Skip to content
2000
image of Exploring Novel Microorganisms for PAH Degradation in Egyptian Soil: A Bioremediation Strategy for Soil Detoxification

Abstract

Introduction

Polycyclic aromatic hydrocarbons (PAHs) are toxic petroleum byproducts in soil, exhibiting significant genotoxic properties. Microorganisms residing in contaminated soils serve as effective detoxifying agents. Among various strategies, bioremediation is an efficient biological method for detoxifying PAHs.

Methods

Hundreds of soil samples were collected from the Gulf of Suez, Egypt. The isolation process utilized an enrichment culture system with phenol naphthalene (PN) (10 mg/mL) as the primary carbon source. HPLC analysis was applied to confirm PN degradation. Consequently, the bacterial strain was characterized morphologically, biochemically, and through partial sequencing of its 16S rRNA gene. Subsequently, its plasmid was purified to transfer its phenotype to . Finally, a bioremediation approach was conducted to test its PAH degradation.

Results

HPLC analysis was performed to confirm PN degradation by the isolated strain. The isolated strain was identified as species AAS1 (OR044755.1) with 98.43% sequence similarity to the genus. Subsequently, transformants with the isolated plasmid were grown in the presence of PN as the primary carbon source. Finally, the bioremediation assay of the isolated strain exhibited a high efficiency in detoxifying PN.

Discussion

The novel identified species AAS1 (OR044755.1) shows promise for PAHs detoxification, which may lead to the exploration of a biological agent for the remediation of water, soil contaminated with PAHs and patents.

Conclusion

A novel bacterial strain bearing a plasmid that can degrade PN was isolated from Egyptian petroleum waste-contaminated soil. It paved the way for further studies to isolate the whole gene(s) responsible for such degradation.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083393750250630081655
2025-08-19
2025-11-06
Loading full text...

Full text loading...

References

  1. Andrade J.M. Estévez-Pérez M.G. Statistical comparison of the slopes of two regression lines: A tutorial. Anal. Chim. Acta 2014 838 1 12 10.1016/j.aca.2014.04.057 25064237
    [Google Scholar]
  2. Wang S. Xu Y. Lin Z. Zhang J. Norbu N. Liu W. The harm of petroleum-polluted soil and its remediation research. AIP Conf Proc 2017 1864 020222 10.1063/1.4993039
    [Google Scholar]
  3. Hazim R.N. Al-Ani M.A. Effect of petroleum hydrocarbons contamination on soil microorganisms and biodegradation. Rafidain J Sci 2019 28 1 13 22 10.33899/rjs.2019.159391
    [Google Scholar]
  4. Mandree P. Masika W. Naicker J. Moonsamy G. Ramchuran S. Lalloo R. Bioremediation of polycyclic aromatic hydrocarbons from industry contaminated soil using indigenous Bacillus spp. Processes 2021 9 9 1606 10.3390/pr9091606
    [Google Scholar]
  5. Escobar V. Process for increasing biomass and spores production of plant growth promoting bacteria of the Bacillus genus. US Patent 9839222B2, 2017
    [Google Scholar]
  6. Aronson D. Citra M. Shuler K. Printup H. Howard P. Aerobic biodegradation of organic chemicals in environmental media: a summary of field and laboratory studies. 1999 Available from: https://d1wqtxts1xzle7.cloudfront.net/37784925/AerobicBiodegRateConstantRpt1999pdf-libre.pdf?1433054361=&response-content-disposition=inline%3B+filename%3DAerobic_Biodegradation_of_Organic_Chemic.pdf&Expires=1749800975&Signature=CRVFjn9VcTW3fXAaawf9sc07KgH1LFPlmQ4HrVyrszgqj2XbkIs1NRc4JKOlIMwSw7v9Ic7SQh0f2lVCZx28CMCZ7c~RM7bmrPQorpwrYX0jV06IrRbyUHIlie91KncyN9A4eoD3~VyYh4sEixlieotJIIDePZ4j2zT99vpOz3ykIEHxhM9OpmTd6KnfsHpUsb9Hrsdud9QL1Aa6OsIqjZ4K8uW~qip7pbz6t8IkSCtrtaX8tJzhLGtxKfykJz9B6U7WZ-SmABUWqkNznka0ak54QXyPNnqYtiIEu~n2jw8Ln2cGyFNqc3OBYDMRAauARAmwpIF7AjhMbGfssyJj-Q__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
    [Google Scholar]
  7. Ukaogo I.J.C.P.O. Environmental effects of polycyclic aromatic hydrocarbons. J Nat Sci Res 2015 5 117 131
    [Google Scholar]
  8. Osuji L.C. Idung I.D. Ojinnaka C.M. Preliminary investigation on Mgbede-20 oil-polluted site in Niger Delta, Nigeria. Chem. Biodivers. 2006 3 5 568 577 10.1002/cbdv.200690060 17193292
    [Google Scholar]
  9. Demcak S. Balintova M. Overview of chosen techniques and methods for soils remediation. Conference, Vedecký Seminár Úeiat Herlany, Slovakia 2016 95 102
    [Google Scholar]
  10. Nkhalambayausi Chirwa E.M. Mampholo C.T. Fayemiwo O.M. Bezza F.A. Biosurfactant assisted recovery of the C5-C11 hydrocarbon fraction from oily sludge using biosurfactant producing consortium culture of bacteria. J. Environ. Manage. 2017 196 261 269 10.1016/j.jenvman.2017.03.011 28288360
    [Google Scholar]
  11. Maletic S. Dalmacija B. Roncevic S. Petroleum hydrocarbon biodegradability in soil – Implications for bioremediation. Hydrocarbon. Rijeka, Croatia IntechOpen 2013 10.5772/50108
    [Google Scholar]
  12. Medina-Bellver J.I. Marín P. Delgado A. Evidence for in situ crude oil biodegradation after the Prestige oil spill. Environ. Microbiol. 2005 7 6 773 779 10.1111/j.1462‑2920.2005.00742.x 15892696
    [Google Scholar]
  13. Ghosal D. Ghosh S. Dutta T.K. Ahn Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Front. Microbiol. 2016 7 1369 10.3389/fmicb.2016.01369 27630626
    [Google Scholar]
  14. Bamforth S.M. Singleton I. Bioremediation of polycyclic aromatic hydrocarbons: Current knowledge and future directions. J. Chem. Technol. Biotechnol. 2005 80 7 723 736 10.1002/jctb.1276
    [Google Scholar]
  15. Gazette G. National environmental management: Waste act, 2008 (Act no. 59 of 2008) National norms and standards for the remediation of contaminated land and soil quality. 2014 Available from: https://cer.org.za/wp-content/uploads/2010/03/national-environmental-management-waste-act-59-2008-national-norms-and-standards-for-the-remediation-of-contaminated-land-and-soil-quality_20140502-GGN-37603-00331.pdf
    [Google Scholar]
  16. Gao H. Zhang J. Lai H. Xue Q. Degradation of asphaltenes by two Pseudomonas aeruginosa strains and their effects on physicochemical properties of crude oil. Int. Biodeterior. Biodegradation 2017 122 12 22 10.1016/j.ibiod.2017.04.010
    [Google Scholar]
  17. Ma K.Y. Sun M.Y. Dong W. He C.Q. Chen F.L. Ma Y.L. Effects of nutrition optimization strategy on rhamnolipid production in a Pseudomonas aeruginosa strain DN1 for bioremediation of crude oil. Biocatal. Agric. Biotechnol. 2016 6 144 151 10.1016/j.bcab.2016.03.008
    [Google Scholar]
  18. Tremblay J. Yergeau E. Fortin N. Chemical dispersants enhance the activity of oil- and gas condensate-degrading marine bacteria. ISME J. 2017 11 12 2793 2808 10.1038/ismej.2017.129 28800137
    [Google Scholar]
  19. Margesin R. Labbé D. Schinner F. Greer C.W. Whyte L.G. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils. Appl. Environ. Microbiol. 2003 69 6 3085 3092 10.1128/AEM.69.6.3085‑3092.2003 12788702
    [Google Scholar]
  20. Chaerun S.K. Tazaki K. Asada R. Kogure K. Bioremediation of coastal areas 5 years after the Nakhodka oil spill in the Sea of Japan: isolation and characterization of hydrocarbon-degrading bacteria. Environ. Int. 2004 30 7 911 922 10.1016/j.envint.2004.02.007 15196839
    [Google Scholar]
  21. Jin H.M. Kim J.M. Lee H.J. Madsen E.L. Jeon C.O. Alteromonas as a key agent of polycyclic aromatic hydrocarbon biodegradation in crude oil-contaminated coastal sediment. Environ. Sci. Technol. 2012 46 14 7731 7740 10.1021/es3018545 22709320
    [Google Scholar]
  22. Nie Y. Chi C.Q. Fang H. Diverse alkane hydroxylase genes in microorganisms and environments. Sci. Rep. 2014 4 1 4968 10.1038/srep04968 24829093
    [Google Scholar]
  23. Varjani S.J. Upasani V.N. Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Bioresour. Technol. 2016 222 195 201 10.1016/j.biortech.2016.10.006 27718402
    [Google Scholar]
  24. Sarkar P. Roy A. Pal S. Enrichment and characterization of hydrocarbon-degrading bacteria from petroleum refinery waste as potent bioaugmentation agent for in situ bioremediation. Bioresour. Technol. 2017 242 15 27 10.1016/j.biortech.2017.05.010 28533069
    [Google Scholar]
  25. Xu X. Zhai Z. Li H. Wang Q. Han X. Yu H. Synergetic effect of bio-photocatalytic hybrid system: g-C3N4 and Acinetobacter sp. JLS1 for enhanced degradation of C16 alkane. Chem. Eng. J. 2017 323 520 529 10.1016/j.cej.2017.04.138
    [Google Scholar]
  26. Viesser J.A. Sugai-Guerios M.H. Malucelli L.C. Pincerati M.R. Karp S.G. Maranho L.T. Petroleum-tolerant rhizospheric bacteria: Isolation, characterization and bioremediation potential. Sci. Rep. 2020 10 1 2060 10.1038/s41598‑020‑59029‑9 32029873
    [Google Scholar]
  27. Smith A. Hussey M. Gram stain protocols. 2016 Available from: https://asm.org/getattachment/5c95a063-326b-4b2f-98ce-001de9a5ece3/gram-stain-protocol-2886.pdf
    [Google Scholar]
  28. Brenner D.J. Krieg N.R. Staley J.T. Garrity G.M. Boone D.R. De Vos P. Bergey’s Manual of Systematic Bacteriology. New York Springer 2005
    [Google Scholar]
  29. Lee A. Mb352 general microbiology laboratory 2021. 2021. Available from: file:///C:/Users/Baseerat%20Hashmi/Downloads/Full.pdf
  30. MacWilliams M.P. Indole test protocol. 2009 Available from: https://asm.org/getattachment/200d3f34-c75e-4072-a7e6-df912c792f62/indole-test-protocol-3202.pdf
    [Google Scholar]
  31. Mcdevitt S. Methyl red and voges-proskauer test protocols. 2009 Available from: https://asm.org/getmedia/40946f85-9357-4563-aa8a-994427efa825/methyl-red-and-voges-proskauer-test-protocols.pdf
    [Google Scholar]
  32. Rikihisa Y. Stephen Dumler J. Dasch G.A. Neorickettsia. In: Bergey's Manual of Systematics of Archaea and Bacteria. 2015 10.1002/9781118960608.gbm00905
    [Google Scholar]
  33. Church D.L. Cerutti L. Gürtler A. Griener T. Zelazny A. Emler S. Performance and application of 16S rRNA gene cycle sequencing for routine identification of bacteria in the clinical microbiology laboratory. Clin. Microbiol. Rev. 2020 33 4 e00053 e19 10.1128/CMR.00053‑19 32907806
    [Google Scholar]
  34. Chen X. Guo P. Xie Z. Shen P. A convenient and rapid method for genetic transformation of E. coli with plasmids. Antonie van Leeuwenhoek 2001 80 3-4 297 300 10.1023/A:1013040812987 11827215
    [Google Scholar]
  35. Ejaz M. Zhao B. Wang X. Isolation and characterization of oil-degrading Enterobacter sp. From naturally hydrocarbon-contaminated soils and their potential use against the bioremediation of crude oil. Appl. Sci. (Basel) 2021 11 8 3504 10.3390/app11083504
    [Google Scholar]
  36. Guo M. Gong Z. Miao R. Rookes J. Cahill D. Zhuang J. Microbial mechanisms controlling the rhizosphere effect of ryegrass on degradation of polycyclic aromatic hydrocarbons in an aged-contaminated agricultural soil. Soil Biol. Biochem. 2017 113 130 142 10.1016/j.soilbio.2017.06.006
    [Google Scholar]
  37. Kong J. Wang H. Liang L. Li L. Xiong G. Hu Z. Phenanthrene degradation by the bacterium Pseudomonas stutzeri JP1 under low oxygen condition. Int. Biodeterior. Biodegradation 2017 123 121 126 10.1016/j.ibiod.2017.06.001
    [Google Scholar]
  38. Okore C. Nekede F.P. Te O. Ogidi O.I. Ejiogu C. Plasmid profiles of bacterial isolates from kerosene, diesel and crude oil polluted soils. Glob Sci J 2021 9 7 1994 2005
    [Google Scholar]
  39. Akeredolu D.O. Akinnibosun F.I. Udochukwu U.I. Isolation and identification of plasmids of bacteria from petroleum products contaminated soil. J Bacteriol Mycol Open Acc 2017 5 405 407 10.15406/jbmoa.2017.05.00156
    [Google Scholar]
  40. Hossain M.F. Akter M.A. Sohan M.S.R. Sultana D.N. Reza M.A. Hoque K.M.F. Bioremediation potential of hydrocarbon degrading bacteria: isolation, characterization, and assessment. Saudi J. Biol. Sci. 2022 29 211 216 10.1016/j.sjbs.2021.08.069 35002411
    [Google Scholar]
  41. Liu T. Wei L. Qiao M. Zou D. Yang X. Lin A. Mineralization of pyrene induced by interaction between Ochrobactrum sp. PW and ryegrass in spiked soil. Ecotoxicol. Environ. Saf. 2016 133 290 296 10.1016/j.ecoenv.2016.07.032 27479773
    [Google Scholar]
  42. Wu Y.R. Luo Z.H. Vrijmoed L.L.P. Biodegradation of anthracene and benz[a]anthracene by two Fusarium solani strains isolated from mangrove sediments. Bioresour. Technol. 2010 101 24 9666 9672 10.1016/j.biortech.2010.07.049 20691587
    [Google Scholar]
/content/journals/biot/10.2174/0118722083393750250630081655
Loading
/content/journals/biot/10.2174/0118722083393750250630081655
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test