Skip to content
2000
image of Technologies for Conservation of Horseshoe Crabs: A Patent Landscape Analysis

Abstract

Background

The horseshoe crab, a Xiphosurid species with an ancient lineage that dates back 450 million years, has proven to be a precious asset to the pharmaceutical industry. The blood extracted from these creatures is an irreplaceable component in detecting bacterial endotoxins, crucially important in pharmaceutical and functional settings. Unfortunately, these living ancient organisms are threatened from multiple perspectives and are now considered endangered. While efforts to conserve these creatures are underway, exploring technologies for their conservation can help us understand the latest advancements in the field and shed light on areas that have not yet been targeted.

Methods

This analytical report is the first of its kind in this domain and provides a comprehensive overview of the available patents associated with the conservation of horseshoe crabs. Patents associated with horseshoe crabs were searched in PatSeer and the data analysed and filtered, based on relevance.

Results

The analysis is based on an extensive dataset (413) that describes technology for conservation of these living fossils, with a focus on recombinant proteins that can be a viable alternative to the mass utilization of the horseshoe crabs for the extraction of limulus amoebocyte lysate. Other technological advances which advocate cell-free hemolymph production and the use of artificial baits to replace the traditional grassroot practices, procedures related to efficient breeding, growth, hatching and release from artificial culture systems can go a long way in the conservation of these living fossils.

Discussion

The technologies and innovation reveal possible means of reducing the dependence on live animals through non-invasive methods. Novel interventions such as recombinant Factor C for endotoxin detection provide promising alternatives to conventional methods. Additionally, technological advances in aquaculture protocols provide strategies that allow for the conservation and artificial breeding of the horseshoe crab.

Conclusion

Transitioning to recombinant Factor C, a ban on horseshoe crab baits, diversity mapping through genetic markers and artificial breeding techniques are some of the measures that can be manifested at the policy level to enhance conservation efforts.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083369051250708143745
2025-07-15
2025-11-06
Loading full text...

Full text loading...

References

  1. Price JT The Origin and Evolution of Life The English University Press Ltd 1971
    [Google Scholar]
  2. Desmarest A.G. Natural History of Fossil Crustaceans. Paris Crustaceans Properly So-Called FG Levrault 1822
    [Google Scholar]
  3. Alam MS. The Indian horseshoe crab, Tachypleus gigas (Muller) and its biomedical applications. Doctoral dissertation, Goa University 2007.
    [Google Scholar]
  4. Shuster C.N. A pictorial review of the natural history and ecology of the horseshoe crab Limulus polyphemus, with reference to other Limulidae. Prog. Clin. Biol. Res. 1982 81 1 52 6750622
    [Google Scholar]
  5. Levin J Bang FB Clottable protein in Limulus; its localization and kinetics of its coagulation by endotoxin. Thromb Haemost 1968; 19 (01/02) 186 97 10.1055/s‑0038‑1651195 5690028
    [Google Scholar]
  6. Levin J. Bang F.B. The role of endotoxin in the extracellular coagulation of Limulus blood. Bull. Johns Hopkins Hosp. 1964 115 265 274 14209047
    [Google Scholar]
  7. Mikkelsen T. The secret in the blue blood. Science Press 1988
    [Google Scholar]
  8. Botton M.L. Loveland R.E. Tiwari A. Distribution, abundance, and survivorship of young-of-the-year in a commercially exploited population of horseshoe crabs Limulus polyphemus. Mar. Ecol. Prog. Ser. 2003 265 175 184 10.3354/meps265175
    [Google Scholar]
  9. Leschen A.S. Grady S.P. Valiela I. Fecundity and spawning of the Atlantic horseshoe crab, Limulus polyphemus, in Pleasant Bay, Cape Cod, Massachusetts, USA. Mar. Ecol. 2006 27 1 54 65 10.1111/j.1439‑0485.2005.00053.x
    [Google Scholar]
  10. James-Pirri M.J. Tuxbury K. Marino S. Koch S. Spawning densities, egg densities, size structure, and movement patterns of spawning horseshoe crabs,Limulus polyphemus, within four coastal embayments on Cape Cod, Massachusetts. Estuaries 2005 28 2 296 313 10.1007/BF02732863
    [Google Scholar]
  11. Chatterji A. Rathod V. Parulekar A.H. Spawning migration of the horseshoe crab, Tachypleus gigas (Müller), in relation to lunar cycle. Asian Fish. Sci. 1992 5 1 123 128
    [Google Scholar]
  12. Chatterji A. Rathod V. Parulekar A.H. Seasonal variations in the volume of the haemolymph and body weight of the horseshoe crab, Tachypleus gigas. Muller 1992
    [Google Scholar]
  13. Chatterjee A. Mishra J.K. Vijayakumar R. Parulekar A.H. Length-weight relationship of the Indian horseshoe crab Tachypleus gigas (Muller). Indian J. Fish. 1994 41 111 113
    [Google Scholar]
  14. Chatterji A. Parulekar A.H. Qasim S.Z. Nesting behaviour of the Indian horseshoe crab, Tachypleus gigas (Muller). Xiphosura 1996
    [Google Scholar]
  15. Yijayakumar J. Das S. Chatterji A. Parulekar A.H. Morphometric characteristics in the horseshoe crab Tachypleus gigas (Arthropoda: Merostomata). Indian J. Geo-Mar. Sci. 2000 29 4 333 335
    [Google Scholar]
  16. Alam H. Sumedha C. Pati S. Dash B.P. Chatterji A. Horseshoe crab peri-vitelline fluid triggers the human bone marrow stem cell differentiation into cardiomyocyte in vitro. Cell Dev. Biol. 2015 4 3 3 8 [a 10.4172/2168‑9296.1000162
    [Google Scholar]
  17. Alam H. Chinnari S. A first record on the role of peri-vitelline fluid of the fertilized eggs of Indian horseshoe crab (Tahchypleus gigas Muller) promoting wound healing process in vitro. Int J Adv Lif Sci 2015 8 4 411 415
    [Google Scholar]
  18. Almendral M.A. Schoppe S. Population structure of Tachypleus tridentatus (Chelicerata: Merostomata) at a nursery beach in Puerto Princesa City, Palawan, Philippines. J. Nat. Hist. 2005 39 25 2319 2329 10.1080/00222930500063219
    [Google Scholar]
  19. Botton M.L. Shuster C.N. Sekiguchi K. Sugita H. Amplexus and mating behavior in the Japanese horseshoe crab, Tachypleus tridentatus. J. Zool. 1996 13 151 159
    [Google Scholar]
  20. Chiu H.M.C. Morton B. The distribution of horseshoe crabs in Hong Kong. In: The biology, distribution and status of horseshoe crabs. horseshoe crabs 1999.
    [Google Scholar]
  21. Chiu H.M.C. Morton B. The behaviour of juvenile horseshoe crabs, Tachypleus Tridentatus (Xiphosura), on a nursery beach at Shui Hau Wan, Hong Kong. Hydrobiologia 2004 523 1-3 29 35 10.1023/B:HYDR.0000033085.71861.63
    [Google Scholar]
  22. Laurie K. Chen C.P. Cheung S.G. Tachypleus tridentatus, tri-spine horseshoe crab - The IUCN red list of threatened specis assessment report (errata version). 2019 Available from
    [Google Scholar]
  23. John B.A. Nelson B.R. Sheikh H.I. A review on fisheries and conservation status of Asian horseshoe crabs. Biodivers. Conserv. 2018 27 14 3573 3598 10.1007/s10531‑018‑1633‑8
    [Google Scholar]
  24. Smith D.R. Brockmann H.J. Beekey M.A. King T.L. Millard M.J. Zaldívar-Rae J. Conservation status of the American horseshoe crab, (Limulus polyphemus): A regional assessment. Rev. Fish Biol. Fish. 2017 27 1 135 175 10.1007/s11160‑016‑9461‑y
    [Google Scholar]
  25. Pyrogen test. In:The United States Pharmacopeia XII. Rockville, MD, USA United States Pharmacopeia 1942 10.31003/USP41‑NF36_M98900_01_01]
    [Google Scholar]
  26. Licensing of Limulus amebocyte lysate. Use as an alternative for rabbit pyrogen test. Fed. Regist. 1977 42 57749
    [Google Scholar]
  27. Krisfalusi-Gannon J. Ali W. Dellinger K. The role of horseshoe crabs in the biomedical industry and recent trends impacting species sustainability. Front. Mar. Sci. 2018 5 185 10.3389/fmars.2018.00185
    [Google Scholar]
  28. Tanacredi J.T. Portilla S. Habitat inventory trend analysis of Limulus polyphemus populations on Long Island, USA: From the tip of Brooklyn to the tip of Montauk, 2003–2014. In:Changing Global Perspectives on Horseshoe Crab Biology, Conservation and Management. Cham Springer 2015 229 236 10.1007/978‑3‑319‑19542‑1_12]
    [Google Scholar]
  29. Walls E.A. Berkson J.M. Effects of blood extraction on horseshoe crabs (Limulus polyphemus). Fish Bull. 2003 101 2 457 459
    [Google Scholar]
  30. Leschen A.S. Correia S.J. Mortality in female horseshoe crabs (Limulus polyphemus) from biomedical bleeding and handling: Implications for fisheries management. Mar. Freshwat. Behav. Physiol. 2010 43 2 135 147 10.1080/10236241003786873
    [Google Scholar]
  31. Luo Z. Miao F. Hu M. Wang Y. Research development on horseshoe crab: A 30-year bibliometric analysis. Front. Mar. Sci. 2020 7 41 10.3389/fmars.2020.00041
    [Google Scholar]
  32. Hinsley A. Challender D.W.S. Masters S. Early warning of trends in commercial wildlife trade through novel machine-learning analysis of patent filing. Nat. Commun. 2024 15 1 6379 10.1038/s41467‑024‑49688‑x 39090097
    [Google Scholar]
  33. Sinha M. Pandurangi A. Guide to practical patent searching and how to use PatSeer for patent search and analysis. Gridlogics 2016
    [Google Scholar]
  34. Morita T. Tanaka S. Nakamura T. Iwanaga S. A new (1 → 3)‐β‐D‐glucan‐mediated coagulation pathway found in limulus amebocytes. FEBS Lett. 1981 129 2 318 321 10.1016/0014‑5793(81)80192‑5 6790304
    [Google Scholar]
  35. Ohki M. Nakamura T. Morita T. Iwanaga S. A new endotoxin sensitive factor associated with hemolymph coagulation system of horseshoe crab (Limulidae). FEBS Lett. 1980 120 2 217 220 10.1016/0014‑5793(80)80301‑2 7002614
    [Google Scholar]
  36. Nakamura T. Morita T. Iwanaga S. Lipopolysaccharide‐sensitive serine‐protease zymogen (factor C) found in Limulus hemocytes. Eur. J. Biochem. 1986 154 3 511 521 10.1111/j.1432‑1033.1986.tb09427.x 3512266
    [Google Scholar]
  37. Ding J.L. Chai C. Pui A.W.M. Ho B. Expression of full length and deletion homologues of Carcinoscorpius rotundicauda Factor C in Saccharomyces cerevisiae: immunoreactivity and endotoxin binding. J. Endotoxin Res. 1997 4 1 33 43 10.1177/096805199700400105
    [Google Scholar]
  38. Pui A.W.M. Ho B. Ding J.L. Yeast recombinant Factor C from horseshoe crab binds endotoxin and causes bacteriostasis. J. Endotoxin Res. 1997 4 6 391 400 10.1177/096805199700400602
    [Google Scholar]
  39. Roopashree S.D. Ho B. Ding J.L. Expression of Carcinoscorpius rotundicauda Factor C in Pichia pastoris. Mol. Mar. Biol. Biotechnol. 1996 5 4 334 343
    [Google Scholar]
  40. Mizumura H. Ogura N. Aketagawa J. Genetic engineering approach to develop next-generation reagents for endotoxin quantification. Innate Immun. 2017 23 2 136 146 10.1177/1753425916681074 27913792
    [Google Scholar]
  41. Kobayashi Y. Takahashi T. Shibata T. Factor B is the second lipopolysaccharide-binding protease zymogen in the horseshoe crab coagulation cascade. J. Biol. Chem. 2015 290 31 19379 19386 10.1074/jbc.M115.653196 26109069
    [Google Scholar]
  42. 2007 Associates of Cape Cod becomes part of new Seikagaku subsidiary 2019 Available from: https://www.biospace.com/associates-of-b-cape-cod-b-becomes-part-of-new-seikagaku-subsidiary
  43. Guan J Fu Y Liao Y Bionic cultivation device for horseshoe crab larvae C.N. Patent 108925511B 2023
    [Google Scholar]
  44. Wang P A kind of gruel shape semi-humid Tachypleus tridentatus mixed feed and preparation method C.N. Patent 105341536B 2019
    [Google Scholar]
  45. Guan J Ji X Zhou H Scientific releasing method for Tachypleus tridentatus seedlings C.N. Patent 109042418B 2021
    [Google Scholar]
  46. Hoffmeister B Underwood S Blick S Horseshoe crab incubation system U.S. Patent 2020053987 2020
    [Google Scholar]
  47. Hong S Liao S Sun S Xue W Artificial breeding and culturing method for horseshoe crabs C.N. Patent 102487853B 2013
    [Google Scholar]
  48. Liao Y Guan J Fang H Wang P Liu J Method for improving survival rate and hatching rate of Tachypleus tridentatus embryos by controlling chlorine dioxide concentration C.N. Patent 107455299A 2017
    [Google Scholar]
  49. Dong F Jin Z Chen P Fluorescent microsphere probe for detecting endotoxin as well as preparation method and application of fluorescent microsphere probe C.N. Patent 114636816A 2022
    [Google Scholar]
  50. Wainwright R Tsuchiya M Dubczak J Jordan F Recombinant amebocyte lysate and uses thereof U.S. Patent 12158471B2 2023
    [Google Scholar]
  51. OguraN KobayashiY MizumuraH OdaT Method for enhancing sensitivity of endotoxin measuring agent W.O. Patent 2020071229A1 2020
    [Google Scholar]
  52. JiuP WangB LuoG QianQ WangZ ChengW A kind of method of endotoxin content in tracer liquid C.N. Patent 103675051B 2015
    [Google Scholar]
  53. DingJ.L. HoB. TanN.G. Factor C for treating gram-negative bacterial infection U.S. Patent 7939492B2 2011
    [Google Scholar]
  54. DingJ.L. HoB. TanN.G. Recombinant proteins and peptides for endotoxin biosensors, endotoxin removal, and anti-microbial and anti-endotoxin therapeutics W.O. Patent 2001027289A9 2002
    [Google Scholar]
  55. MizumuraH KobayashiY OdaT Recombinant proteins derived from genus Limulus, and dna molecules encoding same W.O. Patent 2018074498A8 2018
    [Google Scholar]
  56. MizumuraH OdaT KawabataS.I. Novel recombinant factor C and method for producing same, and method for measuring endotoxin W.O. Patent 2014092079A1 2014
    [Google Scholar]
  57. BuchbergerB. Method for recombinant production of horseshoe crab factor C protein in protozoa W.O. Patent 2014086847A1 2014
    [Google Scholar]
  58. ChenL PepeM Methods and reagents for detecting endotoxin W.O. Patent 03002976A3 2003
    [Google Scholar]
  59. DingJ.L. HoB. Assays for endotoxin U.S. Patent 6645724B1 2003
    [Google Scholar]
  60. IwanagaS MutaT SekiN OdaT Novel polypeptide and dna coding for the same W.O. Patent 9501432A1 1995
    [Google Scholar]
  61. YamamotoY KitagawaT FukuchiH Horseshoe crab-derived recombinant factor G and method for measuring β-glucan using same W.O. Patent 2021117841A1 2021
    [Google Scholar]
  62. XiaP GuP GuJ YangD XiaoG Amidated horseshoe crab anti-endotoxin factor circular analogue peptide molecule, its synthetic method and use C.N. Patent 1781939A 2006
    [Google Scholar]
  63. XiaP GuP GuJ YangD XiaoG Amidated horseshoe crab anti-endotoxin factor linear analogue peptide molecule, its synthetic method and use C.N. Patent 1781937A 2006
    [Google Scholar]
  64. KobayashiY MizumuraH OdaT KawabataS.I. Horseshoe crab factor B variant W.O. Patent 2018159771A1 2018
    [Google Scholar]
  65. NakamuraT IwanagaS OhnoM MiyazakiK Novel polypeptide and method for preparing the same W.O. Patent 8901492A1 1989
    [Google Scholar]
  66. DingJ.L. HoB. Expression of Carcinoscorpius rotundicauda Factor C in eukaryotes U.S. Patent 5985590A 1999
    [Google Scholar]
  67. ZhangH WuJ Reagent for specifically detecting endotoxin and preparation method thereof C.N. Patent 108913707B 2021
    [Google Scholar]
  68. ZhangH WuJ Detection reagent for specifically detecting (1-3)-beta-D-glucan and preparation method thereof C.N. Patent 108866087B 2021
    [Google Scholar]
  69. MizumuraH AizawaM OdaT An agent for measuring endotoxin W.O. Patent 2012118226A1 2012
    [Google Scholar]
  70. DingJ.L. HoB. A novel generation of cloned horseshoe crab recombinant factor C for detection and removal of endotoxin W.O. Patent 9915676B1 1999
    [Google Scholar]
  71. NakayamaH KitamuraM KawaharaE Fusarium inhibitor J.P. Patent 2007320936A 2007
    [Google Scholar]
  72. RamachandraR BondeA ChatterjeeA In vitro culture of modified cells from Tachypleus gigas in Leibovitz medium J.P. Patent 2005521404A 2005
    [Google Scholar]
  73. LiaoY ChenB LongJ Molecular marker combination method for improving genetic identification accuracy of Tachypleus tridentatus C.N. Patent 116622860A 2023
    [Google Scholar]
  74. TargettN.M. WakefieldK GreenP WuY.S. ConstanzaJ An artificial bait based on a peptide attractant found in horseshoe crab eggs W.O. Patent 2005069941A3 2007
    [Google Scholar]
  75. ZhangC FanY Genetic engineering synthesis method of horseshoe crab extract as anti-fungus polypeptide C.N. Patent 1182135A 1998
    [Google Scholar]
  76. WangP LiaoY XuY Chinese horseshoe crab SSR primer group and application thereof C.N. Patent 110628917B 2022
    [Google Scholar]
  77. DuY HuangS HuangY Limulus gigas rapid fattening breeding method for blood extraction C.N. Patent 115067239B 2023
    [Google Scholar]
  78. LiuH ChenR ZengM Recovery culture method for injured Tachypleus tridentatus C.N. Patent 111316956B 2022
    [Google Scholar]
  79. Ding J.L. Navas M.A. Ho B. Molecular cloning and sequence analysis of factor C cDNA from the Singapore horseshoe crab, Carcinoscorpius rotundicauda. Mol. Mar. Biol. Biotechnol. 1995 4 1 90 103 7538401
    [Google Scholar]
  80. Bolden J. Smith K. Application of recombinant factor C reagent for the detection of bacterial endotoxins in pharmaceutical products. PDA J. Pharm. Sci. Technol. 2017 71 5 405 412 10.5731/pdajpst.2017.007849 28733334
    [Google Scholar]
  81. Kikuchi Y. Haishima Y. Fukui C. Collaborative study on the bacterial endotoxins test using recombinant factor C-based procedure for detection of lipopolysaccharides. Biologicals 2017 50 95 103
    [Google Scholar]
  82. Iwanaga S. Biochemical principle of Limulus test for detecting bacterial endotoxins. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 2007 83 4 110 119 10.2183/pjab.83.110 24019589
    [Google Scholar]
  83. Piehler M. Roeder R. Blessing S. Reich J. Comparison of LAL and rFC assays—participation in a proficiency test program between 2014 and 2019. Microorganisms 2020 8 3 418 10.3390/microorganisms8030418 32188126
    [Google Scholar]
  84. Maloney T. Phelan R. Simmons N. Saving the horseshoe crab: A synthetic alternative to horseshoe crab blood for endotoxin detection. PLoS Biol. 2018 16 10 2006607 10.1371/journal.pbio.2006607 30312293
    [Google Scholar]
  85. Loverock B. Simon B. Burgenson A. Baines A. A recombinant factor C procedure for the detection of gram-negative bacterial endotoxin. Pharmacop. Forum 2010 36 1 321 329
    [Google Scholar]
  86. Rosano G.L. Ceccarelli E.A. Recombinant protein expression in Escherichia coli: Advances and challenges. Front. Microbiol. 2014 5 172 10.3389/fmicb.2014.00172 24860555
    [Google Scholar]
  87. Baker E. Ponder J. Oberdorfer J. Barriers to the use of recombinant bacterial endotoxins test methods in parenteral drug, vaccine and device safety testing. Altern. Lab. Anim. 2023 51 6 401 410 10.1177/02611929231204782 37855095
    [Google Scholar]
  88. Risk analysis for the adoption of the recombinant factor C reagent for bacterial endotoxin testing. 2023 Available from: https://www.americanpharmaceuticalreview.com/Featured-Articles/598986-Risk-Analysis-for-the-Adoption-of-the-Recombinant-Factor-C-Reagent-for-Bacterial-Endotoxin-Testing/
  89. European Pharmacopoeia (Ph Eur) 100, 2632. Strasbourg: Council of Europe 2020. www.edqm.eu/en/-/recombinant-factor-c-new-ph.-eur.-chapter-available-as-of-1-july-2020
  90. Marius M. Vacher F. Bonnevay T. Comparison of bacterial endotoxins test methods for pharmaceutical products. PDA J. Pharm. Sci. Technol. 2020 74 5 602 619 10.5731/pdajpst.2020.012187 32817324
    [Google Scholar]
/content/journals/biot/10.2174/0118722083369051250708143745
Loading
/content/journals/biot/10.2174/0118722083369051250708143745
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test