Skip to content
2000
image of Economic Assessment of Bio-oil Production from Algae: A Bibliometric Analysis

Abstract

Introduction

The production of bio-oil from microalgae is gaining attention as an alternative renewable energy source. To generate advances in this field, it is essential to identify the gaps in existing research. Overcoming this barrier necessitates addressing methodologies that can assess the existing work and develop relationships between publications, research groups, and their impact.

Methods

To chart a course toward practicality, this study employs bibliometric indicators, leveraging tools such as R Studio, VOSviewer 1.6.19, and Biblioshiny for network visualization and analysis. Drawing on the Scopus database spanning 2004-2024, a meticulous keyword strategy effectively segregated relevant papers.

Results

The findings suggest that the total number of published documents is 1005. The publication trend on this topic shows a significant increase since 2008, with a record high of 107 publications in 2022. China dominates the publication list, with thirteen universities contributing the highest. In the context of algal bio-oil, a total of 2850 authors contributed to 1005 publications.

Discussion

A three-way map displaying the relationships between journal titles, paper titles, and author keywords provides useful insights into the research landscape of the field. Algal research is growing and collaborating, despite bibliometric limitations such as time dependency and database scope. Such studies, however, offer valuable insights into the evolving bio-oil field.

Conclusion

The study aims to link sustainable economic development with technological innovation and related economic growth. Its objective is to provide researchers with information on niche research clusters, quantify emerging methodologies, facilitate collaborative networks, and identify knowledge gaps, while assisting in determining the impact of specific publication venues. In addition to analyzing key economic drivers, the study will also recommend prospective research themes to disseminate algae-based bio-oil production research. This study conducts an integrated bibliometric and patent analysis to map research fronts, key assignees, and evolving techno-economic themes in algal bio-oil.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083384019250805103219
2025-08-19
2025-11-06
Loading full text...

Full text loading...

References

  1. Raza S.A. Shah N. Sharif A. Time frequency relationship between energy consumption, economic growth and environmental degradation in the United States: Evidence from transportation sector. Energy 2019 173 706 720 10.1016/j.energy.2019.01.077
    [Google Scholar]
  2. Shahi T. Beheshti B. Zenouzi A. Almasi M. Bio-oil production from residual biomass of microalgae after lipid extraction: The case of Dunaliella Sp. Biocatal. Agric. Biotechnol. 2020 23 101494 10.1016/j.bcab.2020.101494
    [Google Scholar]
  3. Mittlefehldt S. From appropriate technology to the clean energy economy: Renewable energy and environmental politics since the 1970s. J. Environ. Stud. Sci. 2018 8 2 212 219 10.1007/s13412‑018‑0471‑z
    [Google Scholar]
  4. Hu H.S. Wu Y.L. Yang M.D. Fractionation of bio-oil produced from hydrothermal liquefaction of microalgae by liquid-liquid extraction. Biomass Bioenergy 2018 108 487 500 10.1016/j.biombioe.2017.10.033
    [Google Scholar]
  5. Arun J. Varshini P. Prithvinath P.K. Priyadarshini V. Gopinath K.P. Enrichment of bio-oil after hydrothermal liquefaction (HTL) of microalgae C. vulgaris grown in wastewater: Bio-char and post HTL wastewater utilization studies. Bioresour. Technol. 2018 261 182 187 10.1016/j.biortech.2018.04.029 29660659
    [Google Scholar]
  6. Alizadeh R. Lund P.D. Soltanisehat L. Outlook on biofuels in future studies: A systematic literature review. Renew. Sustain. Energy Rev. 2020 134 110326 10.1016/j.rser.2020.110326
    [Google Scholar]
  7. Santillan-Jimenez E. Pace R. Morgan T. Co-processing of hydrothermal liquefaction algal bio-oil and petroleum feedstock to fuel-like hydrocarbons via fluid catalytic cracking. Fuel Process. Technol. 2019 188 164 171 10.1016/j.fuproc.2019.02.018
    [Google Scholar]
  8. Xu Y. Liu K. Hu Y. Dong Y. Yao L. Experimental investigation and comparison of bio-oil from hybrid microalgae via super/subcritical liquefaction. Fuel 2020 279 118412 10.1016/j.fuel.2020.118412
    [Google Scholar]
  9. Alishah Aratboni H. Rafiei N. Garcia-Granados R. Alemzadeh A. Morones-Ramírez J.R. Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb. Cell Fact. 2019 18 1 178 10.1186/s12934‑019‑1228‑4 31638987
    [Google Scholar]
  10. Khan S. Das P. Abdul Quadir M. Microalgal feedstock for biofuel production: Recent advances, challenges, and future perspective. Fermentation 2023 9 3 281 10.3390/fermentation9030281
    [Google Scholar]
  11. Lu J. Wang S. Li Q. Xu S. Wang C. Wu Y. Catalytic hydrothermal liquefaction of microalgae to bio-oil with in-situ hydrogen donor formic acid. J. Anal. Appl. Pyrolysis 2022 167 105653 10.1016/j.jaap.2022.105653
    [Google Scholar]
  12. Leng L. Zhang W. Peng H. Li H. Jiang S. Huang H. Nitrogen in bio-oil produced from hydrothermal liquefaction of biomass: A review. Chem. Eng. J. 2020 401 126030 10.1016/j.cej.2020.126030
    [Google Scholar]
  13. Xiu S. Shahbazi A. Bio-oil production and upgrading research: A review. Renew. Sustain. Energy Rev. 2012 16 7 4406 4414 10.1016/j.rser.2012.04.028
    [Google Scholar]
  14. Xu D. Wang Y. Lin G. Guo S. Wang S. Wu Z. Co-hydrothermal liquefaction of microalgae and sewage sludge in subcritical water: Ash effects on bio-oil production. Renew. Energy 2019 138 1143 1151 10.1016/j.renene.2019.02.020
    [Google Scholar]
  15. Giorcelli M. Das O. Sas G. Försth M. Bartoli M. A review of bio-oil production through microwave-assisted pyrolysis. Processes 2021 9 3 561 10.3390/pr9030561
    [Google Scholar]
  16. Zhang W. Li J. Liu T. Machine learning prediction and optimization of bio-oil production from hydrothermal liquefaction of algae. Bioresour. Technol. 2021 342 126011 10.1016/j.biortech.2021.126011 34852447
    [Google Scholar]
  17. Wang Y. Akbarzadeh A. Chong L. Du J. Tahir N. Awasthi M.K. Catalytic pyrolysis of lignocellulosic biomass for bio-oil production: A review. Chemosphere 2022 297 134181 10.1016/j.chemosphere.2022.134181 35248592
    [Google Scholar]
  18. Sarkar S. Kumar A. Large-scale biohydrogen production from bio-oil. Bioresour. Technol. 2010 101 19 7350 7361 10.1016/j.biortech.2010.04.038 20452203
    [Google Scholar]
  19. Xu Y. Hu Y. Peng Y. Catalytic pyrolysis and liquefaction behavior of microalgae for bio-oil production. Bioresour. Technol. 2020 300 122665 10.1016/j.biortech.2019.122665 31918303
    [Google Scholar]
  20. Kombe G.G. An overview of algae for biodiesel production using bibliometric indicators. Int. J. Energy Res. 2023 2023 1 28 10.1155/2023/9596398
    [Google Scholar]
  21. Arimbrathodi S.P. Javed M.A. Hamouda M.A. Aly Hassan A. Ahmed M.E. BioH2 production using microalgae: Highlights on recent advancements from a bibliometric analysis. Water 2023 15 1 185 10.3390/w15010185
    [Google Scholar]
  22. Polat Z.A. Alkan M. Paulsson J. Paasch J.M. Kalogianni E. Global scientific production on LADM-based research: A bibliometric analysis from 2012 to 2020. Land Use Policy 2022 112 105847 10.1016/j.landusepol.2021.105847
    [Google Scholar]
  23. Yu Y. Li Y. Zhang Z. A bibliometric analysis using VOSviewer of publications on COVID-19. Ann. Transl. Med. 2020 8 13 816 6 10.21037/atm‑20‑4235 32793661
    [Google Scholar]
  24. Naeem M. Imran M. Latif S. Multifunctional catalyst-assisted sustainable reformation of lignocellulosic biomass into environmentally friendly biofuel and value-added chemicals. Chemosphere 2023 330 138633 10.1016/j.chemosphere.2023.138633 37030343
    [Google Scholar]
  25. de Souza M.P. Hoeltz M. Brittes Benitez L. Machado Ê.L. de Souza Schneider R.C. Microalgae and clean technologies: A review. Clean 2019 47 11 1800380 10.1002/clen.201800380
    [Google Scholar]
  26. Lim W.M. Kumar S. Donthu N. How to combine and clean bibliometric data and use bibliometric tools synergistically: Guidelines using metaverse research. J. Bus. Res. 2024 182 114760 10.1016/j.jbusres.2024.114760
    [Google Scholar]
  27. Amin S. Review on biofuel oil and gas production processes from microalgae. Energy Convers. Manage. 2009 50 7 1834 1840 10.1016/j.enconman.2009.03.001
    [Google Scholar]
  28. Nagle N. Lemke P. Production of methyl ester fuel from microalgae. Appl. Biochem. Biotechnol. 1990 24-25 1 355 361 10.1007/BF02920259
    [Google Scholar]
  29. Saber M. Nakhshiniev B. Yoshikawa K. A review of production and upgrading of algal bio-oil. Renew. Sustain. Energy Rev. 2016 58 918 930 10.1016/j.rser.2015.12.342
    [Google Scholar]
  30. Farooq A. Rhee G.H. Shim H. Enhanced mono-aromatics production by the CH4-assisted pyrolysis of microalgae using Zn-based HZSM-5 catalysts. Chemosphere 2024 351 141251 10.1016/j.chemosphere.2024.141251 38253084
    [Google Scholar]
  31. Gao X. He X. Liu Y. Zhang X. Hu X. Guo Q. Chemical looping pyrolysis-gasification staged conversion of microalgae biomass with Ca-Fe composite oxygen carrier. Int. J. Greenh. Gas Control 2023 127 103941 10.1016/j.ijggc.2023.103941
    [Google Scholar]
  32. Esakkimuthu S. Wang S. Abomohra A.E-F. Physical stress for enhanced biofuel production from microalgae. Handbook of Algal Biofuels. Elsevier 2022 451 475 10.1016/B978‑0‑12‑823764‑9.00025‑X
    [Google Scholar]
  33. Bassoli S.C. da Fonseca Y.A. Wandurraga H.J.L. Baeta B.E.L. de Souza Amaral M. Research progress, trends, and future prospects on hydrothermal liquefaction of algae for biocrude production: A bibliometric analysis. Biomass Convers. Biorefin. 2024 14 22 28781 28796 10.1007/s13399‑023‑03905‑7 36788981
    [Google Scholar]
  34. Cao B. Hu S. Zhu K. Response surface optimization of product yields and biofuel quality during fast hydrothermal liquefaction of a highly CO2-tolerant microalgae. Sci. Total Environ. 2023 860 160541 10.1016/j.scitotenv.2022.160541 36464061
    [Google Scholar]
  35. Chen W Chen Y Yang H Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect. Bioresour Technol 2017 245 Pt A 860 868 10.1016/j.biortech.2017.09.022 28926919
    [Google Scholar]
  36. Miao X. Wu Q. Yang C. Fast pyrolysis of microalgae to produce renewable fuels. J. Anal. Appl. Pyrolysis 2004 71 2 855 863 10.1016/j.jaap.2003.11.004
    [Google Scholar]
  37. Ghodke P.K. Ramanjaneylu B. Kumar S. Stabilization of bio-oil derived from macroalgae biomass using reactive chromatography. Biomass Convers. Biorefin. 2023 13 6 5261 5272 10.1007/s13399‑021‑01533‑7
    [Google Scholar]
  38. Khoo H.H. Koh C.Y. Shaik M.S. Sharratt P.N. Bioenergy co-products derived from microalgae biomass via thermochemical conversion - Life cycle energy balances and CO2 emissions. Bioresour. Technol. 2013 143 298 307 10.1016/j.biortech.2013.06.004 23810951
    [Google Scholar]
  39. Chen H. Wang X. Wang Q. Microalgal biofuels in China: The past, progress and prospects. Glob. Change Biol. Bioenergy 2020 12 12 1044 1065 10.1111/gcbb.12741
    [Google Scholar]
  40. Ahmad S. Kothari R. Pathak V.V. Tyagi V.V. Pandey A.K. Sari A. Response surface methodology-based extraction optimization with application of ZrCl4 as novel quenching agent for enhancement of bio-oil yield from Jatropha curcas and Chlorella pyrenoidosa. Biomass Convers. Biorefin. 2023 13 9 7585 7599 10.1007/s13399‑021‑01705‑5
    [Google Scholar]
  41. Yang C. Jia L. Chen C. Liu G. Fang W. Bio-oil from hydro-liquefaction of Dunaliella salina over Ni/REHY catalyst. Bioresour. Technol. 2011 102 6 4580 4584 10.1016/j.biortech.2010.12.111 21262568
    [Google Scholar]
  42. Mamo G. Biofuel production. Patent WO2024194221A1 2024
    [Google Scholar]
/content/journals/biot/10.2174/0118722083384019250805103219
Loading
/content/journals/biot/10.2174/0118722083384019250805103219
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Bibliometric analysis ; green chemistry ; biofuel ; algal research ; Microalgae ; Bio oil
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test