Skip to content
2000
image of Molecular Variation of Methicillin-resistant Staphylococcus haemolyticus Isolated from Patients in Ramadi City, Iraq

Abstract

Background

The increasing prevalence of infections in community and hospital settings presents a significant health challenge due to growing antibiotic resistance and biofilm formation.

Objective

This study aims to:(1) perform a molecular analysis of prevalent native strains in Anbar, Iraq, (2) differentiate between various pathogenic strains using multilocus sequence typing (MLST) to enhance epidemiological and surveillance efforts by relevant patents on molecular diagnostics and pathogen typing. The objective is to trace the origins of these strains and distinguish between invasive and indigenous strains. While is generally part of the normal human microbiota, it can lead to serious infections in individuals with prior injuries or surgical procedures. It is particularly skilled at developing antibiotic resistance, making it a leading cause of hospital-acquired infections, largely through the staphylococcal cassette chromosome mec (SCCmec). Methicillin-resistant (MRSH) has developed resistance to oxacillin/cefoxitin through SCCmec acquisition, and hospital-associated MRSH strains are increasingly resistant to multiple antibiotics.

Methodology

The preparation of blood agar medium followed the manufacturer's guidelines. After autoclaving at 121ºC for 15 minutes, the medium was cooled to 50ºC. The mixture was then thoroughly mixed and poured into sterile Petri dishes. This medium is used for isolating and cultivating bacteria, as well as for detecting hemolytic activity and identifying the type of hemolysis. Genomic extraction and molecular screening of multidrug-resistant (MDR) isolates were performed, followed by MLST analysis. Data were processed using the University of Nebraska Medical Center's pubMLST website.

Results

To explore the genetic relationships among strains, their genomic DNA was analyzed using MLST typing based on the protocol from the MLST Institute database. All isolates in the study underwent MLST gene screening through PCR to verify the presence of housekeeping genes (arc, SH1200, hemH, leuB, SH1341, cfxE, and ribose ABC). PCR electrophoresis results demonstrated successful amplification of all target genes, confirming their appropriateness for MLST analysis. Three isolates were recognized as novel global strains, designated ST153, ST154, and ST155. In addition, five other strains were previously registered as ST3, ST9, ST29, ST123, and ST124.

Conclusion

The findings diverge from the established global understanding of type distribution in Asia. To combat the spread of highly resistant strains, it is crucial to monitor virulence factors and antibiotic resistance closely.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083348921250420012437
2025-04-30
2025-09-27
Loading full text...

Full text loading...

References

  1. Michaud S. Berg D. Chapter 15 - Molecular methods for bacterial strain typing. Antimicrobial Susceptibility Testing Protocols 1st Ed. Boca Raton CRC Press 2007 432 10.1201/9781420014495.ch15
    [Google Scholar]
  2. Perez-Losada M. Arenas M. Castro-Nallar E. Multilocus sequence typing of pathogens: Methods, analyses, and applications. Genetics and Evolution of Infectious Diseases 2nd Ed. Amsterdam, Netherlands Elsevier 2017 383 404 10.1016/B978‑0‑12‑799942‑5.00016‑0
    [Google Scholar]
  3. Brooks G.F. Butel J.S. Morse S.A. The staphylococci. Jawetz. Melnick and Adelberg’s medical microbiology. 24th Ed. New York McGraw.Hill 2007 1 12
    [Google Scholar]
  4. Danin-Poleg Y. Cohen L.A. Gancz H. Broza Y.Y. Goldshmidt H. Malul E. Vibrio cholerae strain typing and phylogeny study based on simple sequence repeats. J. Clin. Microbiol. 2007 45 3 736 746 10.1128/JCM.01895‑06 17182751
    [Google Scholar]
  5. Zhang L.-Y. Tian B. Huang Y.-H. Gu B. Ju P. Luo Y. Classification and prediction of Klebsiella pneumoniae strains with different MLST allelic profiles via SERS spectral analysis. Peer J. 2023 11 e16161 10.7717/peerj.16161 37780376
    [Google Scholar]
  6. Weng P.L. Ramli R. Shamsudin M.N. Cheah Y.K. Hamat R.A. High genetic diversity of Enterococcus faecium and Enterococcus faecalis clinical isolates by pulsed-field gel electrophoresis and multilocus sequence typing from a hospital in Malaysia. BioMed Res. Int. 2013 2013 1 6 10.1155/2013/938937 23819125
    [Google Scholar]
  7. Holden M.T.G. Hsu L.Y. Kurt K. Weinert L.A. Mather A.E. Harris S.R. Strommenger B. Layer F. Witte W. de Lencastre H. Skov R. Westh H. Žemličková H. Coombs G. Kearns A.M. Hill R.L.R. Edgeworth J. Gould I. Gant V. Cooke J. Edwards G.F. McAdam P.R. Templeton K.E. McCann A. Zhou Z. Castillo-Ramírez S. Feil E.J. Hudson L.O. Enright M.C. Balloux F. Aanensen D.M. Spratt B.G. Fitzgerald J.R. Parkhill J. Achtman M. Bentley S.D. Nübel U. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res. 2013 23 4 653 664 10.1101/gr.147710.112 23299977
    [Google Scholar]
  8. Fuller E. Elmer C. Nattress F. Ellis R. Horne G. Cook P. Fawcett T. β-lactam resistance in Staphylococcus aureus cells that do not require a cell wall for integrity. Antimicrob. Agents Chemother. 2005 49 12 5075 5080 10.1128/AAC.49.12.5075‑5080.2005 16304175
    [Google Scholar]
  9. Brody T. Yavatkar A.S. Lin Y. Ross J. Kuzin A. Kundu M. Fann Y. Odenwald W.F. Horizontal gene transfers link a human MRSA pathogen to contagious bovine mastitis bacteria. PLoS One 2008 3 8 e3074 10.1371/journal.pone.0003074 18728754
    [Google Scholar]
  10. Ronald M. Handbook of media for environmental microbiology. 2nd Ed. Boca Raton, FL CRC press 2005 672
    [Google Scholar]
  11. Guerra M.E.S. Destro G. Vieira B. Lima A.S. Ferraz L.F.C. Hakansson A.P. Klebsiella pneumoniae biofilms and their role in disease pathogenesis. Front Cell Infect. Microbiol. 2022 12 1 13 10.3389/fcimb.2022.877995 35646720
    [Google Scholar]
  12. Mufti F.U.D. Ullah H. Bangash A. Khan N. Hussain S. Ullah F. Jamil M. Jabeen M. Antimicrobial activities of Aerva javanica and Paeonia emodi plants. Pak. J. Pharm. Sci. 2012 25 3 565 569 22713942
    [Google Scholar]
  13. Turton J.F. Perry C. Elgohari S. Hampton C.V. PCR characterization and typing of Klebsiella pneumoniae using capsular type-specific, variable number tandem repeat and virulence gene targets. J. Med. Microbiol. 2010 59 5 541 547 10.1099/jmm.0.015198‑0 20110386
    [Google Scholar]
  14. Mushtak A.T.S. Shahad A.A. Amer A. Molecular detection of medically important. Asi. J. Pharm. 2018 12 3 991 1001 10.22377/ajp.v12i03.2638
    [Google Scholar]
  15. Ahmed M.M. Al Meani S.A.L. Occurrence of Klebsiella pneumoniae carbapenemase KPC gene in Klebsiella pneumonia isolated from patients in Anbar city of Iraq. Ann. Trop. Med. Publ. Heal. 2019 22 5 10.36295/ASRO.2019.220514
    [Google Scholar]
  16. Wasfi R. Elkhatib W.F. Ashour H.M. Molecular typing and virulence analysis of multidrug resistant Klebsiella pneumoniae clinical isolates recovered from Egyptian hospitals. Sci. Rep. 2016 6 1 38929 10.1038/srep38929 28004732
    [Google Scholar]
  17. Ernst C.M. Braxton J.R. Rodriguez-Osorio C.A. Zagieboylo A.P. Li L. Pironti A. Manson A.L. Nair A.V. Benson M. Cummins K. Clatworthy A.E. Earl A.M. Cosimi L.A. Hung D.T. Adaptive evolution of virulence and persistence in carbapenem-resistant Klebsiella pneumoniae. Nat. Med. 2020 26 5 705 711 10.1038/s41591‑020‑0825‑4 32284589
    [Google Scholar]
  18. Jena S. Panda S. Nayak K.C. Singh D.V. Identification of major sequence types among multidrug resistant Staphylococcus epidermidis strains isolated from infected eyes and healthy conjunctiva. Front. Microbiol. 2017 8 1430 10.3389/fmicb.2017.01430 28824564
    [Google Scholar]
  19. Nahaei M.R. Shahmohammadi M.R. Ebrahimi S. Milani M. Detection of methicillin.resistant coagulase negative staphylococci and surveillance of antibacterial resistance in a multi center study from Iran. Jundishapur J. Microbiol. 2015 8 8 e19945 10.5812/jjm.19945v2 26468362
    [Google Scholar]
  20. Namvar A.E. Havaei S.A. Azimi L. Lari A.R. Rajabnia R. Molecular characterization of Staphylococcus epidermidis isolates collected from an intensive care unit. Arch. Pediatr. Infect. Dis. 2017 5 2 e36176 10.5812/pedinfect.36176
    [Google Scholar]
  21. Hajiahmadi F. Ghale E.S. Alikhani M.Y. Mordadi A. Arabestani M.R. Detection of integrons and staphylococcal cassette chromosome mec types in clinical methicillin resistant coagulase negative staphylococci strains. Osong Public Health Res. Perspect. 2017 8 1 47 53 10.24171/j.phrp.2017.8.1.06 28443223
    [Google Scholar]
  22. Chaudhury A. Kumar A. G. In vitro activity of antimicrobial agents against oxacillin resistant staphylococci with special reference to Staphylococcus haemolyticus. Ind. J. Med. Microbiol. 2007 25 1 50 52
    [Google Scholar]
  23. Takaya A. Kimura A. Sato Y. Ishiwada N. Watanabe M. Matsui M. Molecular characterization of linezolid resistant CoNS isolates in Japan. J. Antimicr. Chemothe. 2015 70 3 658 663 10.1093/jac/dku443 25381168
    [Google Scholar]
  24. Aghazadeh M. Ghotaslou R. Rezaee M.A. Moshafi M.H. Hojabri Z. Saffari F. Determination of antimicrobial resistance profile and inducible clindamycin resistance of coagulase negative staphylococci in pediatric patients: The first report from Iran. World J. Pediatr. 2015 11 3 250 254 10.1007/s12519‑014‑0524‑7 25410671
    [Google Scholar]
  25. Soroush S. Jabalameli F. Taherikalani M. Amirmozafari N. Fooladi A.A.I. Asadollahi K. Beigverdi R. Emaneini M. Investigation of biofilm formation ability, antimicrobial resistance and the staphylococcal cassette chromosome mec patterns of methicillin resistant Staphylococcus epidermidis with different sequence types isolated from children. Microb. Pathog. 2016 93 126 130 10.1016/j.micpath.2016.01.018 26821355
    [Google Scholar]
  26. Shirvani F. Dashti A.S. Seifi K. Staphylococcus and linezolid resistance in Iran. Arch. Pediatr. Infect. Dis. 2018 6 1 e12236 10.5812/pedinfect.12236
    [Google Scholar]
  27. Gu C. Gu C. Smoothing spline ANOVA models. 2nd Ed. New York Springer 2013 297 433 10.1007/978‑1‑4614‑5369‑7
    [Google Scholar]
  28. Witte W. Cuny C. Emergence and spread of CFR-mediated multiresistance in staphylococci: An interdisciplinary challenge. Future Microbiol. 2011 6 8 925 931 10.2217/fmb.11.69 21861622
    [Google Scholar]
  29. Arias C.A. Vallejo M. Reyes J. Panesso D. Moreno J. Castañeda E. Clinical and microbiological aspects of linezolid resistance mediated by the cfr gene encoding a 23S rRNA methyltransferase. J. Clin. Microbiol. 2008 46 3 892 896 10.1128/JCM.01886‑07 18174304
    [Google Scholar]
  30. Murugesan S. Perumal N. Mahalingam S.P. Dilliappan S.K. Krishnan P. Analysis of antibiotic resistance genes and its associated SCCmec types among nasal carriage of methicillin resistant coagulase negative staphylococci from community settings. Chennai. Southern India. J. Clin. Diagn. Res. 2015 9 8 DC01 DC05 26435940
    [Google Scholar]
  31. Mendes R.E. Deshpande L.M. Farrell D.J. Spanu T. Fadda G. Jones R.N. Assessment of linezolid resistance mechanisms among Staphylococcus epidermidis causing bacteraemia in Rome. J. Antimicro. Chemothe. 2010 65 11 2329 2335 10.1093/jac/dkq331
    [Google Scholar]
  32. Zong Z. Peng C. Lü X. Diversity of SCCmec elements in methicillin-resistant coagulase-negative staphylococci clinical isolates. PLoS One 2011 6 5 e20191 10.1371/journal.pone.0020191 21637845
    [Google Scholar]
  33. Panda S. Jena S. Sharma S. Dhawan B. Nath G. Singh D.V. Identification of novel sequence types among Staphylococcus haemolyticus isolated from variety of infections in India. PLoS One 2016 11 11 e0166193 10.1371/journal.pone.0166193 27824930
    [Google Scholar]
  34. Aggarwal S. Jena S. Panda S. Sharma S. Dhawan B. Nath G. Singh N.P. Nayak K.C. Singh D.V. Antibiotic susceptibility. virulence pattern. and typing of Staphylococcus aureus strains isolated from variety of infections in India. Front. Microbiol. 2019 10 2763 10.3389/fmicb.2019.02763 31866962
    [Google Scholar]
  35. Al-Ruaily M.A. Khalil O.M. Detection of (mecA)gene in methicillin resistant Staphylococcus aureus (MRSA) at Prince A / Rhman Sidery Hospital, Al-Jouf, Saudi Arabia. J. Med. Gene. Geno. 2011 3 3 41 45 10.5897/JMGG.9000010
    [Google Scholar]
  36. Hujier N.A. Sharif F.A. Detection of methicillin-resistant Staphylococcus aureus in nosocomial infections in Gaza Strip. Afr. J. Microbiol. Res. 2008 2 9 235 241
    [Google Scholar]
/content/journals/biot/10.2174/0118722083348921250420012437
Loading
/content/journals/biot/10.2174/0118722083348921250420012437
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test