesity, heart disease, and high blood pressure. A significant factor contributing to these harmful lifestyle choices is the overconsumption of highly processed, energy-dense foods that are rich in saturated and trans fats, sodium, and added sugars, Conversely, adopting healthier dietary patterns that prioritize the intake of fruits, vegetables, whole grains, lean proteins, and healthy fats has been shown to protect against these chronic health conditions. Investigating the diverse health benefits of natural food sources requires a holistic approach encompassing dietary intake evaluations, laboratory and animal studies, and human clinical research. These investigations examine the antimicrobial, antioxidant, cancer-fighting, and blood sugar-regulating properties of compounds derived from plants. Studies indicate that diets abundant in whole grains, fruits, and vegetables supply crucial nutrients and biologically active substances such as polyphenols and flavonoids, which provide protective benefits against long-term disease conditions, including heart disease, cancer, and diabetes. Consequently, it is imperative to adjust our dietary practices and lifestyle choices to mitigate the risk of various ailments. Naturally occurring compounds such as curcumin, quercetin, kaempferol, and resveratrol, which are found in diverse food sources, have the potential to combat numerous diseases when incorporated into our diets. This review explores an array of compounds present in dietary sources and their associated biomedical properties, including their anticancer, antidiabetic, antioxidant, and antimicrobial effects. Furthermore, it explores various diet-related strategies designed to promote a healthier lifestyle, including the incorporation of a diverse range of fruits, vegetables, and spices rich in polyphenolic compounds into one's daily nutritional intake. In addition, this review also examines recent patents related to these bioactive food compounds, highlighting their potential applications in disease prevention and therapy.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083375459250801073140
2025-08-12
2025-11-06
Loading full text...

Full text loading...

References

  1. Sharma P. McClees S. Afaq F. Pomegranate for prevention and treatment of cancer: An update. Molecules 2017 22 1 177 10.3390/molecules22010177 28125044
    [Google Scholar]
  2. Rehan M. Mahmoud M.M. Tabrez S. Hassan H.M.A. Ashraf G.M. Exploring flavonoids for potential inhibitors of a cancer signaling protein pi3kγ kinase using computational methods. Anticancer Res. 2020 40 8 4547 4556 10.21873/anticanres.14460 32727785
    [Google Scholar]
  3. Şimşek Sezer E.N. Uysal T. Phytochemical analysis, antioxidant and anticancer potential of Sideritis niveotomentosa: Endemic wild species of Turkey. Molecules 2021 26 9 2420 10.3390/molecules26092420 33919310
    [Google Scholar]
  4. Baraya Y.S. Wong K.K. Yaacob N.S. The immunomodulatory potential of selected bioactive plant-based compounds in breast cancer: A review. Anticancer. Agents Med. Chem. 2017 17 6 770 783 [PMID: 27539316
    [Google Scholar]
  5. Unuofin J.O. Lebelo S.L. Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: An updated review. Oxid. Med. Cell. Longev. 2020 2020 1 1 36 10.1155/2020/1356893 32148647
    [Google Scholar]
  6. Kaur R. Sharma P. Gupta G.K. Ntie-Kang F. Kumar D. Structure-activity-relationship and mechanistic insights for anti-HIV natural products. Molecules 2020 25 9 2070 10.3390/molecules25092070 32365518
    [Google Scholar]
  7. Asensi M. Ortega A. Mena S. Feddi F. Estrela J.M. Natural polyphenols in cancer therapy. Crit. Rev. Clin. Lab. Sci. 2011 48 5-6 197 216 10.3109/10408363.2011.631268 22141580
    [Google Scholar]
  8. Niedzwiecki A. Roomi M. Kalinovsky T. Rath M. Anticancer efficacy of polyphenols and their combinations. Nutrients 2016 8 9 552 10.3390/nu8090552 27618095
    [Google Scholar]
  9. Buyel J.F. Plants as sources of natural and recombinant anti-cancer agents. Biotechnol. Adv. 2018 36 2 506 520 10.1016/j.biotechadv.2018.02.002 29408560
    [Google Scholar]
  10. Paz M.F.C.J. Islam M.T. Tabrez S. Effect of diterpenes on hepatic system. Curr. Pharm. Des. 2019 24 35 4093 4100 10.2174/1381612824666181001152247 30277148
    [Google Scholar]
  11. Spatafora C. Tringali C. Natural-derived polyphenols as potential anticancer agents. Anticancer. Agents Med. Chem. 2012 12 8 902 918 10.2174/187152012802649996 22292766
    [Google Scholar]
  12. Abbas M. Saeed F. Anjum F.M. Natural polyphenols: An overview. Int. J. Food Prop. 2017 20 8 1689 1699 10.1080/10942912.2016.1220393
    [Google Scholar]
  13. Rathod N.B. Elabed N. Punia S. Ozogul F. Kim S.K. Rocha J.M. Recent developments in polyphenol applications on human health: A review with current knowledge. Plants 2023 12 6 1217 10.3390/plants12061217 36986905
    [Google Scholar]
  14. Singla R.K. Dubey A.K. Garg A. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. J. AOAC Int. 2019 102 5 1397 1400 10.5740/jaoacint.19‑0133 31200785
    [Google Scholar]
  15. Bhat M. Zinjarde S.S. Bhargava S.Y. Kumar A.R. Joshi B.N. Antidiabetic Indian plants: A good source of potent amylase inhibitors. Evid. Based Complement. Alternat. Med. 2011 2011 1 810207 10.1093/ecam/nen040 18955350
    [Google Scholar]
  16. Adlercreutz H. Mazur W. Phyto-oestrogens and Western diseases. Ann. Med. 1997 29 2 95 120 10.3109/07853899709113696 9187225
    [Google Scholar]
  17. Tabrez S. Jabir N.R. Adhami V.M. Nanoencapsulated dietary polyphenols for cancer prevention and treatment: Successes and challenges. Nanomedicine 2020 15 11 1147 1162 10.2217/nnm‑2019‑0398 32292109
    [Google Scholar]
  18. Krumbein A. Schonhof I. Schreiner M. Composition and contents of phytochemicals (glucosinolates, carotenoids and chlorophylls) and ascorbic acid in selected Brassica species (B. juncea, B. rapa subsp. nipposinica var. chinoleifera, B. rapa subsp. chinensis and B. rapa subsp. rapa). J. Appl. Bot. Food Qual. 2005 79 3 168 174
    [Google Scholar]
  19. Olsen H. Aaby K. Borge G.I.A. Characterization and quantification of flavonoids and hydroxycinnamic acids in curly kale (Brassica oleracea L. Convar. acephala Var. sabellica) by HPLC-DAD-ESI-MSn. J. Agric. Food Chem. 2009 57 7 2816 2825 10.1021/jf803693t 19253943
    [Google Scholar]
  20. Zunino S.J. Type 2 diabetes and glycemic response to grapes or grape products. J. Nutr. 2009 139 9 1794S 1800S 10.3945/jn.109.107631 19625702
    [Google Scholar]
  21. Imran M. Salehi B. Sharifi-Rad J. Kaempferol: A key emphasis to its anticancer potential. Molecules 2019 24 12 2277 10.3390/molecules24122277 31248102
    [Google Scholar]
  22. Carullo G. Cappello A.R. Frattaruolo L. Badolato M. Armentano B. Aiello F. Quercetin and derivatives: Useful tools in inflammation and pain management. Future Med. Chem. 2017 9 1 79 93 10.4155/fmc‑2016‑0186 27995808
    [Google Scholar]
  23. Ge Z. Xu M. Ge Y. Inhibiting G6PD by quercetin promotes degradation of EGFR T790M mutation. Cell Rep. 2023 42 11 113417 10.1016/j.celrep.2023.113417 37950872
    [Google Scholar]
  24. Zlotogorski A. Dayan A. Dayan D. Chaushu G. Salo T. Vered M. Nutraceuticals as new treatment approaches for oral cancer – I. Curcumin. Oral Oncol 2013 49 3 187 191 10.1016/j.oraloncology.2012.09.015 23116961
    [Google Scholar]
  25. Giordano A. Tommonaro G. Curcumin and cancer. Nutrients 2019 11 10 2376 10.3390/nu11102376 31590362
    [Google Scholar]
  26. Akbik D. Ghadiri M. Chrzanowski W. Rohanizadeh R. Curcumin as a wound healing agent. Life Sci. 2014 116 1 1 7 10.1016/j.lfs.2014.08.016 25200875
    [Google Scholar]
  27. Devassy J.G. Nwachukwu I.D. Jones P.J.H. Curcumin and cancer: Barriers to obtaining a health claim. Nutr. Rev. 2015 73 3 155 165 10.1093/nutrit/nuu064 26024538
    [Google Scholar]
  28. Visioli F. Lastra C.A.D.L. Andres-Lacueva C. Polyphenols and human health: A prospectus. Crit. Rev. Food Sci. Nutr. 2011 51 6 524 546 10.1080/10408391003698677 21929330
    [Google Scholar]
  29. Pulido-Moran M. Moreno-Fernandez J. Ramirez-Tortosa C. Ramirez-Tortosa M.C. Curcumin and health. Molecules 2016 21 3 264 10.3390/molecules21030264 26927041
    [Google Scholar]
  30. Hao M. Chu Y. Lei J. Pharmacological mechanisms and clinical applications of curcumin: Update. Aging Dis. 2023 14 3 716 749 10.14336/AD.2022.1101 37191432
    [Google Scholar]
  31. Kim B. Kim H.S. Jung E.J. Curcumin induces ER stress-mediated apoptosis through selective generation of reactive oxygen species in cervical cancer cells. Mol. Carcinog. 2016 55 5 918 928 10.1002/mc.22332 25980682
    [Google Scholar]
  32. Vollono L. Falconi M. Gaziano R. Potential of curcumin in skin disorders. Nutrients 2019 11 9 2169 10.3390/nu11092169 31509968
    [Google Scholar]
  33. Rauf A. Imran M. Butt M.S. Nadeem M. Peters D.G. Mubarak M.S. Resveratrol as an anti-cancer agent: A review. Crit. Rev. Food Sci. Nutr. 2018 58 9 1428 1447 10.1080/10408398.2016.1263597 28001084
    [Google Scholar]
  34. Ko J.H. Sethi G. Um J.Y. The role of resveratrol in cancer therapy. Int. J. Mol. Sci. 2017 18 12 2589 10.3390/ijms18122589 29194365
    [Google Scholar]
  35. Meng X. Zhou J. Zhao C.N. Gan R.Y. Li H.B. Health benefits and molecular mechanisms of resveratrol: A narrative review. Foods 2020 9 3 340 10.3390/foods9030340 32183376
    [Google Scholar]
  36. Aatif M. Current understanding of polyphenols to enhance bioavailability for better therapies. Biomedicines 2023 11 7 2078 10.3390/biomedicines11072078 37509717
    [Google Scholar]
  37. Na J.I. Shin J.W. Choi H.R. Kwon S.H. Park K.C. Resveratrol as a multifunctional topical hypopigmenting agent. Int. J. Mol. Sci. 2019 20 4 956 10.3390/ijms20040956 30813264
    [Google Scholar]
  38. Duta-Bratu C.G. Nitulescu G.M. Mihai D.P. Olaru O.T. Resveratrol and other natural oligomeric stilbenoid compounds and their therapeutic applications. Plants 2023 12 16 2935 10.3390/plants12162935 37631147
    [Google Scholar]
  39. Prakash V. Bose C. Sunilkumar D. Cherian R.M. Thomas S.S. Nair B.G. Resveratrol as a promising nutraceuticals: Implications in gut microbiota modulation, inflammatory disorders, and colorectal cancer. Int. J. Mol. Sci. 2024 25 6 3370 10.3390/ijms25063370 38542344
    [Google Scholar]
  40. Ren J. Lu Y. Qian Y. Chen B. Wu T. Ji G. Recent progress regarding kaempferol for the treatment of various diseases. (Review) Exp. Ther. Med. 2019 18 4 2759 2776 10.3892/etm.2019.7886 31572524
    [Google Scholar]
  41. Devi K.P. Malar D.S. Nabavi S.F. Kaempferol and inflammation: From chemistry to medicine. Pharmacol. Res. 2015 99 1 10 10.1016/j.phrs.2015.05.002 25982933
    [Google Scholar]
  42. Calderón-Montaño J.M. Burgos-Morón E. Pérez-Guerrero C. López-Lázaro M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem. 2011 11 4 298 344 10.2174/138955711795305335 21428901
    [Google Scholar]
  43. Amjad E. Sokouti B. Asnaashari S. A systematic review of anti-cancer roles and mechanisms of kaempferol as a natural compound. Cancer Cell Int. 2022 22 1 260 10.1186/s12935‑022‑02673‑0 35986346
    [Google Scholar]
  44. Silva dos Santos J. Gonçalves Cirino J.P. de Oliveira Carvalho P. Ortega M.M. The pharmacological action of kaempferol in central nervous system diseases: A review. Front. Pharmacol. 2021 11 565700 10.3389/fphar.2020.565700 33519431
    [Google Scholar]
  45. Xu C. Zhang X. Wang Y. Dietary kaempferol exerts anti-obesity effects by inducing the browing of white adipocytes via the AMPK/SIRT1/PGC-1α signaling pathway. Curr. Res. Food Sci. 2024 8 100728 10.1016/j.crfs.2024.100728 38577419
    [Google Scholar]
  46. Cabrera C. Artacho R. Giménez R. Beneficial effects of green tea--a review. J. Am. Coll. Nutr. 2006 25 2 79 99 10.1080/07315724.2006.10719518 16582024
    [Google Scholar]
  47. Cao H. Hininger-Favier I. Kelly M.A. Green tea polyphenol extract regulates the expression of genes involved in glucose uptake and insulin signaling in rats fed a high fructose diet. J. Agric. Food Chem. 2007 55 15 6372 6378 10.1021/jf070695o 17616136
    [Google Scholar]
  48. Mokra D. Joskova M. Mokry J. Therapeutic effects of green tea polyphenol (‒)-Epigallocatechin-3-Gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis. Int. J. Mol. Sci. 2022 24 1 340 10.3390/ijms24010340 36613784
    [Google Scholar]
  49. Rojo L.E. Ribnicky D. Logendra S. In vitro and in vivo anti-diabetic effects of anthocyanins from Maqui Berry (Aristotelia chilensis). Food Chem. 2012 131 2 387 396 10.1016/j.foodchem.2011.08.066 26279603
    [Google Scholar]
  50. Chen C.F. Li Y.D. Xu Z. Chemical principles and bioactivities of blueberry. Yao Xue Xue Bao 2010 45 4 422 429 [PMID: 21355205
    [Google Scholar]
  51. Stull A.J. Cash K.C. Johnson W.D. Champagne C.M. Cefalu W.T. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J. Nutr. 2010 140 10 1764 1768 10.3945/jn.110.125336 20724487
    [Google Scholar]
  52. DeFuria J. Bennett G. Strissel K.J. Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by reducing adipocyte death and its inflammatory sequelae. J. Nutr. 2009 139 8 1510 1516 10.3945/jn.109.105155 19515743
    [Google Scholar]
  53. Seymour E.M. Tanone I.I. Urcuyo-Llanes D.E. Blueberry intake alters skeletal muscle and adipose tissue peroxisome proliferator-activated receptor activity and reduces insulin resistance in obese rats. J. Med. Food 2011 14 12 1511 1518 10.1089/jmf.2010.0292 21861718
    [Google Scholar]
  54. Petropoulos S. Di Gioia F. Ntatsi G. Vegetable organosulfur compounds and their health promoting effects. Curr. Pharm. Des. 2017 23 19 2850 2875 10.2174/1381612823666170111100531 28078991
    [Google Scholar]
  55. Pérez-Torres I. Ruiz-Ramírez A. Baños G. El-Hafidi M. Hibiscus sabdariffa Linnaeus (Malvaceae), curcumin and resveratrol as alternative medicinal agents against metabolic syndrome. Cardiovasc. Hematol. Agents Med. Chem. 2013 11 1 25 37 10.2174/1871525711311010006 22721439
    [Google Scholar]
  56. Manivannan A. Lee E.S. Han K. Lee H.E. Kim D.S. Versatile nutraceutical potentials of watermelon-a modest fruit loaded with pharmaceutically valuable phytochemicals. Molecules 2020 25 22 5258 10.3390/molecules25225258 33187365
    [Google Scholar]
  57. Pihlanto A. Akkanen S. Korhonen H.J. ACE-inhibitory and antioxidant properties of potato (Solanum tuberosum). Food Chem. 2008 109 1 104 112 10.1016/j.foodchem.2007.12.023 26054270
    [Google Scholar]
  58. Andre C.M. Oufir M. Guignard C. Antioxidant profiling of native Andean potato tubers (Solanum tuberosum L.) reveals cultivars with high levels of β-carotene, α-tocopherol, chlorogenic acid, and petanin. J. Agric. Food Chem. 2007 55 26 10839 10849 10.1021/jf0726583 18044831
    [Google Scholar]
  59. Tocmo R. Liang D. Lin Y. Huang D. Chemical and biochemical mechanisms underlying the cardioprotective roles of dietary organopolysulfides. Front. Nutr. 2015 2 1 10.3389/fnut.2015.00001
    [Google Scholar]
  60. Divya B.J. Suman B. Venkataswamy M. Thyagaraju K. A study on phytochemicals, functional groups and mineral composition of Allium sativum (garlic) cloves. Int. J. Curr. Pharm. Res. 2017 9 3 42 45 10.22159/ijcpr.2017.v9i3.18888
    [Google Scholar]
  61. Shaaf S. Sharma R. Kilian B. Genetic structure and eco-geographical adaptation of garlic landraces (Allium sativum L.) in Iran. Genet. Resour. Crop Evol. 2014 61 8 1565 1580 10.1007/s10722‑014‑0131‑4
    [Google Scholar]
  62. Fratianni F. Ombra M.N. Cozzolino A. Phenolic constituents, antioxidant, antimicrobial and anti-proliferative activities of different endemic Italian varieties of garlic (Allium sativum L.). J. Funct. Foods 2016 21 240 248 10.1016/j.jff.2015.12.019
    [Google Scholar]
  63. Khan M.S. Quershi N.A. Jabeen F. Asghar M.S. Shakeel M. Analysis of minerals profile, phenolic compounds and potential of Garlic (Allium sativum) as antioxidant scavenging the free radicals. Int. J. Biosci. 2016 8 4 72 82 10.12692/ijb/8.4.72‑82
    [Google Scholar]
  64. Martins N. Petropoulos S. Ferreira I.C.F.R. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chem. 2016 211 41 50 10.1016/j.foodchem.2016.05.029 27283605
    [Google Scholar]
  65. Khanum F. Anilakumar K.R. Viswanathan K.R. Anticarcinogenic properties of garlic: A review. Crit. Rev. Food Sci. Nutr. 2004 44 6 479 488 10.1080/10408690490886700 15615431
    [Google Scholar]
  66. Ghasemi K. Bolandnazar S. Tabatabaei S.J. Antioxidant properties of garlic as affected by selenium and humic acid treatments. N. Z. J. Crop Hortic. Sci. 2015 43 3 173 181 10.1080/01140671.2014.991743
    [Google Scholar]
  67. Onyeoziri U.P. Romanus E.N. Onyekachukwu U.I. Assessment of antioxidant capacities and phenolic contents of nigerian cultivars of onions (Allium cepa L) and garlic (Allium sativum L). Pak. J. Pharm. Sci. 2016 29 4 1183 1188 [PMID: 27393431
    [Google Scholar]
  68. Batcioglu K. Yilmaz Z. Satilmis B. Investigation of in vivo radioprotective and in vitro antioxidant and antimicrobial activity of garlic (Allum sativum). Eur. Rev. Med. Pharmacol. Sci. 2012 16 Suppl. 3 47 57 [PMID: 22957418
    [Google Scholar]
  69. Lanzotti V. The analysis of onion and garlic. J. Chromatogr. A 2006 1112 1-2 3 22 10.1016/j.chroma.2005.12.016 16388813
    [Google Scholar]
  70. Souza G.A. Ebaid G.X. Seiva F.R.F. N-acetylcysteine an allium plant compound improves high-sucrose diet-induced obesity and related effects. Evid. Based Complement. Alternat. Med. 2011 2011 1 643269 10.1093/ecam/nen070 19001480
    [Google Scholar]
  71. Rai M. Acharya K. Proximate composition, free radical scavenging and NOS activation properties of Ramaria aurea. Res J Pharm Technol 2012 5 11 1421 1427
    [Google Scholar]
  72. Rahman M.A. Abdullah N. Aminudin N. Antioxidative effects and inhibition of human low density lipoprotein oxidation in vitro of polyphenolic compounds in Flammulina velutipes (Golden Needle Mushroom). Oxid. Med. Cell. Longev. 2015 2015 1 10 10.1155/2015/403023 26180589
    [Google Scholar]
  73. Cortés-Rojas D.F. de Souza C.R.F. Oliveira W.P. Clove (Syzygium aromaticum): A precious spice. Asian Pac. J. Trop. Biomed. 2014 4 2 90 96 10.1016/S2221‑1691(14)60215‑X 25182278
    [Google Scholar]
  74. Wankhede T.B. Evaluation of antioxidant and antimicrobial activity of the Indian clove Syzygium aromaticum L. Merr. and Perr. Int Res J Sci Eng 2015 3 166 172
    [Google Scholar]
  75. Heredia-Guerrero J.A. Ceseracciu L. Guzman-Puyol S. Antimicrobial, antioxidant, and waterproof RTV silicone-ethyl cellulose composites containing clove essential oil. Carbohydr. Polym. 2018 192 150 158 10.1016/j.carbpol.2018.03.050 29691007
    [Google Scholar]
  76. Radünz M. da Trindade M.L.M. Camargo T.M. Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food Chem. 2019 276 180 186 10.1016/j.foodchem.2018.09.173 30409582
    [Google Scholar]
  77. Jirovetz L. Buchbauer G. Stoilova I. Stoyanova A. Krastanov A. Schmidt E. Chemical composition and antioxidant properties of clove leaf essential oil. J. Agric. Food Chem. 2006 54 17 6303 6307 10.1021/jf060608c 16910723
    [Google Scholar]
  78. Gülçin İ. Elmastaş M. Aboul-Enein H.Y. Antioxidant activity of clove oil – A powerful antioxidant source. Arab. J. Chem. 2012 5 4 489 499 10.1016/j.arabjc.2010.09.016
    [Google Scholar]
  79. Maridass M. Evaluation of brine shrimp lethality of Cinnamomum species. Ethnobot Leafl 2008 2008 1 106
    [Google Scholar]
  80. Razali Z. Muhammad N.A. Mohd S.N. Cinnamaldehyde constituent and screening of antibacterial potential in local Cinnamomum Zeylanicum bark. J Intelek 2016 11 1 12 17
    [Google Scholar]
  81. Azad R. Kumara K.L.W. Senanayake G. Ranawaka R.A.A.K. Pushpakumara D.K.N.G. Geekiyanage S. Flower morphological diversity of cinnamon (Cinnamomum verum Presl) in Matara District, Sri Lanka. Open Agric. 2018 3 1 236 244 10.1515/opag‑2018‑0025
    [Google Scholar]
  82. Hamidpour R. Hamidpour M. Hamidpour S. Shahlari M. Cinnamon from the selection of traditional applications to its novel effects on the inhibition of angiogenesis in cancer cells and prevention of Alzheimer’s disease, and a series of functions such as antioxidant, anticholesterol, antidiabetes, antibacterial, antifungal, nematicidal, acaracidal, and repellent activities. J. Tradit. Complement. Med. 2015 5 2 66 70 10.1016/j.jtcme.2014.11.008 26151013
    [Google Scholar]
  83. Sharafeldin K. Rizvi M.R. Effect of traditional plant medicines (Cinnamomum zeylanicum and Syzygium cumini) on oxidative stress and insulin resistance in streptozotocin-induced diabetic rats. J. Basic Appl. Zool. 2015 72 126 134 10.1016/j.jobaz.2015.09.002
    [Google Scholar]
  84. Ribeiro-Santos R. Andrade M. Madella D. Revisiting an ancient spice with medicinal purposes: Cinnamon. Trends Food Sci. Technol. 2017 62 154 169 10.1016/j.tifs.2017.02.011
    [Google Scholar]
  85. Mazimba O. Wale K. Tebogo E. Tebogo E. Kwape Shetonde O. Cinnamomum verum: Ethylacetate and methanol extracts antioxidant and antimicrobial activity. J Med Plants Stud 2015 3 28 32
    [Google Scholar]
  86. Shabani N.R. Ismail Z. Ismail W.I. Antimicrobial activity of cinnamon oil against bacteria that cause skin infections. J Sci Res Dev 2016 3 1 6
    [Google Scholar]
  87. Feng K. Wen P. Yang H. Enhancement of the antimicrobial activity of cinnamon essential oil-loaded electrospun nanofilm by the incorporation of lysozyme. RSC Advances 2017 7 3 1572 1580 10.1039/C6RA25977D
    [Google Scholar]
  88. Chuesiang P. Siripatrawan U. Sanguandeekul R. McClements D.J. McLandsborough L. Antimicrobial activity of PIT-fabricated cinnamon oil nanoemulsions: Effect of surfactant concentration on morphology of foodborne pathogens. Food Control 2019 98 405 411 10.1016/j.foodcont.2018.11.024
    [Google Scholar]
  89. Mukhtar S. Ghori I. Antibacterial activity of aqueous and ethanolic extracts of garlic, cinnamon, and turmeric against Escherichia coli ATCC 25922 and Bacillus subtilis DSM 3256. Int J Appl Biol Pharm 2012 3 131 136
    [Google Scholar]
  90. Bouhdid S. Abrini J. Amensour M. Zhiri A. Espuny M.J. Manresa A. Functional and ultrastructural changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Cinnamomum verum essential oil. J. Appl. Microbiol. 2010 109 4 1139 1149 10.1111/j.1365‑2672.2010.04740.x 20456525
    [Google Scholar]
  91. Abbaszadegan A. Dadolahi S. Gholami A. Antimicrobial and cytotoxic activity of Cinnamomum zeylanicum, calcium hydroxide, and triple antibiotic paste as root canal dressing materials. J. Contemp. Dent. Pract. 2016 17 2 105 113 10.5005/jp‑journals‑10024‑1811 27206997
    [Google Scholar]
  92. Brnawi W.I. Hettiarachchy N.S. Horax R. Kumar-Phillips G. Ricke S. Antimicrobial activity of leaf and bark cinnamon essential oils against Listeria monocytogenes and Salmonella typhimurium in broth system and on celery. J. Food Process. Preserv. 2019 43 3 13888 10.1111/jfpp.13888
    [Google Scholar]
  93. Reyes-Jurado F. Navarro-Cruz A.R. Ochoa-Velasco C.E. Palou E. López-Malo A. Ávila-Sosa R. Essential oils in vapor phase as alternative antimicrobials: A review. Crit. Rev. Food Sci. Nutr. 2020 60 10 1641 1650 10.1080/10408398.2019.1586641 30880425
    [Google Scholar]
  94. Sharma S. Ghataury S.K. Sarathe A. Dubey G. Parkhe G. Curcuma angustifolia Roxb, (Zingiberaceae): Ethnobotany, phytochemistry and pharmacology: A review. J. Pharmacogn. Phytochem. 2019 8 1535 1540
    [Google Scholar]
  95. Panpatil V.V. Tattari S. Kota N. Nimgulkar C. Polasa K. In vitro evaluation on antioxidant and antimicrobial activity of spice extracts of ginger, turmeric and garlic. J. Pharmacogn. Phytochem. 2013 2 143 148
    [Google Scholar]
  96. Singh D.B. Maurya A.K. Rai D. Antibacterial and anticancer activities of Turmeric and its active ingredient Curcumin, and mechanism of action. In: Science of Spices and Culinary Herbs-Latest Laboratory, Pre-Clinical, and Clinical Studies. Sharjah, UAE: Bentham Science Publishers 2019; 1 74 103 10.2174/9781681087511119010006
    [Google Scholar]
  97. Gitika A. Mishra R. Panda S.K. Mishra C. Ranjan P. hoo S. Evaluation of antifungal activity of Curcumin against Aspergillus flavus. Int. J. Curr. Microbiol. Appl. Sci. 2019 8 7 2323 2329 10.20546/ijcmas.2019.807.284
    [Google Scholar]
  98. Marwat S.K. Shoaib M. Khan E.A. Rehman F. Ullah H. Phytochemistry and bioactivities of quranic plant, zanjabil-ginger (Zingiber officinale Roscoe): A Review. Am.-Eurasian J. Agric. Environ. Sci. 2015 15 707 713
    [Google Scholar]
  99. Mashhadi N.S. Ghiasvand R. Askari G. Hariri M. Darvishi L. Mofid M.R. Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: Review of current evidence. Int. J. Prev. Med. 2013 4 1 S36 S42 [PMID: 23717767
    [Google Scholar]
  100. Babu K.N. Samsudeen K. Divakaran M. Pillai G.S. Sumathi V. Praveen K. Protocols for in vitro propagation, conservation, synthetic seed production, embryo rescue, microrhizome production, molecular profiling, and genetic transformation in ginger (Zingiber officinale Roscoe.). Protocols for in vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants. 2nd ed New York, NY, USA Humana Press 2016 403 426
    [Google Scholar]
  101. Li H. Huang M. Tan D. Liao Q. Zou Y. Jiang Y. Effects of soil moisture content on the growth and physiological status of ginger (Zingiber officinale Roscoe). Acta Physiol. Plant. 2018 40 7 125 10.1007/s11738‑018‑2698‑4
    [Google Scholar]
  102. Takeuchi H. Trang V.T. Morimoto N. Nishida Y. Matsumura Y. Sugiura T. Natural products and food components with anti-Helicobacter pylori activities. World J. Gastroenterol. 2014 20 27 8971 8978 [PMID: 25083070
    [Google Scholar]
  103. Shalaby M. Ghanem A. Maamon H. Protective effect of ginger and cactus saguaro extract against cancer formation cells. J Food Dairy Sci 2016 7 11 487 491 10.21608/jfds.2016.46069
    [Google Scholar]
  104. Singh A. Rani R. Sharma M. Medicinal herbs of Punjab (India). Biol. Forum. 2018 10 10 27
    [Google Scholar]
  105. Idris N.A. Yasin H.M. Usman A. Voltammetric and spectroscopic determination of polyphenols and antioxidants in ginger (Zingiber officinale Roscoe). Heliyon 2019 5 5 01717 10.1016/j.heliyon.2019.e01717 31193231
    [Google Scholar]
  106. Stoilova I. Krastanov A. Stoyanova A. Denev P. Gargova S. Antioxidant activity of a ginger extract (Zingiber officinale). Food Chem. 2007 102 3 764 770 10.1016/j.foodchem.2006.06.023
    [Google Scholar]
  107. Höferl M Stoilova I Wanner J Composition and comprehensive antioxidant activity of ginger (Zingiber officinale) essential oil from Ecuador. Nat Prod Commun 2015 10 (6) 1934578X1501000672 10.1177/1934578X1501000672 26197557
    [Google Scholar]
  108. Nile S.H. Park S.W. Chromatographic analysis, antioxidant, anti-inflammatory, and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Ind. Crops Prod. 2015 70 238 244 10.1016/j.indcrop.2015.03.033
    [Google Scholar]
  109. Tohma H. Gülçin İ. Bursal E. Gören A.C. Alwasel S.H. Köksal E. Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) determined by HPLC-MS/MS. J. Food Meas. Charact. 2017 11 2 556 566 10.1007/s11694‑016‑9423‑z
    [Google Scholar]
  110. Tung B.T. Thu D.K. Thu N.T.K. Hai N.T. Antioxidant and acetylcholinesterase inhibitory activities of ginger root (Zingiber officinale Roscoe) extract. J. Complement. Integr. Med. 2017 14 4 20160116 10.1515/jcim‑2016‑0116 29345437
    [Google Scholar]
  111. Chan E.W.C. Lim Y.Y. Wong L.F. Antioxidant and tyrosinase inhibition properties of leaves and rhizomes of ginger species. Food Chem. 2008 109 3 477 483 10.1016/j.foodchem.2008.02.016
    [Google Scholar]
  112. de las Heras N. Valero-Muñoz M. Martín-Fernández B. Molecular factors involved in the hypolipidemic- and insulin-sensitizing effects of a ginger (Zingiber officinale Roscoe) extract in rats fed a high-fat diet. Appl. Physiol. Nutr. Metab. 2017 42 2 209 215 10.1139/apnm‑2016‑0374 28125276
    [Google Scholar]
  113. Adeniyi P.O. Sanusi R.A. Obatolu V.A. Effect of raw and cooked ginger (Zingiber officinale Roscoe) Extracts on insulin sensitivity in normal and high-fat diet-induced diabetic rats. J. Food Nutr. Res. 2017 5 838 843
    [Google Scholar]
  114. Abdulrazak A. Tanko Y. Mohammed A. Dikko A.A. Modulatory roles of clove and fermented ginger supplements on lipid profile and thyroid functions in high fat diet-induced insulin resistance in rabbits. Asian J. Med. Sci. 2017 8 1 9
    [Google Scholar]
  115. Abdulrazaq N.B. Cho M.M. Win N.N. Zaman R. Rahman M.T. Beneficial effects of ginger (Zingiber officinale) on carbohydrate metabolism in streptozotocin-induced diabetic rats. Br. J. Nutr. 2012 108 7 1194 1201 10.1017/S0007114511006635 22152092
    [Google Scholar]
  116. Mahluji S. Attari V.E. Mobasseri M. Payahoo L. Ostadrahimi A. Golzari S.E.J. Effects of ginger (Zingiber officinale) on plasma glucose level, HbA1c and insulin sensitivity in type 2 diabetic patients. Int. J. Food Sci. Nutr. 2013 64 6 682 686 10.3109/09637486.2013.775223 23496212
    [Google Scholar]
  117. Mozaffari-Khosravi H. Talaei B. Jalali B.A. Najarzadeh A. Mozayan M.R. The effect of ginger powder supplementation on insulin resistance and glycemic indices in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Complement. Ther. Med. 2014 22 1 9 16 10.1016/j.ctim.2013.12.017 24559810
    [Google Scholar]
  118. Akintobi O.A. Onoh C.C. Ogele J.O. Idowu A.A. Ojo O.V. Okonko I.O. Antimicrobial activity of Zingiber officinale (ginger) extracts against some selected pathogenic bacteria. Nat. Sci. 2013 11 1 7 15
    [Google Scholar]
  119. Bajaj S. Urooj A. Prabhasankar P. Antioxidative properties of mint (Mentha spicata L.) and its application in biscuits. Curr. Res. Nutr. Food Sci. 2016 4 3 209 216 10.12944/CRNFSJ.4.3.07
    [Google Scholar]
  120. Prakash O. Chandra M. Pant A.K. Rawat D.S. Mint (Mentha spicata L.) oils. In:Essential Oils in Food Preservation, Flavor and Safety. Cambridge, MA, USA Academic Press 2016 561 572 10.1016/B978‑0‑12‑416641‑7.00064‑X
    [Google Scholar]
  121. Mimica-Dukic N. Bozin B. Mentha L. species (Lamiaceae) as promising sources of bioactive secondary metabolites. Curr. Pharm. Des. 2008 14 29 3141 3150 10.2174/138161208786404245 19075696
    [Google Scholar]
  122. Singh R. Shushni M.A.M. Belkheir A. Antibacterial and antioxidant activities of Mentha piperita L. Arab. J. Chem. 2015 8 3 322 328 10.1016/j.arabjc.2011.01.019
    [Google Scholar]
  123. Benabdallah A. Rahmoune C. Boumendjel M. Aissi O. Messaoud C. Total phenolic content and antioxidant activity of six wild Mentha species (Lamiaceae) from northeast of Algeria. Asian Pac. J. Trop. Biomed. 2016 6 9 760 766 10.1016/j.apjtb.2016.06.016
    [Google Scholar]
  124. Ben Haj Yahia I. Bouslimi W. Messaoud C. Jaouadi R. Boussaid M. Zaouali Y. Comparative evaluation of Tunisian Mentha L. species essential oils: Selection of potential antioxidant and antimicrobial agents. J. Essent. Oil Res. 2019 31 3 184 195 10.1080/10412905.2018.1550021
    [Google Scholar]
  125. Merat S. Khalili S. Mostajabi P. Ghorbani A. Ansari R. Malekzadeh R. The effect of enteric-coated, delayed-release peppermint oil on irritable bowel syndrome. Dig. Dis. Sci. 2010 55 5 1385 1390 10.1007/s10620‑009‑0854‑9 19507027
    [Google Scholar]
  126. Džami’c A.M. Sokovi’c M.D. Risti’c M.S. Antifungal and antioxidant activity of Mentha longifolia (L.) Hudson (Lamiaceae) essential oil. Bot. Serb. 2010 34 57 61
    [Google Scholar]
  127. Elmastaş M. Telci İ. Akşit H. Erenler R. Comparison of total phenolic contents and antioxidant capacities in mint genotypes used as spices / Baharat olarak kullanılan nane genotiplerinin toplam fenolik içerikleri ve antioksidan kapasitelerinin karşılaştırılması. Turk Biyokim. Derg. 2015 40 6 456 462 10.1515/tjb‑2015‑0034
    [Google Scholar]
  128. Stringaro A. Colone M. Angiolella L. Antioxidant, antifungal, antibiofilm, and cytotoxic activities of Mentha spp. essential oils. Medicines 2018 5 4 112 10.3390/medicines5040112 30347861
    [Google Scholar]
  129. Kopaei M.R. Talei G-R. Mohammadi M. Bahmani M. Synergistic effect of Carum copticum and Mentha piperita essential oils with ciprofloxacin, vancomycin, and gentamicin on Gram-negative and Gram-positive bacteria. Int. J. Pharm. Investig. 2017 7 2 82 87 10.4103/jphi.JPHI_12_17 28929050
    [Google Scholar]
  130. Lim H.W. Kim D.H. Kim S.H. Antimicrobial effect of Mentha piperita (Peppermint) oil against bacillus cereus, staphylococcus aureus, cronobacter sakazakii, and Salmonella enteritidis in various dairy foods: Preliminary study. J Milk Sci Biot 2018 36 3 146 154 10.22424/jmsb.2018.36.3.146
    [Google Scholar]
  131. Islam Z. Islam S.M.R. Hossen F. Mahtab-ul-Islam K. Hasan M.R. Karim R. Moringa oleifera is a prominent source of nutrients with potential health benefits. Int. J. Food Sci. 2021 2021 1 1 11 10.1155/2021/6627265 34423026
    [Google Scholar]
  132. Khalaf A.T. Wei Y. Alneamah S.J.A. What is new in the preventive and therapeutic role of dairy products as nutraceuticals and functional foods? BioMed Res. Int. 2021 2021 1 8823222 10.1155/2021/8823222 33681381
    [Google Scholar]
  133. Zhang J. Chai X. Zhao F. Hou G. Meng Q. Food applications and potential health benefits of hawthorn. Foods 2022 11 18 2861 10.3390/foods11182861 36140986
    [Google Scholar]
  134. Cueva C. Gil-Sánchez I. Ayuda-Durán B. An integrated view of the effects of wine polyphenols and their relevant metabolites on gut and host health. Molecules 2017 22 1 99 10.3390/molecules22010099 28067835
    [Google Scholar]
  135. Wielgus M. Zaniewicz N. Selected biological properties of quercetin, curcumin, and kaempferol. Folia Biol Et Oecolog 2024 18 48 65
    [Google Scholar]
  136. Baliga MS Jimmy R Thilakchand KR Ocimum sanctum L (Holy Basil or Tulsi) and its phytochemicals in the prevention and treatment of cancer. Nutr Cancer 2013 15 (sup1): 26 35 10.1080/01635581.2013.785010 23682780
    [Google Scholar]
  137. Nangia-Makker P. Raz T. Tait L. Ocimum gratissimum retards breast cancer growth and progression and is a natural inhibitor of matrix metalloproteases. Cancer Biol. Ther. 2013 14 5 417 427 10.4161/cbt.23762 23380593
    [Google Scholar]
  138. Salles Trevisan M.T. Vasconcelos Silva M.G. Pfundstein B. Spiegelhalder B. Owen R.W. Characterization of the volatile pattern and antioxidant capacity of essential oils from different species of the genus Ocimum. J. Agric. Food Chem. 2006 54 12 4378 4382 10.1021/jf060181+ 16756370
    [Google Scholar]
  139. Chaudhary A. Sharma S. Mittal A. Gupta S. Dua A. Phytochemical and antioxidant profiling of Ocimum sanctum. J. Food Sci. Technol. 2020 57 10 3852 3863 10.1007/s13197‑020‑04417‑2 32903995
    [Google Scholar]
  140. Arnfred J. Schmitz O. Hother-Nielsen O. Marked impairment of the effect of hyperglycaemia on glucose uptake and glucose production in insulin-dependent diabetes. Diabet. Med. 1988 5 8 755 760 10.1111/j.1464‑5491.1988.tb01103.x 2905942
    [Google Scholar]
  141. Sheu W.H.H. Rosman A. Mithal A. Addressing the burden of type 2 diabetes and cardiovascular disease through the management of postprandial hyperglycaemia: An Asian-Pacific perspective and expert recommendations. Diabetes Res. Clin. Pract. 2011 92 3 312 321 10.1016/j.diabres.2011.04.019 21605924
    [Google Scholar]
  142. Grover J.K. Yadav S. Vats V. Medicinal plants of India with anti-diabetic potential. J. Ethnopharmacol. 2002 81 1 81 100 10.1016/S0378‑8741(02)00059‑4 12020931
    [Google Scholar]
  143. Bhat K.P.L. Pezzuto J.M. Cancer chemopreventive activity of resveratrol. Ann. N. Y. Acad. Sci. 2002 957 1 210 229 10.1111/j.1749‑6632.2002.tb02918.x 12074974
    [Google Scholar]
  144. Modak M. Dixit P. Londhe J. Ghaskadbi S. Devasagayam T.P.A. Indian herbs and herbal drugs used for the treatment of diabetes. J. Clin. Biochem. Nutr. 2007 40 3 163 173 10.3164/jcbn.40.163 18398493
    [Google Scholar]
  145. Khan V. Najmi A.K. Akhtar M. Aqil M. Mujeeb M. Pillai K.K. A pharmacological appraisal of medicinal plants with antidiabetic potential. J. Pharm. Bioallied Sci. 2012 4 1 27 42 10.4103/0975‑7406.92727 22368396
    [Google Scholar]
  146. Kamyab A. Eshraghian A. Anti-Inflammatory, gastrointestinal and hepatoprotective effects of Ocimum sanctum Linn: An ancient remedy with new application. Inflamm. Allergy Drug Targets 2013 12 6 378 384 10.2174/1871528112666131125110017 24266685
    [Google Scholar]
  147. Arenal A. Martín L. Castillo N.M. de la Torre D. Torres U. González R. Aqueous extract of Ocimum tenuiflorum decreases levels of blood glucose in induced hyperglycemic tilapia (Oreochromis niloticus). Asian Pac. J. Trop. Med. 2012 5 8 634 637 10.1016/S1995‑7645(12)60130‑8 22840452
    [Google Scholar]
  148. Sethi J. Sood S. Seth S. Talwar A. Evaluation of hypoglycemic and antioxidant effect ofOcimum sanctum. Indian J. Clin. Biochem. 2004 19 2 152 155 10.1007/BF02894276 23105475
    [Google Scholar]
  149. Hannan J.M.A. Marenah L. Ali L. Rokeya B. Flatt P.R. Abdel-Wahab Y.H.A. Ocimum sanctum leaf extracts stimulate insulin secretion from perfused pancreas, isolated islets and clonal pancreatic β-cells. J. Endocrinol. 2006 189 1 127 136 10.1677/joe.1.06615 16614387
    [Google Scholar]
  150. Vats V. Yadav S.P. Grover J.K. Ethanolic extract of Ocimum sanctum leaves partially attenuates streptozotocin-induced alterations in glycogen content and carbohydrate metabolism in rats. J. Ethnopharmacol. 2004 90 1 155 160 10.1016/j.jep.2003.09.034 14698524
    [Google Scholar]
  151. Gholap S. Kar A. Hypoglycaemic effects of some plant extracts are possibly mediated through inhibition in corticosteroid concentration. Pharmazie 2004 59 11 876 878 [PMID: 15587591
    [Google Scholar]
  152. Mahomoodally M.F. Gurib-Fakim A. Subratty A.H. Screening for alternative antibiotics: An investigation into the antimicrobial activities of medicinal food plants of Mauritius. J. Food Sci. 2010 75 3 M173 M177 10.1111/j.1750‑3841.2010.01555.x 20492307
    [Google Scholar]
  153. Mandal S. Mandal M.D. Pal N.K. Enhancing chloramphenicol and trimethoprim in vitro activity by Ocimum sanctum Linn. (Lamiaceae) leaf extract against Salmonella enterica serovar Typhi. Asian Pac. J. Trop. Med. 2012 5 3 220 224 10.1016/S1995‑7645(12)60028‑5 22305788
    [Google Scholar]
  154. Prakash P. Gupta N. Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: A short review. Indian J. Physiol. Pharmacol. 2005 49 2 125 131 [PMID: 16170979
    [Google Scholar]
  155. Purkayastha S. Dahiya P. Phytochemical screening and antimicrobial activity of some medicinal plants against multi-drug resistant bacteria from clinical isolates. Indian J. Pharm. Sci. 2012 74 5 443 450 10.4103/0250‑474X.108420 23716873
    [Google Scholar]
  156. Agarwal P. Nagesh L. Murlikrishnan. Evaluation of the antimicrobial activity of various concentrations of Tulsi (Ocimum sanctum) extract against Streptococcus mutans: An in vitro study. Indian J. Dent. Res. 2010 21 3 357 359 10.4103/0970‑9290.70800 20930344
    [Google Scholar]
  157. Khan A Ahmad A Manzoor N Khan LA Antifungal activities of Ocimum sanctum essential oil and its lead molecules. Nat Prod Commun 2010 5 (2) 1934578X1000500235 10.1177/1934578X1000500235 20334156
    [Google Scholar]
  158. Eseberri I. Trepiana J. Léniz A. Variability in the beneficial effects of phenolic compounds. Nutrients 2022 14 9 1925 10.3390/nu14091925 35565892
    [Google Scholar]
  159. Del Bo’ C. Bernardi S. Marino M. Systematic review on polyphenol intake and health outcomes: Is there sufficient evidence to define a health-promoting polyphenol-rich dietary pattern? Nutrients 2019 11 6 1355 10.3390/nu11061355 31208133
    [Google Scholar]
  160. Di Lorenzo C. Colombo F. Biella S. Stockley C. Restani P. Polyphenols and human health: The role of bioavailability. Nutrients 2021 13 1 273 10.3390/nu13010273 33477894
    [Google Scholar]
  161. Hurrell R.F. Reddy M. Cook J.D. Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages. Br. J. Nutr. 1999 81 4 289 295 10.1017/S0007114599000537 10999016
    [Google Scholar]
  162. Naomi R. Yazid M.D. Teoh S.H. Dietary polyphenols as a protection against cognitive decline: Evidence from animal experiments; mechanisms and limitations. Antioxidants 2023 12 5 1054 10.3390/antiox12051054 37237920
    [Google Scholar]
  163. Mahmutović L. Sezer A. Bilajac E. Hromić-Jahjefendić A. Uversky V.N. Glamočlija U. Polyphenol stability and bioavailability in cell culture medium: Challenges, limitations and future directions. Int. J. Biol. Macromol. 2024 279 Pt 2 135232 10.1016/j.ijbiomac.2024.135232 39218177
    [Google Scholar]
  164. Lippolis T. Cofano M. Caponio G.R. De Nunzio V. Notarnicola M. Bioaccessibility and bioavailability of diet polyphenols and their modulation of gut microbiota. Int. J. Mol. Sci. 2023 24 4 3813 10.3390/ijms24043813 36835225
    [Google Scholar]
  165. Gildea J. Polyphenol compositions having improved bioavailability. Patent US2024216296A1 2024
    [Google Scholar]
/content/journals/biot/10.2174/0118722083375459250801073140
Loading
/content/journals/biot/10.2174/0118722083375459250801073140
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test