Skip to content
2000
image of Synthesis and Biological Properties of Formulated Skin Serum Containing Coelomic Fluid of Earthworm Eisenia fetida/andrei

Abstract

Objectives

In this study, the coelomic fluid of species was used for the first time to prepare an anti-aging serum, and its antioxidant and antibacterial properties were investigated. In addition, its cytotoxicity on mouse fibroblast cells was measured as material for the production of natural anti-aging products.

Materials and Methods

This study investigates the antibacterial, antioxidant, and cytotoxic properties of coelomic fluid extracted from . Earthworms were cultured for a year, and their coelomic fluid was extracted using an electroshock method, sterilized, and lyophilized into powder. Antibacterial activity was tested against and using MIC assays. Antioxidant properties were evaluated using the DPPH radical scavenging assay. Cytotoxicity effects on L929 and NHEK cell lines were assessed using MTT assays. Oxidative stress and enzymatic activities were analyzed by measuring malondialdehyde (MDA) levels and catalase activity in NHEK cells treated with coelomic fluid. A serum formulation incorporating coelomic fluid was prepared and subjected to stability tests, including pH, temperature, mechanical, and heavy metal residue analysis. Antibacterial and antioxidant properties of the serum were also evaluated. Statistical analyses were conducted using SPSS software (version 0.26). Results highlight the multifunctional potential of coelomic fluid for biomedical and cosmetic applications.

Results

Coelomic fluid exhibited antibacterial activity with MICs of 0.15 mg/mL for both and , showing significant inhibition at higher concentrations. Ciprofloxacin and penicillin demonstrated stronger effects compared to the coelomic fluid. Antioxidant activity increased with concentration, achieving 77% inhibition at 10 mg/mL, with an IC50 of 10.67 mg/mL. Cytotoxicity analysis revealed no significant toxicity below 20 mg/mL, with enhanced cell viability at 2.5–5 mg/mL and restorative effects on fibroblasts at 10 mg/mL. Oxidative stress assays indicated reduced lipid peroxidation and increased catalase activity without inducing significant oxidative stress. Measurement of residues of mercury and lead in the sera showed that they were less than 0.01 ppm for mercury and less than 0.03 and 0.05 ppm for lead, respectively. These levels are below the U.S. Food and Drug Administration's approved limits for these metals. Aqueous serum containing coelomic fluid showed similar antibacterial and antioxidant properties, emphasizing its potential for cosmetic and pharmaceutical applications.

Conclusions

These results show that the use of earthworm coelomic fluid in skin care serum slows the aging process and restores damaged cells. The results of the present study can be considered as a patent.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083342120250426085714
2025-05-07
2025-09-21
Loading full text...

Full text loading...

References

  1. Farage M.A. Miller K.W. Elsner P. Maibach H.I. Intrinsic and extrinsic factors in skin ageing: A review. Int. J. Cosmet. Sci. 2008 30 2 87 95 10.1111/j.1468‑2494.2007.00415.x 18377617
    [Google Scholar]
  2. Sibilla S. Godfrey M. Brewer S. Budh-Raja A. Genovese L. An overview of the beneficial effects of hydrolysed collagen as a nutraceutical on skin properties: Scientific background and clinical studies. Open Nutraceuticals J. 2015 8 1 29 42 10.2174/1876396001508010029
    [Google Scholar]
  3. Lee H. Hong Y. Kim M. Structural and functional changes and possible molecular mechanisms in aged skin. Int. J. Mol. Sci. 2021 22 22 12489 10.3390/ijms222212489 34830368
    [Google Scholar]
  4. Bonté F. Girard D. Archambault J-C. Desmoulière A. Skin changes during ageing. Biochemistry and Cell Biology of Ageing: Part II Clinical Science Springer Singapore Harris J. Korolchuk V. 2019 249 280 10.1007/978‑981‑13‑3681‑2_10
    [Google Scholar]
  5. Zhang S. Duan E. Fighting against skin aging: The way from bench to bedside. Cell Transplant. 2018 27 5 729 738 10.1177/0963689717725755 29692196
    [Google Scholar]
  6. Cole M.A. Quan T. Voorhees J.J. Fisher G.J. Extracellular matrix regulation of fibroblast function: Redefining our perspective on skin aging. J. Cell Commun. Signal. 2018 12 1 35 43 10.1007/s12079‑018‑0459‑1 29455303
    [Google Scholar]
  7. Rinnerthaler M. Streubel M.K. Bischof J. Richter K. Skin aging, gene expression and calcium. Exp. Gerontol. 2015 68 59 65 10.1016/j.exger.2014.09.015 25262846
    [Google Scholar]
  8. Mohiuddin A.K. Skin aging & modern age anti-aging strategies. Int. J. Clin. Dermatol. Res 2019 7 209 240
    [Google Scholar]
  9. Addor F. Beyond photoaging: Additional factors involved in the process of skin aging. Clin. Cosmet. Investig. Dermatol. 2018 11 437 443 10.2147/CCID.S177448 30288075
    [Google Scholar]
  10. Poon F. Kang S. Chien A.L. Mechanisms and treatments of photoaging. Photodermatol. Photoimmunol. Photomed. 2015 31 2 65 74 10.1111/phpp.12145 25351668
    [Google Scholar]
  11. Krutmann J. Bouloc A. Sore G. Bernard B.A. Passeron T. The skin aging exposome. J. Dermatol. Sci. 2017 85 3 152 161 10.1016/j.jdermsci.2016.09.015 27720464
    [Google Scholar]
  12. Ramos-e-Silva M. Celem L.R. Ramos-e-Silva S. Fucci-da-Costa A.P. Anti-aging cosmetics: Facts and controversies. Clin. Dermatol. 2013 31 6 750 758 10.1016/j.clindermatol.2013.05.013 24160281
    [Google Scholar]
  13. Ramesh M. Muthuraman A. Flavoring and coloring agents: Health risks and potential problems. Natural and Artificial Flavoring Agents and Food Dyes Elsevier 2018 1 28 10.1016/B978‑0‑12‑811518‑3.00001‑6
    [Google Scholar]
  14. Pereira J.X. Pereira T.C. Cosmetics and its health risks. Glob. J. Med. Res. 2018 18 63 70 10.34257/GJMRBVOL18IS2PG63
    [Google Scholar]
  15. Geier D.A. King P.G. Hooker B.S. Dórea J.G. Kern J.K. Sykes L.K. Geier M.R. Thimerosal: Clinical, epidemiologic and biochemical studies. Clin. Chim. Acta 2015 444 212 220 10.1016/j.cca.2015.02.030 25708367
    [Google Scholar]
  16. Agorku E.S. Kwaansa-Ansah E.E. Voegborlo R.B. Amegbletor P. Opoku F. Mercury and hydroquinone content of skin toning creams and cosmetic soaps, and the potential risks to the health of Ghanaian women. Springerplus 2016 5 1 319 10.1186/s40064‑016‑1967‑1 27065161
    [Google Scholar]
  17. Emerald M. Emerald A. Emerald L. Kumar V. Perspective of natural products in skincare. Pharm. Pharmacol. Int. J. 2016 4 3 1 3 10.15406/ppij.2016.04.00072
    [Google Scholar]
  18. Ahmed I.A. Mikail M.A. Chapter 12 - Anti-aging skincare: The natural and organic way. Anti-Aging Pharmacology Elsevier Koltover V.K. 2023 269 284 10.1016/B978‑0‑12‑823679‑6.00008‑4
    [Google Scholar]
  19. Nguyen J.K. Masub N. Jagdeo J. Bioactive ingredients in Korean cosmeceuticals: Trends and research evidence. J. Cosmet. Dermatol. 2020 19 7 1555 1569 10.1111/jocd.13344 32100931
    [Google Scholar]
  20. Liu L. Sood A. Steinweg S. Snails and skin care - An uncovered combination. JAMA Dermatol. 2017 153 7 650 650 10.1001/jamadermatol.2017.1383 28700796
    [Google Scholar]
  21. Azmi N. Hashim P. Hashim D.M. Halimoon N. Majid N.M.N. Anti–elastase, anti–tyrosinase and matrix metalloproteinase–1 inhibitory activity of earthworm extracts as potential new anti–aging agent. Asian Pac. J. Trop. Biomed. 2014 4 Suppl. 1 S348 S352 10.12980/APJTB.4.2014C1166 25183109
    [Google Scholar]
  22. Wang C. Sun Z. Liu Y. Zhang X. Xu G. A novel antimicrobial vermipeptide family from earthworm Eisenia fetida. Eur. J. Soil Biol. 2007 43 S127 S134 10.1016/j.ejsobi.2007.08.048
    [Google Scholar]
  23. Kauschke E. Mohrig W. Cooper E.L. Coelomic fluid proteins as basic components of innate immunity in earthworms. Eur. J. Soil Biol. 2007 43 S110 S115 10.1016/j.ejsobi.2007.08.043
    [Google Scholar]
  24. Suandy G.E. Nasution A. Lister I. Analysis of protein content, spectrophotometry FT-IR, and antibacterial effects of earthworm (Eudriluseugenia). Am. Sci. Res. J. Eng. Technol. Sci. 2020 63 1 94 101
    [Google Scholar]
  25. Gudeta K. Kumari S. Bhagat A. Julka J.M. Goyal R. Mitogenic, antioxidative and antimicrobial activities of g-90 and coelomic fluid from earthworm as a therapeutic agent, a review. IJPSR 2020 11 5298 5307 10.13040/IJPSR.0975‑8232.11(11).5298‑07
    [Google Scholar]
  26. Ghosh S. Insilico Studies on Antimicrobial Peptides (AMPs) from Earthworm. Int. J. Pept. Res. Ther. 2020 26 4 1721 1738 10.1007/s10989‑019‑09970‑9
    [Google Scholar]
  27. Hussain M. Liaqat I. Zafar U. Saleem S. Aftab M.N. Khalid A. Modafer Y. Alshammari F.A. Mashraqi A. El-Mansi A.A. Antibiofilm potential of coelomic fluid and paste of earthworm Pheretima posthuma (clitellata, megascolecidae) against pathogenic bacteria. Microorganisms 2023 11 2 342 10.3390/microorganisms11020342 36838307
    [Google Scholar]
  28. Wang D. Ruan Z. Zhang R. Wang X. Wang R. Tang Z. Effect of earthworm on wound healing: A systematic review and meta-analysis. Front. Pharmacol. 2021 12 691742 10.3389/fphar.2021.691742 34744704
    [Google Scholar]
  29. Unnithan J.J. Rema J. Kumar A.M. Majeed S.A. ‘Slime story’- Exploring the potential of earthworm coelomic fluid: A review. Malanadu Dent. J. 2019 8 1 50 53
    [Google Scholar]
  30. Kathireswari P. Alakesan A. Abirami P. Sangeetha P. Antimicrobial activity of earthworm coelomic fluid against diseases causing microorganisms. Int. J. Curr. Microbiol. Appl. Sci. 2014 3 8 608 613
    [Google Scholar]
  31. Patil S.R. Biradar P.M. Earthworm’s coelomic fluid: Extraction and importance. Int. J. Adv. Sci. Res. 2017 2 2 1 4
    [Google Scholar]
  32. Wiegand I. Hilpert K. Hancock R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008 3 2 163 175 10.1038/nprot.2007.521 18274517
    [Google Scholar]
  33. Cordovana M. Ambretti S. Antibiotic susceptibility testing of anaerobic bacteria by broth microdilution method using the MICRONAUT-S Anaerobes MIC plates. Anaerobe 2020 63 102217 10.1016/j.anaerobe.2020.102217 32461082
    [Google Scholar]
  34. Sharma O.P. Bhat T.K. DPPH antioxidant assay revisited. Food Chem. 2009 113 4 1202 1205 10.1016/j.foodchem.2008.08.008
    [Google Scholar]
  35. Twarużek M. Zastempowska E. Soszczyńska E. Ałtyn I. The use of in vitro assays for the assessment of cytotoxicity on the example of MTT test. Acta Univ. Lodz., Folia Biol. Oecol. 2019 14 1 23 32 10.1515/fobio‑2017‑0006
    [Google Scholar]
  36. Zhu Q.X. Shen T. Ding R. Liang Z.Z. Zhang X.J. Cytotoxicity of trichloroethylene and perchloroethylene on normal human epidermal keratinocytes and protective role of vitamin E. Toxicology 2005 209 1 55 67 10.1016/j.tox.2004.12.006 15725514
    [Google Scholar]
  37. Szczepanczyk M. Ruzgas T. Gullfot F. Gustafsson A. Björklund S. Catalase activity in keratinocytes, stratum corneum, and defatted algae biomass as a potential skin care ingredient. Biomedicines 2021 9 12 1868 10.3390/biomedicines9121868 34944684
    [Google Scholar]
  38. Sekar M. Sivalinggam P. Mahmad A. Formulation and evaluation of novel antiaging cream containing rambutan fruits extract. Int. J. Pharm. Sci. Res. 2017 8 3 1056
    [Google Scholar]
  39. Septiyanti M. Liana L. Sutriningsih Kumayanjati B. Meliana Y. Formulation and evaluation of serum from red, brown and green algae extract for anti-aging base material. AIP Conf. Proc. 2019 2175 1 020078 10.1063/1.5134642
    [Google Scholar]
  40. Chiari B.G. Almeida M.G.J. Corrêa M.A. Isaac V.L.B. Cosmetics' quality control. Latest Research into Quality Control IntechOpen Rijeka Isin A. 2012 10.5772/51846
    [Google Scholar]
  41. Mitsui T. New Cosmetic Science Elsevier Amsterdam, Netherlands 1997
    [Google Scholar]
  42. Vieira R.P. Fernandes A.R. Kaneko T.M. Consiglieri V.O. Pinto C.A.S.O. Pereira C.S.C. Baby A.R. Velasco M.V.R. Physical and physicochemical stability evaluation of cosmetic formulations containing soybean extract fermented by Bifidobacterium animalis. Braz. J. Pharm. Sci. 2009 45 3 515 525 10.1590/S1984‑82502009000300018
    [Google Scholar]
  43. Williams D.F. Schmitt W. Chemistry and Technology of the Cosmetics and Toiletries Industry Blackie Academic & Professional London, UK 1996
    [Google Scholar]
  44. Djajadisastra J. Cosmetic stability. 2004 Available from: https://scholar.google.co.id/citations?view_op=view_citation&hl=id&user=SQs3zIMAAAAJ&citation_for_view=SQs3zIMAAAAJ:d1gkVwhDpl0C
    [Google Scholar]
  45. Hooper H.L. Jurkschat K. Morgan A.J. Bailey J. Lawlor A.J. Spurgeon D.J. Svendsen C. Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix. Environ. Int. 2011 37 6 1111 1117 10.1016/j.envint.2011.02.019 21440301
    [Google Scholar]
  46. Mares A. Neyts K. Debevere J. Influence of pH, salt and nitrite on the heme-dependent catalase activity of lactic acid bacteria. Int. J. Food Microbiol. 1994 24 1-2 191 198 10.1016/0168‑1605(94)90118‑X 7703013
    [Google Scholar]
  47. Rezaei K. Jenab E. Temelli F. Effects of water on enzyme performance with an emphasis on the reactions in supercritical fluids. Crit. Rev. Biotechnol. 2007 27 4 183 195 10.1080/07388550701775901 18085461
    [Google Scholar]
  48. Saint-Denis M. Labrot F. Narbonne J.F. Ribera D. Glutathione, glutathione-related enzymes, and catalase activities in the earthworm Eisenia fetida andrei. Arch. Environ. Contam. Toxicol. 1998 35 4 602 614 10.1007/s002449900422 9776778
    [Google Scholar]
/content/journals/biot/10.2174/0118722083342120250426085714
Loading
/content/journals/biot/10.2174/0118722083342120250426085714
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test