Skip to content
2000
image of Cognition, Diagnosis, and Treatment of Alzheimer’s Disease: A Review

Abstract

As the global population ages, the health of older adults has become a growing concern. Alzheimer’s disease (AD) is a common ailment affecting older adults, but the diagnosis and treatment of AD are difficult given our insufficient understanding of the disease. This review article and patents aim to provide reliable information for patients and their families by presenting a detailed overview of the pathogenic factors, diagnostic methods, and clinical manifestation of AD, as well as advances in drug and physical therapies. The information presented here should help provide a more comprehensive understanding of AD for patients and their families and encourage family- or self-screening based on clinical manifestations, thus improving early AD detection. In addition, the current treatment methods for AD are summarized. Although a gold-standard treatment for AD is yet to be developed, controlled-release therapies and medications that slow disease progression or improve cognitive function are available. The appropriate treatment method depends on the patient’s diagnosis and the local medical level, and the effectiveness of the treatments may vary. Therefore, improving our understanding of AD and cognition-related symptoms in the public is necessary to improve early AD diagnoses. This review provides information that will facilitate self-screening for AD based on clinical manifestations, which can improve the early clinical diagnosis rate.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083358924250606173812
2025-06-18
2025-09-21
Loading full text...

Full text loading...

References

  1. Chen Y. Bandosz P. Stoye G. Liu Y. Wu Y. Lobanov-Rostovsky S. French E. Kivimaki M. Livingston G. Liao J. Brunner E.J. Dementia incidence trend in England and Wales, 2002–19, and projection for dementia burden to 2040: Analysis of data from the English Longitudinal Study of Ageing. Lancet Public Health 2023 8 11 e859 e867 10.1016/S2468‑2667(23)00214‑1 37898518
    [Google Scholar]
  2. Mo M. Zacarias-Pons L. Hoang M.T. Mostafaei S. Jurado P.G. Stark I. Johnell K. Eriksdotter M. Xu H. Garcia-Ptacek S. Psychiatric disorders before and after Dementia diagnosis. JAMA Netw. Open 2023 6 10 e2338080 10.1001/jamanetworkopen.2023.38080 37847498
    [Google Scholar]
  3. Scheltens P. De Strooper B. Kivipelto M. Holstege H. Chételat G. Teunissen C.E. Cummings J. van der Flier W.M. Alzheimer’s disease. Lancet 2021 397 10284 1577 1590 10.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  4. World health statistics overview 2019: Monitoring health for the SDGs. Sustainable Development Goals World Health Organization Geneva, Switzerland 2019 1 120
    [Google Scholar]
  5. Ren R. Qi J. Lin S. Liu X. Yin P. Wang Z. Tang R. Wang J. Huang Q. Li J. Xie X. Hu Y. Cui S. Zhu Y. Yu X. Wang P. Zhu Y. Wang Y. Huang Y. Hu Y. Wang Y. Li C. Zhou M. Wang G. The China Alzheimer report 2022. Gen. Psychiatr. 2022 35 1 e100751 10.1136/gpsych‑2022‑100751 35372787
    [Google Scholar]
  6. Alzheimer’s Disease Chinese (ADC), insight report on the needs of Alzheimer’s disease patients. 2023 Available from: https://mp.weixin.qq.com/s?__biz=MzUwOTg1MTU2Mg==&mid=2247485998&idx=1&sn=87284fb91e38599744f208180aaf4205&chksm=f90aa8ebce7d21fdbc2289fe4a74ff535b6a7a67253c552118cb736ae640365945d8ab51d3ba#rd
  7. Wallensten J. Ljunggren G. Nager A. Wachtler C. Bogdanovic N. Petrovic P. Carlsson A.C. Stress, depression, and risk of dementia – A cohort study in the total population between 18 and 65 years old in Region Stockholm. Alzheimers Res. Ther. 2023 15 1 161 10.1186/s13195‑023‑01308‑4 37779209
    [Google Scholar]
  8. Lee J M Kim S R Prothrombin kringle-2, a mediator of microglial activation: New insight in Alzheimer's disease pathogenesis. Neural. Regen. Res. 2022 17 12 2675 2676 10.4103/1673‑5374.335813
    [Google Scholar]
  9. Li X. Li C. Zhang W. Wang Y. Qian P. Huang H. Inflammation and aging: Signaling pathways and intervention therapies. Signal Transduct. Target. Ther. 2023 8 1 239 10.1038/s41392‑023‑01502‑8 37291105
    [Google Scholar]
  10. Johansson B. Oasa S. Muntsant Soria A. Tiiman A. Söderberg L. Amandius E. Möller C. Lannfelt L. Terenius L. Giménez-Llort L. Vukojević V. The interwoven fibril-like structure of amyloid-beta plaques in mouse brain tissue visualized using super-resolution STED microscopy. Cell Biosci. 2023 13 1 142 10.1186/s13578‑023‑01086‑4 37542303
    [Google Scholar]
  11. Stam C.J. Nolte G. Daffertshofer A. Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 2007 28 11 1178 1193 10.1002/hbm.20346 17266107
    [Google Scholar]
  12. Alzheimer’s disease is partly genetic − Studying the genes that delay decline in some may lead to treatments for all. 2023 Available from: https://theconversation.com/alzheimers-disease-is-partly-genetic-studying-the-genes-that-delay-decline-in-some-may-lead-to-treatments-for-all-205914
  13. Zappasodi F. Salustri C. Babiloni C. Cassetta E. Del Percio C. Ercolani M. Rossini P.M. Squitti R. An observational study on the influence of the APOE-ε4 allele on the correlation between ‘free’ copper toxicosis and EEG activity in Alzheimer disease. Brain Res. 2008 1215 183 189 10.1016/j.brainres.2008.03.066 18486114
    [Google Scholar]
  14. McKay N.S. Gordon B.A. Hornbeck R.C. Dincer A. Flores S. Keefe S.J. Joseph-Mathurin N. Jack C.R. Koeppe R. Millar P.R. Ances B.M. Chen C.D. Daniels A. Hobbs D.A. Jackson K. Koudelis D. Massoumzadeh P. McCullough A. Nickels M.L. Rahmani F. Swisher L. Wang Q. Allegri R.F. Berman S.B. Brickman A.M. Brooks W.S. Cash D.M. Chhatwal J.P. Day G.S. Farlow M.R. la Fougère C. Fox N.C. Fulham M. Ghetti B. Graff-Radford N. Ikeuchi T. Klunk W. Lee J.H. Levin J. Martins R. Masters C.L. McConathy J. Mori H. Noble J.M. Reischl G. Rowe C. Salloway S. Sanchez-Valle R. Schofield P.R. Shimada H. Shoji M. Su Y. Suzuki K. Vöglein J. Yakushev I. Cruchaga C. Hassenstab J. Karch C. McDade E. Perrin R.J. Xiong C. Morris J.C. Bateman R.J. Benzinger T.L.S. Brickman A.M. la Fougère C. Positron emission tomography and magnetic resonance imaging methods and datasets within the Dominantly Inherited Alzheimer Network (DIAN). Nat. Neurosci. 2023 26 8 1449 1460 10.1038/s41593‑023‑01359‑8 37429916
    [Google Scholar]
  15. Wu Y. Sun Z. Zheng Q. Miao J. Dorn S. Mukherjee S. Fletcher J.M. Lu Q. Pervasive biases in proxy genome-wide association studies based on parental history of Alzheimer’s disease. Nat. Genet. 2024 56 12 2696 2703 10.1038/s41588‑024‑01963‑9 39496879
    [Google Scholar]
  16. Sevigny J. Chiao P. Bussière T. Weinreb P.H. Williams L. Maier M. Dunstan R. Salloway S. Chen T. Ling Y. O’Gorman J. Qian F. Arastu M. Li M. Chollate S. Brennan M.S. Quintero-Monzon O. Scannevin R.H. Arnold H.M. Engber T. Rhodes K. Ferrero J. Hang Y. Mikulskis A. Grimm J. Hock C. Nitsch R.M. Sandrock A. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016 537 7618 50 56 10.1038/nature19323 27582220
    [Google Scholar]
  17. Strengthening public health in China. Lancet Public Health 2020 5 12 e628 10.1016/S2468‑2667(20)30268‑1 33271071
    [Google Scholar]
  18. Du J. Li A. Shi D. Chen X. Wang Q. Liu Z. Sun K. Guo T. Association of APOE -ε4, osteoarthritis, β-Amyloid, and tau accumulation in primary motor and somatosensory regions in Alzheimer disease. Neurology 2023 101 1 e40 e49 10.1212/WNL.0000000000207369 37188537
    [Google Scholar]
  19. Ramanan V.K. Armstrong M.J. Choudhury P. Coerver K.A. Hamilton R.H. Klein B.C. Wolk D.A. Wessels S.R. Jones L.K. Jr Antiamyloid monoclonal antibody therapy for Alzheimer disease. Neurology 2023 101 19 842 852 10.1212/WNL.0000000000207757 37495380
    [Google Scholar]
  20. Gulen M.F. Samson N. Keller A. Schwabenland M. Liu C. Glück S. Thacker V.V. Favre L. Mangeat B. Kroese L.J. Krimpenfort P. Prinz M. Ablasser A. cGAS–STING drives ageing-related inflammation and neurodegeneration. Nature 2023 620 7973 374 380 10.1038/s41586‑023‑06373‑1 37532932
    [Google Scholar]
  21. Lau S.F. Wu W. Wong H.Y. Ouyang L. Qiao Y. Xu J. Lau J.H.Y. Wong C. Jiang Y. Holtzman D.M. Fu A.K.Y. Ip N.Y. The VCAM1–ApoE pathway directs microglial chemotaxis and alleviates Alzheimer’s disease pathology. Nat. Aging 2023 3 10 1219 1236 10.1038/s43587‑023‑00491‑1 37735240
    [Google Scholar]
  22. Tullis J.E. Larsen M.E. Rumian N.L. Freund R.K. Boxer E.E. Brown C.N. Coultrap S.J. Schulman H. Aoto J. Dell’Acqua M.L. Bayer K.U. LTP induction by structural rather than enzymatic functions of CaMKII. Nature 2023 621 7977 146 153 10.1038/s41586‑023‑06465‑y 37648853
    [Google Scholar]
  23. Huang Q Jiang C Xia X Wang Y Yan C Wang X Lei T Yang X Yang W Cheng G Pathological BBB crossing melanin-like nanoparticles as metal-ion chelators and neuroinflammation regulators against alzheimer’s disease. Research 2023 6 0180 10.34133/research.0180
    [Google Scholar]
  24. Zhang H. Zheng Y. β amyloid hypothesis in Alzheimer’s disease:Pathogenesis,prevention,and management. Zhongguo Yi Xue Ke Xue Yuan Xue Bao Acta Academiae Medicinae Sinicae 2019 41 5 702 708 10.3881/j.issn.1000‑503X.10875 31699204
    [Google Scholar]
  25. Colom-Cadena M Davies C Sirisi S Synaptic oligomeric tau in Alzheimer's disease - A potential culprit in the spread of tau pathology through the brain. Neuron 2023 111 14 2170 2183 10.1016/j.neuron.2023.04.020
    [Google Scholar]
  26. Boccalini C. Ribaldi F. Hristovska I. The impact of tau deposition andhypometabolism on cognitive impairment and longitudinal cognitive decline. Alzheimers Dement. 2024 20 1 221 233 10.1002/alz.13355 37555516
    [Google Scholar]
  27. Wisch J.K. Butt O.H. Gordon B.A. Schindler S.E. Fagan A.M. Henson R.L. Yang C. Boerwinkle A.H. Benzinger T.L.S. Holtzman D.M. Morris J.C. Cruchaga C. Ances B.M. Proteomic clusters underlie heterogeneity in preclinical Alzheimer’s disease progression. Brain 2023 146 7 2944 2956 10.1093/brain/awac484 36542469
    [Google Scholar]
  28. Horie K. Salvadó G. Barthélemy N.R. Janelidze S. Li Y. He Y. Saef B. Chen C.D. Jiang H. Strandberg O. Pichet Binette A. Palmqvist S. Sato C. Sachdev P. Koyama A. Gordon B.A. Benzinger T.L.S. Holtzman D.M. Morris J.C. Mattsson-Carlgren N. Stomrud E. Ossenkoppele R. Schindler S.E. Hansson O. Bateman R.J. CSF MTBR-tau243 is a specific biomarker of tau tangle pathology in Alzheimer’s disease. Nat. Med. 2023 29 8 1954 1963 10.1038/s41591‑023‑02443‑z 37443334
    [Google Scholar]
  29. Self W.K. Holtzman D.M. Emerging diagnostics and therapeutics for Alzheimer disease. Nat. Med. 2023 29 9 2187 2199 10.1038/s41591‑023‑02505‑2 37667136
    [Google Scholar]
  30. Guerrero A. Cellular senescence at the crossroads of inflammation and Alzheimer’s disease. Trends Neurosci. 2021 44 9 714 727 10.1016/j.tins.2021.06.007 34366147
    [Google Scholar]
  31. Majerníková N. Marmolejo-Garza A. Salinas C.S. Luu M.D.A. Zhang Y. Trombetta-Lima M. Tomin T. Birner-Gruenberger R. Lehtonen Š. Koistinaho J. Wolters J.C. Ayton S. den Dunnen W.F.A. Dolga A.M. The link between amyloid β and ferroptosis pathway in Alzheimer’s disease progression. Cell Death Dis. 2024 15 10 782 10.1038/s41419‑024‑07152‑0 39468028
    [Google Scholar]
  32. Vogel J.W. Young A.L. Oxtoby N.P. Smith R. Ossenkoppele R. Strandberg O.T. La Joie R. Aksman L.M. Grothe M.J. Iturria-Medina Y. Pontecorvo M.J. Devous M.D. Rabinovici G.D. Alexander D.C. Lyoo C.H. Evans A.C. Hansson O. Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat. Med. 2021 27 5 871 881 10.1038/s41591‑021‑01309‑6 33927414
    [Google Scholar]
  33. Gonzalez-Ortiz F. Kirsebom B.E. Contador J. Tanley J.E. Selnes P. Gísladóttir B. Pålhaugen L. Suhr Hemminghyth M. Jarholm J. Skogseth R. Bråthen G. Grøndtvedt G. Bjørnerud A. Tecelao S. Waterloo K. Aarsland D. Fernández-Lebrero A. García-Escobar G. Navalpotro-Gómez I. Turton M. Hesthamar A. Kac P.R. Nilsson J. Luchsinger J. Hayden K.M. Harrison P. Puig-Pijoan A. Zetterberg H. Hughes T.M. Suárez-Calvet M. Karikari T.K. Fladby T. Blennow K. Plasma brain-derived tau is an amyloid-associated neurodegeneration biomarker in Alzheimer’s disease. Nat. Commun. 2024 15 1 2908 10.1038/s41467‑024‑47286‑5 38575616
    [Google Scholar]
  34. Li Y.B. Fu Q. Guo M. Du Y. Chen Y. Cheng Y. MicroRNAs: Pioneering regulators in Alzheimer’s disease pathogenesis, diagnosis, and therapy. Transl. Psychiatry 2024 14 1 367 10.1038/s41398‑024‑03075‑8 39256358
    [Google Scholar]
  35. Sengupta U. Kayed R. Amyloid β, Tau, and α-Synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases. Prog. Neurobiol. 2022 214 102270 10.1016/j.pneurobio.2022.102270 35447272
    [Google Scholar]
  36. Bruns A. Eckhorn R. Jokeit H. Ebner A. Amplitude envelope correlation detects coupling among incoherent brain signals. Neuroreport 2000 11 7 1509 1514 10.1097/00001756‑200005150‑00029 10841367
    [Google Scholar]
  37. Dubois B. Hampel H. Feldman H.H. Scheltens P. Aisen P. Andrieu S. Bakardjian H. Benali H. Bertram L. Blennow K. Broich K. Cavedo E. Crutch S. Dartigues J.F. Duyckaerts C. Epelbaum S. Frisoni G.B. Gauthier S. Genthon R. Gouw A.A. Habert M.O. Holtzman D.M. Kivipelto M. Lista S. Molinuevo J.L. O’Bryant S.E. Rabinovici G.D. Rowe C. Salloway S. Schneider L.S. Sperling R. Teichmann M. Carrillo M.C. Cummings J. Jack C.R. Jr Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016 12 3 292 323 10.1016/j.jalz.2016.02.002 27012484
    [Google Scholar]
  38. Dubois B. Feldman H.H. Jacova C. Cummings J.L. DeKosky S.T. Barberger-Gateau P. Delacourte A. Frisoni G. Fox N.C. Galasko D. Gauthier S. Hampel H. Jicha G.A. Meguro K. O’Brien J. Pasquier F. Robert P. Rossor M. Salloway S. Sarazin M. de Souza L.C. Stern Y. Visser P.J. Scheltens P. Revising the definition of Alzheimer’s disease: A new lexicon. Lancet Neurol. 2010 9 11 1118 1127 10.1016/S1474‑4422(10)70223‑4 20934914
    [Google Scholar]
  39. Cohen A.D. Landau S.M. Snitz B.E. Klunk W.E. Blennow K. Zetterberg H. Fluid and PET biomarkers for amyloid pathology in Alzheimer’s disease. Mol. Cell. Neurosci. 2019 97 3 17 10.1016/j.mcn.2018.12.004 30537535
    [Google Scholar]
  40. López-de-Eguileta A. Lage C. López-García S. Pozueta A. García-Martínez M. Kazimierczak M. Bravo M. de Arcocha-Torres M. Banzo I. Jimenez-Bonilla J. Cerveró A. Goikoetxea A. Rodríguez-Rodríguez E. Sánchez-Juan P. Casado A. Evaluation of choroidal thickness in prodromal Alzheimer’s disease defined by amyloid PET. PLoS One 2020 15 9 e0239484 10.1371/journal.pone.0239484 32956392
    [Google Scholar]
  41. Sengoku R. Aging and Alzheimer’s disease pathology. Neuropathology 2020 40 1 22 29 10.1111/neup.12626 31863504
    [Google Scholar]
  42. Pichet Binette A. Franzmeier N. Spotorno N. Ewers M. Brendel M. Biel D. Weiner M. Aisen P. Petersen R. Jack C.R. Jr Jagust W. Trojanowki J.Q. Toga A.W. Beckett L. Green R.C. Saykin A.J. Morris J. Shaw L.M. Liu E. Montine T. Thomas R.G. Donohue M. Walter S. Gessert D. Sather T. Jiminez G. Harvey D. Bernstein M. Fox N. Thompson P. Schuff N. DeCArli C. Borowski B. Gunter J. Senjem M. Vemuri P. Jones D. Kantarci K. Ward C. Koeppe R.A. Foster N. Reiman E.M. Chen K. Mathis C. Landau S. Cairns N.J. Householder E. Reinwald L.T. Lee V. Korecka M. Figurski M. Crawford K. Neu S. Foroud T.M. Potkin S. Shen L. Kelley F. Kim S. Nho K. Kachaturian Z. Frank R. Snyder P.J. Molchan S. Kaye J. Quinn J. Lind B. Carter R. Dolen S. Schneider L.S. Pawluczyk S. Beccera M. Teodoro L. Spann B.M. Brewer J. Vanderswag H. Fleisher A. Heidebrink J.L. Lord J.L. Mason S.S. Albers C.S. Knopman D. Johnson K. Doody R.S. Meyer J.V. Chowdhury M. Rountree S. Dang M. Stern Y. Honig L.S. Bell K.L. Ances B. Morris J.C. Carroll M. Leon S. Householder E. Mintun M.A. Schneider S. OliverNG A. Griffith R. Clark D. Geldmacher D. Brockington J. Roberson E. Grossman H. Mitsis E. deToledo-Morrell L. Shah R.C. Duara R. Varon D. Greig M.T. Roberts P. Albert M. Onyike C. D’Agostino D. II Kielb S. Galvin J.E. Pogorelec D.M. Cerbone B. Michel C.A. Rusinek H. de Leon M.J. Glodzik L. De Santi S. Doraiswamy P.M. Petrella J.R. Wong T.Z. Arnold S.E. Karlawish J.H. Wolk D. Smith C.D. Jicha G. Hardy P. Sinha P. Oates E. Conrad G. Lopez O.L. Oakley M.A. Simpson D.M. Porsteinsson A.P. Goldstein B.S. Martin K. Makino K.M. Ismail M.S. Brand C. Mulnard R.A. Thai G. Mc Adams Ortiz C. Womack K. Mathews D. Quiceno M. Arrastia R.D. King R. Weiner M. Cook K.M. DeVous M. Levey A.I. Lah J.J. Cellar J.S. Burns J.M. Anderson H.S. Swerdlow R.H. Apostolova L. Tingus K. Woo E. Silverman D.H.S. Lu P.H. Bartzokis G. Graff Radford N.R. ParfittH F. Kendall T. Johnson H. Farlow M.R. Hake A.M. Matthews B.R. Herring S. Hunt C. van Dyck C.H. Carson R.E. MacAvoy M.G. Chertkow H. Bergman H. Hosein C. Black S. Stefanovic B. Caldwell C. Hsiung G.Y.R. Feldman H. Mudge B. Past M.A. Kertesz A. Rogers J. Trost D. Bernick C. Munic D. Kerwin D. Mesulam M.M. Lipowski K. Wu C.K. Johnson N. Sadowsky C. Martinez W. Villena T. Turner R.S. Johnson K. Reynolds B. Sperling R.A. Johnson K.A. Marshall G. Frey M. Yesavage J. Taylor J.L. Lane B. Rosen A. Tinklenberg J. Sabbagh M.N. Belden C.M. Jacobson S.A. Sirrel S.A. Kowall N. Killiany R. Budson A.E. Norbash A. Johnson P.L. Obisesan T.O. Wolday S. Allard J. Lerner A. Ogrocki P. Hudson L. Fletcher E. Carmichael O. Olichney J. DeCarli C. Kittur S. Borrie M. Lee T.Y. Bartha R. Johnson S. Asthana S. Carlsson C.M. Potkin S.G. Preda A. Nguyen D. Tariot P. Fleisher A. Reeder S. Bates V. Capote H. Rainka M. Scharre D.W. Kataki M. Adeli A. Zimmerman E.A. Celmins D. Brown A.D. Pearlson G.D. Blank K. Anderson K. Santulli R.B. Kitzmiller T.J. Schwartz E.S. SinkS K.M. Williamson J.D. Garg P. Watkins F. Ott B.R. Querfurth H. Tremont G. Salloway S. Malloy P. Correia S. Rosen H.J. Miller B.L. Mintzer J. Spicer K. Bachman D. Finger E. Pasternak S. Rachinsky I. Rogers J. Kertesz A. Drost D. Pomara N. Hernando R. Sarrael A. Schultz S.K. Ponto L.L.B. Shim H. Smith K.E. Relkin N. Chaing G. Raudin L. Smith A. Fargher K. Raj B.A. Strandberg O. Janelidze S. Palmqvist S. Mattsson-Carlgren N. Smith R. Stomrud E. Ossenkoppele R. Hansson O. Amyloid-associated increases in soluble tau relate to tau aggregation rates and cognitive decline in early Alzheimer’s disease. Nat. Commun. 2022 13 1 6635 10.1038/s41467‑022‑34129‑4 36333294
    [Google Scholar]
  43. Long X Li X F Clinical application of quantitative electroencephalogram in Alzheimer's disease. J. Mod. Med. Health 2019 35 05 695 698
    [Google Scholar]
  44. Koenig T. Prichep L. Dierks T. Hubl D. Wahlund L.O. John E.R. Jelic V. Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 2005 26 2 165 171 10.1016/j.neurobiolaging.2004.03.008 15582746
    [Google Scholar]
  45. Delbeuck X. Van der Linden M. Collette F. Alzheimer’s disease as a disconnection syndrome? Neuropsychol. Rev. 2003 13 2 79 92 10.1023/A:1023832305702 12887040
    [Google Scholar]
  46. Jeong J. EEG dynamics in patients with Alzheimer’s disease. Clin. Neurophysiol. 2004 115 7 1490 1505 10.1016/j.clinph.2004.01.001 15203050
    [Google Scholar]
  47. Grady C L Furey M L Pietrini P Altered brain functional connectivity and impaired short-term memory in Alzheimer's disease. Brain 2001 124 Pt 4 739 756 10.1093/brain/124.4.739
    [Google Scholar]
  48. Abrams D.A. Lynch C.J. Cheng K.M. Phillips J. Supekar K. Ryali S. Uddin L.Q. Menon V. Underconnectivity between voice-selective cortex and reward circuitry in children with autism. Proc. Natl. Acad. Sci. USA 2013 110 29 12060 12065 10.1073/pnas.1302982110 23776244
    [Google Scholar]
  49. Ercan E.S. Suren S. Bacanlı A. Yazıcı K.U. Callı C. Ardic U.A. Aygunes D. Kosova B. Ozyurt O. Aydın C. Rohde L.A. Altered structural connectivity is related to attention deficit/hyperactivity subtypes: A DTI study. Psychiatry Res. Neuroimaging 2016 256 57 64 10.1016/j.pscychresns.2016.04.002 27130841
    [Google Scholar]
  50. Chen T. Pan F. Huang Q. Xie G. Chao X. Wu L. Wang J. Cui L. Sun T. Li M. Wang Y. Guan Y. Zheng X. Ren Z. Guo Y. Wang L. Zhou K. Zhao A. Guo Q. Xie F. Jia W. Metabolic phenotyping reveals an emerging role of ammonia abnormality in Alzheimer’s disease. Nat. Commun. 2024 15 1 3796 10.1038/s41467‑024‑47897‑y 38714706
    [Google Scholar]
  51. Guo Y. Chen S.D. You J. Huang S.Y. Chen Y.L. Zhang Y. Wang L.B. He X.Y. Deng Y.T. Zhang Y.R. Huang Y.Y. Dong Q. Feng J.F. Cheng W. Yu J.T. Multiplex cerebrospinal fluid proteomics identifies biomarkers for diagnosis and prediction of Alzheimer’s disease. Nat. Hum. Behav. 2024 8 10 2047 2066 10.1038/s41562‑024‑01924‑6 38987357
    [Google Scholar]
  52. Banerjee G. Farmer S.F. Hyare H. Jaunmuktane Z. Mead S. Ryan N.S. Schott J.M. Werring D.J. Rudge P. Collinge J. Iatrogenic Alzheimer’s disease in recipients of cadaveric pituitary-derived growth hormone. Nat. Med. 2024 30 2 394 402 10.1038/s41591‑023‑02729‑2 38287166
    [Google Scholar]
  53. Cain A. Taga M. McCabe C. Green G.S. Hekselman I. White C.C. Lee D.I. Gaur P. Rozenblatt-Rosen O. Zhang F. Yeger-Lotem E. Bennett D.A. Yang H.S. Regev A. Menon V. Habib N. De Jager P.L. Multicellular communities are perturbed in the aging human brain and Alzheimer’s disease. Nat. Neurosci. 2023 26 7 1267 1280 10.1038/s41593‑023‑01356‑x 37336975
    [Google Scholar]
  54. O'Reilly C. Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies. PLoS One 2017 12 5 e175870 10.1371/journal.pone.0175870 28467487
    [Google Scholar]
  55. Malek N. Baker M.R. Mann C. Greene J. Electroencephalographic markers in dementia. Acta Neurol. Scand. 2017 135 4 388 393 10.1111/ane.12638 27430350
    [Google Scholar]
  56. Locatelli T. Cursi M. Liberati D. Franceschi M. Comi G. EEG coherence in Alzheimer’s disease. Electroencephalogr. Clin. Neurophysiol. 1998 106 3 229 237 10.1016/S0013‑4694(97)00129‑6 9743281
    [Google Scholar]
  57. Frangopoulou M S A. qEEG analysis in the diagnosis of alzheimers disease; A comparison of functional connectivity and spectral analysis. Appl. Sci. 2014 15 10 5162 10.3390/app12105162
    [Google Scholar]
  58. Pogarell O. Teipel S.J. Juckel G. Gootjes L. Möller T. Bürger K. Leinsinger G. Möller H.J. Hegerl U. Hampel H. EEG coherence reflects regional corpus callosum area in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2005 76 1 109 111 10.1136/jnnp.2004.036566 15608007
    [Google Scholar]
  59. Wada Y. Nanbu Y. Kikuchi M. Koshino Y. Hashimoto T. Yamaguchi N. Abnormal functional connectivity in Alzheimer’s disease: Intrahemispheric EEG coherence during rest and photic stimulation. Eur. Arch. Psychiatry Clin. Neurosci. 1998 248 4 203 208 10.1007/s004060050038 9810483
    [Google Scholar]
  60. Uzunlar H. Kıyı İ. Bayraktaroglu Z. Hanoğlu L. Yener G. Güntekin B. Impairment of EEG functional connectivity in dementia during recognition of emotional facial expression. Alzheimers Dement. 2021 17 S5 e055912 10.1002/alz.055912
    [Google Scholar]
  61. Engels M.M.A. Stam C.J. van der Flier W.M. Scheltens P. de Waal H. van Straaten E.C.W. Declining functional connectivity and changing hub locations in Alzheimer’s disease: An EEG study. BMC Neurol. 2015 15 1 145 10.1186/s12883‑015‑0400‑7 26289045
    [Google Scholar]
  62. Das S. Puthankattil S.D. Complex network analysis of MCI-AD EEG signals under cognitive and resting state. Brain Res. 2020 1735 146743 10.1016/j.brainres.2020.146743 32114060
    [Google Scholar]
  63. Hata M. Kazui H. Tanaka T. Ishii R. Canuet L. Pascual-Marqui R.D. Aoki Y. Ikeda S. Kanemoto H. Yoshiyama K. Iwase M. Takeda M. Functional connectivity assessed by resting state EEG correlates with cognitive decline of Alzheimer’s disease – An eLORETA study. Clin. Neurophysiol. 2016 127 2 1269 1278 10.1016/j.clinph.2015.10.030 26541308
    [Google Scholar]
  64. Fodor Z. Horváth A. Hidasi Z. Gouw A.A. Stam C.J. Csukly G. EEG alpha and beta band functional connectivity and network structure mark hub overload in mild cognitive impairment during memory maintenance. Front. Aging Neurosci. 2021 13 680200 10.3389/fnagi.2021.680200 34690735
    [Google Scholar]
  65. Tahami Monfared A.A. Phan N.T.N. Pearson I. Mauskopf J. Cho M. Zhang Q. Hampel H. A systematic review of clinical practice guidelines for Alzheimer’s disease and strategies for future advancements. Neurol. Ther. 2023 12 4 1257 1284 10.1007/s40120‑023‑00504‑6 37261607
    [Google Scholar]
  66. Du Y. Zhang S. Qiu Q. Fang Y. Zhao L. Yue L. Wang J. Yan F. Li X. The mediating effect of the amygdala-frontal circuit on the association between depressive symptoms and cognitive function in Alzheimer’s disease. Transl. Psychiatry 2024 14 1 301 10.1038/s41398‑024‑03026‑3 39039061
    [Google Scholar]
  67. Vargas-Gonzalez J.C. Chadha A.S. Castro-Aldrete L. Ferretti M.T. Tartaglia M.C. Informant characteristics influence Clinical Dementia Rating Sum of Boxes scores-based staging of Alzheimer’s disease. Nat. Aging 2024 4 11 1538 1543 10.1038/s43587‑024‑00732‑x 39455890
    [Google Scholar]
  68. Reisberg B. Dementia: A systematic approach to identifying reversible causes. Geriatrics 1986 41 4 30 46 3949165
    [Google Scholar]
  69. Reisberg B. Functional assessment staging (FAST). Psychopharmacol. Bull. 1988 24 4 653 659 3249767
    [Google Scholar]
  70. Reisberg B. Progression of Alzheimer’ s disease:Variability and consistency: Ontogenic models,their applicability and relevance. J. Neural. Transm. Suppl. 1998 54 9 20 10.1007/978‑3‑7091‑7508‑8_2
    [Google Scholar]
  71. Rafii M.S. Aisen P.S. Detection and treatment of Alzheimer’s disease in its preclinical stage. Nat. Aging 2023 3 5 520 531 10.1038/s43587‑023‑00410‑4 37202518
    [Google Scholar]
  72. Ritchie C. Smailagic N. CSF tau and the CSF tau/ABeta ratio for the diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2017 3 3 CD010803 10.1002/14651858.CD010803.pub2 28328043
    [Google Scholar]
  73. Deschaintre Y. Richard F. Leys D. Pasquier F. Treatment of vascular risk factors is associated with slower decline in Alzheimer disease. Neurology 2009 73 9 674 680 10.1212/WNL.0b013e3181b59bf3 19720973
    [Google Scholar]
  74. Blennow K. Hampel H. Weiner M. Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol. 2010 6 3 131 144 10.1038/nrneurol.2010.4 20157306
    [Google Scholar]
  75. Atri A. The Alzheimer’s disease clinical spectrum. Med. Clin. North Am. 2019 103 2 263 293 10.1016/j.mcna.2018.10.009 30704681
    [Google Scholar]
  76. Sarter M. Bruno J.P. Cortical acetylcholine, reality distortion, schizophrenia, and Lewy Body Dementia: Too much or too little cortical acetylcholine? Brain Cogn. 1998 38 3 297 316 10.1006/brcg.1998.1035 9841788
    [Google Scholar]
  77. Wang W.D. Study on correlation between cognitive function and electroencephalogram in patients with alzheimer disease. Thesis, Master Dissertation JiLin University 2015
    [Google Scholar]
  78. Allen J.J.B. Coan J.A. Nazarian M. Issues and assumptions on the road from raw signals to metrics of frontal EEG asymmetry in emotion. Biol. Psychol. 2004 67 1-2 183 218 10.1016/j.biopsycho.2004.03.007 15130531
    [Google Scholar]
  79. Zhou J.F. The study and analysis of EEG features. Thesis, Master Dissertation Guangxi Normal University 2008
    [Google Scholar]
  80. Crost N.W. Pauls C.A. Wacker J. Defensiveness and anxiety predict frontal EEG asymmetry only in specific situational contexts. Biol. Psychol. 2008 78 1 43 52 10.1016/j.biopsycho.2007.12.008 18295958
    [Google Scholar]
  81. Al-Jumeily D. Iram S. Vialatte F.B. Fergus P. Hussain A. A novel method of early diagnosis of Alzheimer’s disease based on EEG signals. Sci World J 2015 2015 1 931387 10.1155/2015/931387 25688379
    [Google Scholar]
  82. Chaturvedi M. Bogaarts J.G. Kozak Cozac V.V. Hatz F. Gschwandtner U. Meyer A. Fuhr P. Roth V. Phase lag index and spectral power as QEEG features for identification of patients with mild cognitive impairment in Parkinson’s disease. Clin. Neurophysiol. 2019 130 10 1937 1944 10.1016/j.clinph.2019.07.017 31445388
    [Google Scholar]
  83. Canter R.G. Penney J. Tsai L.H. The road to restoring neural circuits for the treatment of Alzheimer’s disease. Nature 2016 539 7628 187 196 10.1038/nature20412 27830780
    [Google Scholar]
  84. Cummings J. Lee G. Nahed P. Kambar M.E.Z.N. Zhong K. Fonseca J. Taghva K. Alzheimer’s disease drug development pipeline: 2022. Alzheimers Dement. 2022 8 1 e12295 10.1002/trc2.12295 35516416
    [Google Scholar]
  85. Guo Y. Li S. Zeng L-H. Tan J. Tau-targeting therapy in Alzheimer’s disease: Critical advances and future opportunities. Ageing and Neurodegenerative Diseases 2022 2 3 11 10.20517/and.2022.16
    [Google Scholar]
  86. Congdon E.E. Sigurdsson E.M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 2018 14 7 399 415 10.1038/s41582‑018‑0013‑z 29895964
    [Google Scholar]
  87. Wischik C.M. Bentham P. Gauthier S. Miller S. Kook K. Schelter B.O. Oral Tau aggregation inhibitor for Alzheimer’s disease: Design, progress and basis for selection of the 16 mg/day dose in a phase 3, randomized, placebo-controlled trial of hydromethylthionine mesylate. J. Prev. Alzheimers Dis. 2022 9 4 780 790 10.14283/jpad.2022.63 36281683
    [Google Scholar]
  88. Roberts M. Sevastou I. Imaizumi Y. Mistry K. Talma S. Dey M. Gartlon J. Ochiai H. Zhou Z. Akasofu S. Tokuhara N. Ogo M. Aoyama M. Aoyagi H. Strand K. Sajedi E. Agarwala K.L. Spidel J. Albone E. Horie K. Staddon J.M. de Silva R. Pre-clinical characterisation of E2814, a high-affinity antibody targeting the microtubule-binding repeat domain of tau for passive immunotherapy in Alzheimer’s disease. Acta Neuropathol. Commun. 2020 8 1 13 10.1186/s40478‑020‑0884‑2 32019610
    [Google Scholar]
  89. Reading C.L. Ahlem C.N. Murphy M.F. NM101 Phase III study of NE3107 in Alzheimer’s disease: Rationale, design and therapeutic modulation of neuroinflammation and insulin resistance. Neurodegener. Dis. Manag. 2021 11 4 289 298 10.2217/nmt‑2021‑0022 34251287
    [Google Scholar]
  90. Xiao S. Chan P. Wang T. Hong Z. Wang S. Kuang W. He J. Pan X. Zhou Y. Ji Y. Wang L. Cheng Y. Peng Y. Ye Q. Wang X. Wu Y. Qu Q. Chen S. Li S. Chen W. Xu J. Peng D. Zhao Z. Li Y. Zhang J. Du Y. Chen W. Fan D. Yan Y. Liu X. Zhang W. Luo B. Wu W. Shen L. Liu C. Mao P. Wang Q. Zhao Q. Guo Q. Zhou Y. Li Y. Jiang L. Ren W. Ouyang Y. Wang Y. Liu S. Jia J. Zhang N. Liu Z. He R. Feng T. Lu W. Tang H. Gao P. Zhang Y. Chen L. Wang L. Yin Y. Xu Q. Xiao J. Cong L. Cheng X. Zhang H. Gao D. Xia M. Lian T. Peng G. Zhang X. Jiao B. Hu H. Chen X. Guan Y. Cui R. Huang Q. Xin X. Chen H. Ding Y. Zhang J. Feng T. Cantillon M. Chen K. Cummings J.L. Ding J. Geng M. Zhang Z. A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer’s dementia. Alzheimers Res. Ther. 2021 13 1 62 10.1186/s13195‑021‑00795‑7 33731209
    [Google Scholar]
  91. Wang T. Kuang W. Chen W. Xu W. Zhang L. Li Y. Li H. Peng Y. Chen Y. Wang B. Xiao J. Li H. Yan C. Du Y. Tang M. He Z. Chen H. Li W. Lin H. Shi S. Bi J. Zhou H. Cheng Y. Gao X. Guan Y. Huang Q. Chen K. Xin X. Ding J. Geng M. Xiao S. A phase II randomized trial of sodium oligomannate in Alzheimer’s dementia. Alzheimers Res. Ther. 2020 12 1 110 10.1186/s13195‑020‑00678‑3 32928279
    [Google Scholar]
  92. Rosenzweig-Lipson S. Barton R. Gallagher M. Mohs R. HOPE4MCI trial: First trial targeting reduction of hippocampal overactivity to treat mild cognitive impairment due to Alzheimer’s disease with AGB101. Alzheimers Dement. 2021 17 S9 e057813 10.1002/alz.057813
    [Google Scholar]
  93. Zhang J. Zhang Y. Wang J. Xia Y. Zhang J. Chen L. Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct. Target. Ther. 2024 9 1 211 10.1038/s41392‑024‑01911‑3 39174535
    [Google Scholar]
  94. Barker A.T. An introduction to the basic principles of magnetic nerve stimulation. J. Clin. Neurophysiol. 1991 8 1 26 37 10.1097/00004691‑199101000‑00005 2019648
    [Google Scholar]
  95. You S. Lv T. Qin R. Hu Z. Ke Z. Yao W. Zhao H. Bai F. Neuro-navigated rTMS improves sleep and cognitive impairment via regulating sleep-related networks’ spontaneous activity in AD spectrum patients. Clin. Interv. Aging 2023 18 1333 1349 10.2147/CIA.S416992 37601952
    [Google Scholar]
  96. Klomjai W. Katz R. Lackmy-Vallée A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann. Phys. Rehabil. Med. 2015 58 4 208 213 10.1016/j.rehab.2015.05.005 26319963
    [Google Scholar]
  97. Ríos A.S. Oxenford S. Neudorfer C. Butenko K. Li N. Rajamani N. Boutet A. Elias G.J.B. Germann J. Loh A. Deeb W. Wang F. Setsompop K. Salvato B. Almeida L.B. Foote K.D. Amaral R. Rosenberg P.B. Tang-Wai D.F. Wolk D.A. Burke A.D. Salloway S. Sabbagh M.N. Chakravarty M.M. Smith G.S. Lyketsos C.G. Okun M.S. Anderson W.S. Mari Z. Ponce F.A. Lozano A.M. Horn A. Optimal deep brain stimulation sites and networks for stimulation of the fornix in Alzheimer’s disease. Nat. Commun. 2022 13 1 7707 10.1038/s41467‑022‑34510‑3 36517479
    [Google Scholar]
  98. Nitsche M.A. Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000 527 3 633 639 10.1111/j.1469‑7793.2000.t01‑1‑00633.x 10990547
    [Google Scholar]
  99. Brunoni A.R. Nitsche M.A. Bolognini N. Bikson M. Wagner T. Merabet L. Edwards D.J. Valero-Cabre A. Rotenberg A. Pascual-Leone A. Ferrucci R. Priori A. Boggio P.S. Fregni F. Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimul. 2012 5 3 175 195 10.1016/j.brs.2011.03.002 22037126
    [Google Scholar]
  100. Antal A. Paulus W. Transcranial alternating current stimulation (tACS). Front. Hum. Neurosci. 2013 7 317 10.3389/fnhum.2013.00317 23825454
    [Google Scholar]
  101. Herrmann C.S. Rach S. Neuling T. Strüber D. Transcranial alternating current stimulation: A review of the underlying mechanisms and modulation of cognitive processes. Front. Hum. Neurosci. 2013 7 279 10.3389/fnhum.2013.00279 23785325
    [Google Scholar]
  102. Iaccarino H.F. Singer A.C. Martorell A.J. Rudenko A. Gao F. Gillingham T.Z. Mathys H. Seo J. Kritskiy O. Abdurrob F. Adaikkan C. Canter R.G. Rueda R. Brown E.N. Boyden E.S. Tsai L.H. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 2016 540 7632 230 235 10.1038/nature20587 27929004
    [Google Scholar]
  103. Martorell A.J. Paulson A.L. Suk H.J. Abdurrob F. Drummond G.T. Guan W. Young J.Z. Kim D.N.W. Kritskiy O. Barker S.J. Mangena V. Prince S.M. Brown E.N. Chung K. Boyden E.S. Singer A.C. Tsai L.H. Multi-sensory gamma stimulation ameliorates Alzheimer’s-associated pathology and improves cognition. Cell 2019 177 2 256 271.e22 10.1016/j.cell.2019.02.014 30879788
    [Google Scholar]
  104. Santarnecchi E. Polizzotto N.R. Godone M. Giovannelli F. Feurra M. Matzen L. Rossi A. Rossi S. Frequency-dependent enhancement of fluid intelligence induced by transcranial oscillatory potentials. Curr. Biol. 2013 23 15 1449 1453 10.1016/j.cub.2013.06.022 23891115
    [Google Scholar]
  105. Zhang S. Qin Y. Wang J. Yu Y. Wu L. Zhang T. Noninvasive electrical stimulation neuromodulation and digital brain technology: A review. Biomedicines 2023 11 6 1513 10.3390/biomedicines11061513 37371609
    [Google Scholar]
  106. Palmisano A. Chiarantoni G. Bossi F. Conti A. D’Elia V. Tagliente S. Nitsche M.A. Rivolta D. Face pareidolia is enhanced by 40 Hz transcranial alternating current stimulation (tACS) of the face perception network. Sci. Rep. 2023 13 1 2035 10.1038/s41598‑023‑29124‑8 36739325
    [Google Scholar]
  107. Guerra A. Ranieri F. Falato E. Musumeci G. Di Santo A. Asci F. Di Pino G. Suppa A. Berardelli A. Di Lazzaro V. Detecting cortical circuits resonant to high-frequency oscillations in the human primary motor cortex: A TMS-tACS study. Sci. Rep. 2020 10 1 7695 10.1038/s41598‑020‑64717‑7 32376946
    [Google Scholar]
  108. Frohlich F. Riddle J. Conducting double-blind placebo-controlled clinical trials of transcranial alternating current stimulation (tACS). Transl. Psychiatry 2021 11 1 284 10.1038/s41398‑021‑01391‑x 33980854
    [Google Scholar]
  109. Cheyuo C. Germann J. Yamamoto K. Vetkas A. Loh A. Sarica C. Milano V. Zemmar A. Flouty O. Harmsen I.E. Hodaie M. Kalia S.K. Tang-Wai D. Lozano A.M. Connectomic neuromodulation for Alzheimer’s disease: A systematic review and meta-analysis of invasive and non-invasive techniques. Transl. Psychiatry 2022 12 1 490 10.1038/s41398‑022‑02246‑9 36411282
    [Google Scholar]
  110. Alekseichuk I. Falchier A.Y. Linn G. Xu T. Milham M.P. Schroeder C.E. Opitz A. Electric field dynamics in the brain during multi-electrode transcranial electric stimulation. Nat. Commun. 2019 10 1 2573 10.1038/s41467‑019‑10581‑7 31189931
    [Google Scholar]
  111. Bazinet V. Hansen J.Y. Misic B. Towards a biologically annotated brain connectome. Nat. Rev. Neurosci. 2023 24 12 747 760 10.1038/s41583‑023‑00752‑3 37848663
    [Google Scholar]
  112. Oh S.J. Lee H.J. Jeong Y.J. Nam K.R. Kang K.J. Han S.J. Lee K.C. Lee Y.J. Choi J.Y. Evaluation of the neuroprotective effect of taurine in Alzheimer’s disease using functional molecular imaging. Sci. Rep. 2020 10 1 15551 10.1038/s41598‑020‑72755‑4 32968166
    [Google Scholar]
  113. Takeda S. Wegmann S. Cho H. DeVos S.L. Commins C. Roe A.D. Nicholls S.B. Carlson G.A. Pitstick R. Nobuhara C.K. Costantino I. Frosch M.P. Müller D.J. Irimia D. Hyman B.T. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer’s disease brain. Nat. Commun. 2015 6 1 8490 10.1038/ncomms9490 26458742
    [Google Scholar]
  114. Violante I.R. Alania K. Cassarà A.M. Neufeld E. Acerbo E. Carron R. Williamson A. Kurtin D.L. Rhodes E. Hampshire A. Kuster N. Boyden E.S. Pascual-Leone A. Grossman N. Non-invasive temporal interference electrical stimulation of the human hippocampus. Nat. Neurosci. 2023 26 11 1994 2004 10.1038/s41593‑023‑01456‑8 37857775
    [Google Scholar]
/content/journals/biot/10.2174/0118722083358924250606173812
Loading
/content/journals/biot/10.2174/0118722083358924250606173812
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test