Skip to content
2000
image of Exploring the Two-Way Role: Biological and Anti-Epileptic 
Properties of Imidazole and 2-Mercaptobenzimidazole Derivatives

Abstract

Imidazole and 2-mercapto benzimidazole analogues are a group of molecules that have various biological activities and good therapeutic potential in the treatment of epilepsy. This review explores their dual role, focusing on their biological properties and anti-epileptic effects. A spectrum of biological activities is displayed by imidazole derivatives and 2- mercaptobenzimidazole, such as antifungal, antioxidant, anti-inflammatory, and antimicrobial actions, leading to their therapeutic flexibility apart from epilepsy treatment. Imidazole derivatives mechanistically modulate Gamma-Aminobutyric Acid (GABA) receptors, inhibit ion channels, and exert neuroprotective effects, enabling them to be used for seizure control. Their mechanisms of action involve modulation of oxidative stress pathways as well as providing neuroprotective effects against epilepsy. In terms of structure, both imidazole and 2-mercaptobenzimidazole derivatives have gone through extensive structure-activity relationship studies to enhance their biological and pharmacological aspects. However, numerous concerns, such as bioavailability, selectivity, and side effects, hinder their effective application in the treatment of various diseases. Looking forward, further research into novel derivatives and patented formulation strategies holds promise for enhancing efficacy and reducing adverse effects. This review consolidates current knowledge, emphasizing the multifaceted roles of imidazole and 2-mercapto benzimidazole derivatives in biological systems and their potential as anti-epileptic agents, thus providing insights for future research and clinical applications.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083345879250403115017
2025-04-25
2025-09-27
Loading full text...

Full text loading...

References

  1. Ghosh S. Sinha J.K. Ghosh S. Sharma H. Bhaskar R. Narayanan K.B. A comprehensive review of emerging trends and innovative therapies in epilepsy management. Brain Sci. 2023 13 9 1305 10.3390/brainsci13091305
    [Google Scholar]
  2. Corrales-Hernández M.G. Villarroel-Hagemann S.K. Mendoza-Rodelo I.E. Palacios-Sánchez L. Gaviria-Carrillo M. Buitrago-Ricaurte N. Development of antiepileptic drugs throughout history: From serendipity to artificial intelligence. Biomedicines 2023 11 6 1632 10.3390/biomedicines11061632
    [Google Scholar]
  3. Panayiotopoulos C.P. Chapter 4, Principles of Therapy in Epilepsies. The Epilepsies: Seizures, Syndromes and Management. Oxfordshire, UK: Bladon Medical Publishing. 2005 https://www.ncbi.nlm.nih.gov/books/NBK2607/
    [Google Scholar]
  4. Ek L.S. Minimizing aed adverse effects: Improving quality of life in the interictal state in epilepsy care. Curr. Neuropharmacol. 2009 7 2 106 10.2174/157015909788848857
    [Google Scholar]
  5. Park M.K. Kim E.S. Antiepileptic drug therapy in patients with drug-resistant epilepsy. J. Epil. Res. 2018 9 1 14 26 10.14581/jer.19002
    [Google Scholar]
  6. Shankar R. Prescribing anti-epileptic drugs for people with epilepsy and intellectual disability. 2017 Available from: https://www.rcpsych.ac.uk/docs/default-source/improving-care/better-mh-policy/college-reports/college-report-cr206.pdf?sfvrsn=4db7a660
  7. Rajagopalan K. Candrilli S.D. Ajmera M. Impact of antiepileptic-drug treatment burden on health-care-resource utilization and costs. Clinicoecon. Outcomes Res. 2018 10 619 627 10.2147/CEOR.S180913 30425541
    [Google Scholar]
  8. Lucas A. Revell A. Davis K.A. Artificial intelligence in epilepsy applications and pathways to the clinic. Nat. Rev. Neurol. 2024 20 6 319 336 10.1038/s41582‑024‑00965‑9 38720105
    [Google Scholar]
  9. Stanculescu G. Abstracts from the 26th international epilepsy congress. Epilepsia 2005 2005 46 Suppl 6 3 415
    [Google Scholar]
  10. Yaseen G. Sudhakar J. Design, synthesis and antimicrobial activity of 2-mercaptobenzimidazole derivatives. Int. J. Pharm. Bio. Sci. 2010 1 4 281 286
    [Google Scholar]
  11. Juber K.I. Synthesis, characterization and biological evaluation of some 6-methoxy-2-mercaptobenzimidazole derivatives. Iraqi Nat. J. Chem. 2017 17 2 1 6
    [Google Scholar]
  12. Alexander R.P Bentley J.M. Brace G.N. Brookings D.C. Chovatia P.T. Deboves H.J. Johnstone C. Jones E.P. Kroeplien B. Lecomte F.C. Madden J. Fused imidazole and pyrazole derivatives as modulators of TNF activity. United States patent US9868749B2 2018
  13. Nikhila G.R. Batakurki S.R. Yallur B.C. Synthesis, characterization and antioxidant studies of benzo[4, 5]imidazo[2, 1-b]thiazole derivatives. American Institute of Physics Inc AIP Conference Proceedings. 2020
    [Google Scholar]
  14. Rossi R. Ciofalo M. An Updated Review on the Synthesis and Antibacterial Activity of Molecular Hybrids and Conjugates Bearing Imidazole Moiety. Molecules 2020 25 21 5133 10.3390/molecules25215133
    [Google Scholar]
  15. Verma K.B. Kapoor S. Kumar U. Pandey S. Arya P. Indian J. Pharm. Bio. Res. 2017 5 01 01 09
    [Google Scholar]
  16. Gujjarappa R. Kabi A.K. Sravani S. Garg A. Vodnala N. Tyagi U. Overview on biological activities of imidazole derivatives. Nanostructured Biomaterials. Materials Horizons: From Nature to Nanomaterials. Swain B.P. Singapore Springer 2022 135 227 10.1007/978‑981‑16‑8399‑2_6
    [Google Scholar]
  17. Álvarez-Martínez F.J. Barrajón-Catalán E. Herranz-López M. Micol V. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine 2021 90 153626
    [Google Scholar]
  18. Liu G.C. Green S.I. Min L. Clark J.R. Salazar K.C. Terwilliger A.L. Kaplan H.B. Trautner B.W. Ramig R.F. Maresso A.W. Phage-antibiotic synergy is driven by a unique combination of antibacterial mechanism of action and stoichiometry. MBio 2020 11 4 e01462-20 10.1128/mBio.01462‑20 32753497
    [Google Scholar]
  19. Qi D. Zou L. Zhou D. Chen Y. Gao Z. Feng R. Taxonomy and broad-spectrum antifungal activity of streptomycessp. SCA3-4 isolated from rhizosphere soil of opuntia stricta. Front. Microbiol. 2019 10 1390 10.3389/fmicb.2019.01390
    [Google Scholar]
  20. Li T. Li L. Du F. Sun L. Shi J. Long M. Activity and mechanism of action of antifungal peptides from microorganisms: A review. Molecules. MDPI AG 2021 26 11 3438 10.3390/molecules26113438
    [Google Scholar]
  21. Pippi B. Lopes W. Reginatto P. Silva F.É.K. Joaquim A.R. Alves R.J. Silveira G.P. Vainstein M.H. Andrade S.F. Fuentefria A.M. New insights into the mechanism of antifungal action of 8-hydroxyquinolines. Saudi Pharm. J. 2019 27 1 41 48 10.1016/j.jsps.2018.07.017 30662305
    [Google Scholar]
  22. Armengol S.E. Harmanci M. Laffleur F. Current strategies to determine antifungal and antimicrobial activity of natural compounds. Microbiol. Res. 2021 252 126867 10.1016/j.micres.2021.126867
    [Google Scholar]
  23. Nazzaro F. Fratianni F. Coppola R. Feo D.V. Essential oils and antifungal activity. Pharmaceuticals 2017 10 4 86 10.3390/ph10040086
    [Google Scholar]
  24. Renzi D.F. Campos A.d.L. Miranda E.H. Mainardes R.M. Abraham W.R. Grigoletto D.F. Khalil N.M. Nanoparticles as a tool for broadening antifungal activities. Curr. Med. Chem. 2021 28 9 1841 1873 10.2174/0929867327666200330143338 32223729
    [Google Scholar]
  25. Nicola M.A. Albuquerque P. Paes C.H. Fernandes L. Costa F.F. Kioshima S.E. Antifungal drugs: New insights in research & development. Pharmacol. Ther. 2019 195 21 38 10.1016/j.pharmthera.2018.10.008
    [Google Scholar]
  26. Akinwumi B.C. Bordun K.A.M. Anderson H.D. Biological activities of stilbenoids. Int. J. Mol. Sci. 2018 19 3 792 10.3390/ijms19030792
    [Google Scholar]
  27. Kim S. Competitive biological activities of chitosan and its derivatives: Antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Int. J. Polym. Sci. 2018 2018 1 1708172 10.1155/2018/1708172
    [Google Scholar]
  28. Benkhaira N. Koraichi S.I. Fikri-Benbrahim K. In vitro methods to study antioxidant and some biological activities of essential oils: A review. Biointerf. Res. App. Chem. 2022 12 3 3332 3347
    [Google Scholar]
  29. Jucá M.M. Filho C.F.M.S. Almeida d.J.C. Flavonoids: Biological activities and therapeutic potential. Nat. Prod. Res. 2020 34 5 692 705 10.1080/14786419.2018.1493588
    [Google Scholar]
  30. Karak Prithviraj Biological activities of flavonoids: An overview. Inter. J. Pharma. Sci. Res. 2019 10 4 1567 1574
    [Google Scholar]
  31. Alghamdi S.S. Suliman R.S. Almutairi K. Kahtani K. Aljatli D. Imidazole as a promising medicinal scaffold: Current status and future direction. Drug Des. Devel. Ther. 2021 15 3289 3312 10.2147/DDDT.S307113
    [Google Scholar]
  32. Ali E.M.H. Abdel-Maksoud M.S. Hassan R.M. Mersal K.I. Ammar U.M. Se-In C. He-Soo H. Kim H.K. Lee A. Lee K.T. Oh C.H. Design, synthesis and anti-inflammatory activity of imidazol-5-yl pyridine derivatives as p38α/MAPK14 inhibitor. Bioorg. Med. Chem. 2021 31 115969 10.1016/j.bmc.2020.115969 33422910
    [Google Scholar]
  33. Shankar B. Jalapathi P. Valeru A. Kumar K.A. Saikrishna B. Kudle K. Synthesis and biological evaluation of new 2-(6-alkyl-pyrazin-2-yl)-1H-benz[d]imidazoles as potent anti-inflammatory and antioxidant agents. Med. Chem. Res. 2017 26 9 1835 1846 10.1007/s00044‑017‑1897‑7
    [Google Scholar]
  34. Sangeetha K.S. Umamaheswari S. Reddy C.U. Kalkura S.N. Flavonoids: Therapeutic potential of natural pharmacological agents. Int. J. Pharm. Sci. Res. 2016 7 10 3924
    [Google Scholar]
  35. Rocha T.M. Machado N.J. Sousa d.J.A.C. Araujo E.V.O. Guimaraes M.A. Lima D.F. Leite J.R.S.A. Leal L.K.A.M. Imidazole alkaloids inhibit the pro-inflammatory mechanisms of human neutrophil and exhibit anti-inflammatory properties in vivo. J. Pharm. Pharmacol. 2019 71 5 849 859 10.1111/jphp.13068 30652314
    [Google Scholar]
  36. Jha M. Alam O. Naim M.J. Sharma V. Bhatia P. Sheikh A.A. Recent advancement in the discovery and development of anti-epileptic biomolecules: An insight into structure activity relationship and Docking. Europ. J. Pharm. Sci. 2020 15 3289 3312 10.2147/DDDT.S307113
    [Google Scholar]
  37. Al-Otaibi F. An overview of structurally diversified anticonvulsant agents. Acta Pharm. 2019 69 3 321 344 10.2478/acph‑2019‑0023
    [Google Scholar]
  38. Janković SM Dješević M Janković S V Experimental GABA a receptor agonists and allosteric modulators for the treatment of focal epilepsy. J. Exp. Pharmacol. 2021 13 235 244 10.2147/JEP.S242964
    [Google Scholar]
  39. Greenfield L.J. Molecular mechanisms of antiseizure drug activity at GABAA receptors. Seizure 2013 22 8 589 600 10.1016/j.seizure.2013.04.015
    [Google Scholar]
  40. Matias M. Silvestre S. Falcao A. Alves Gilberto Recent highlights on molecular hybrids potentially useful in central nervous system disorders. Mini. Rev. Med. Chem. 2017 17 6 486 517 10.2174/1389557517666161111110121
    [Google Scholar]
  41. Czapiński P. Blaszczyk B. Czuczwar S. Mechanisms of action of antiepileptic drugs. Curr. Top. Med. Chem. 2005 5 1 3 14 10.2174/1568026053386962 15638774
    [Google Scholar]
  42. Londhe O.A. Bhor R.J. Ingle P.S. Shah M.Z.S. Gade D.R. Ghogare R.D. Synthesis, characterization and in vivo biological activity of n-(2-chlorophenyl)-2-(2-methyl-5-nitro-1h-imidazol-1-yl) acetamide and its derivatives. J. Young Pharm. 2024 16 2 252 260 10.5530/jyp.2024.16.33
    [Google Scholar]
  43. Saganuwan S.A. Conversion of benzimidazoles, imidazothiazoles and imidazoles into more potent central nervous system acting drugs. Cent. Nerv. Syst. Agents Med. Chem. 2020 20 1 3 12 10.2174/1871524919666190621160323 31223095
    [Google Scholar]
  44. Fluet-Chouinard A. Synthesis of analogs of a potential drug for treatment of epilepsy. Thesis, University of Ottawa 2019 10.20381/ruor‑23505
    [Google Scholar]
  45. Raghu M.S. Swarup H.A. Prathibha B.S. Kumar K.Y. Kumar C.B.P. Alharti F.A. Design, synthesis and molecular docking studies of 5,6-difluoro-1H-benzo[d]imidazole derivatives as effective binders to GABA receptor with potent anticonvulsant activity. J. Mol. Struct. 2023 1285 135502
    [Google Scholar]
  46. Eliewi A.G. Al-Garawi Z.S. Al-Kazzaz F.F. Atia A.J.K. Multi target-directed imidazole derivatives for neurodegenerative diseases. J. Phy. Conf. Ser. 2021 1853 1 012066 10.1088/1742‑6596/1853/1/012066
    [Google Scholar]
  47. Pal R. Kumar B. Akhtar J.M. Chawla P.A. Bioorganic chemistry volume. 2021 Available from: https://www.sciencedirect.com/science/article/abs/pii/S0045206821006076
    [Google Scholar]
  48. Song M.X. Deng X.Q. Recent developments on triazole nucleus in anticonvulsant compounds: A review. J. Enzyme. Inhib. Med. Chem. 2018 33 1 453 478 10.1080/14756366.2017.1423068
    [Google Scholar]
  49. Kumar P Kapoor B Gupta R Gupta M. Imidazole: Chemistry and biological activities. Think India J. 2019 22 37 359 380
    [Google Scholar]
  50. Nuermberger E.L. Preclinical efficacy testing of new drug candidates. Microbiol. Spectr. 2017 5 3 5.3.24 10.1128/microbiolspec.TBTB2‑0034‑2017 28643624
    [Google Scholar]
  51. Vila J. Hebert A.A. Torrelo A. López Y. Tato M. García-Castillo M. Ozenoxacin: A review of preclinical and clinical efficacy. Exp. Rev. Anti. Infect. Ther. 2019 17 3 159 168 10.1080/14787210.2019.1573671
    [Google Scholar]
  52. Prickaerts J. Heckman P.R.A. Blokland A. Investigational phosphodiesterase inhibitors in phase I and phase II clinical trials for Alzheimer’s disease. Expert Opin. Investig. Drugs. 2017 26 9 1033 1048 10.1080/13543784.2017.1364360
    [Google Scholar]
  53. Nair A. Morsy M.A. Jacob S. Dose translation between laboratory animals and human in preclinical and clinical phases of drug development. Drug Dev. Res. 2018 79 8 373 382 10.1002/ddr.21461
    [Google Scholar]
  54. Kanelidis A.J. Premer C. Lopez J. Balkan W. Hare J.M. Route of delivery modulates the efficacy of mesenchymal stem cell therapy for myocardial infarction: A meta-analysis of preclinical studies and clinical trials. Circ. Res. 2017 120 7 1139 1150 10.1161/CIRCRESAHA.116.309819 28031416
    [Google Scholar]
  55. MacDonald K.P.A. Hill G.R. Blazar B.R. Chronic graft-versus-host disease: Biological insights from preclinical and clinical studies. Blood 2017 129 1 13 21 10.1182/blood‑2016‑06‑686618
    [Google Scholar]
  56. Alachkar A. Azimullah S. Lotfy M. Adeghate E. Ojha S.K. Beiram R. Łażewska D. Kieć-Kononowicz K. Sadek B. Antagonism of histamine H3 receptors alleviates pentylenetetrazole-induced kindling and associated memory deficits by mitigating oxidative stress, central neurotransmitters, and c-fos protein expression in rats. Molecules 2020 25 7 1575 10.3390/molecules25071575 32235506
    [Google Scholar]
  57. Belete T.M. Recent Progress in the Development of New Antiepileptic Drugs with Novel Targets. Ann. Neurosci. 2023 30 4 262 276 10.1177/09727531231185991
    [Google Scholar]
  58. Li G. Design and Synthesis of Achiral and Chiral Imidazodiazepine (IMDZ) GABA(A)R Subtype Selective for the treatment of CNS Disorders as well as Asthma. Thesis, Doctoral dissertation, The University of Wisconsin-Milwaukee 2019
    [Google Scholar]
  59. Jahan R. Design and Synthesis of Novel drugs to treat Asthma by targeting GABAA receptor in lung design and synthesis of Novel α 2 /α 3 subtype GABAAR ligands for drug design. Theses and Dissertations, University of Wisconsin-Milwaukee 2019
    [Google Scholar]
  60. Marvin M.G. Overview of drugs used for epilepsy and seizures. Pharm. Therapeut. 2010 35 7 392 415 20689626
    [Google Scholar]
  61. Zahn NM Development of new -treatments for asthma and neuropathic pain On ɣ- GABAAR ligands. Thesis, Doctoral dissertation, The University of Wisconsin-Milwaukee 2022
    [Google Scholar]
  62. Subbarao B.S. Silverman A. Seizure medications continuing education activity. 2023 Available from: https://www.ncbi.nlm.nih.gov/books/NBK482269/
    [Google Scholar]
  63. Jiménez G.C.J. Chalcone-derived multitarget compounds for the treatment and diagnosis of neurodegenerative diseases. 2023 Available from: https://docta.ucm.es/entities/publication/1d1ea4f4-1a3a-464e-a128-130479957810
    [Google Scholar]
  64. Rizk M.L. Bhavnani S.M. Drusano G. Dane A. Eakin A.E. Guina T. Jang S.H. Tomayko J.F. Wang J. Zhuang L. Lodise T.P. Considerations for dose selection and clinical pharmacokinetics/pharmacodynamics for the development of antibacterial agents. Antimicrob. Agents Chemother. 2019 63 5 e02309-18 10.1128/AAC.02309‑18 30833427
    [Google Scholar]
  65. Alachkar A. Ojha S.K. Sadeq A. Adem A. Frank A. Stark H. Sadek B. Experimental models for the discovery of novel anticonvulsant drugs: Focus on pentylenetetrazole-induced seizures and associated memory deficits. Curr. Pharm. Des. 2020 26 15 1693 1711 10.2174/1381612826666200131105324 32003682
    [Google Scholar]
  66. Allegra A. Innao V. Russo S. Gerace D. Alonci A. Musolino C. Anticancer activity of curcumin and its analogues: Preclinical and clinical studies. Cancer Invest. 2017 35 1 1 22 10.1080/07357907.2016.1247166
    [Google Scholar]
  67. Prasad R.K. Books chemistry and synthesis of medicinal agents: (expanding knowledge of drug chemistry). 2017 https://books.google.co.in/books?id=r6IsDwAAQBAJ&dq=Imidazole+Derivatives+
    [Google Scholar]
  68. Deng D.Z. Husari K.S. Approach to patients with seizures and epilepsy: A guide for primary care physicians. Prim. Care. 2024 51 2 211 232 10.1016/j.pop.2024.02.008
    [Google Scholar]
  69. Kumar S.P. Sherpa D.D. Sahu A.K. Jadav T. Tekade R.K. Sengupta P. Innovation in bioanalytical strategies and in vitro drug-drug interaction study approaches in drug discovery. Bioanalysis 2021 13 6 513 532 10.4155/bio‑2021‑0001
    [Google Scholar]
  70. Jeyanthi S. Narayanan S. Muniyappan C.N. Discovery of N-Substituted Pyrazoline derivatives as novel 3-Benzo[b]thiophene and 2- Mercaptobenzimidazole inhibitor for the treatment of breast cancer. Res. Squ. 2023 1 6 10.21203/rs.3.rs‑3492941/v1
    [Google Scholar]
  71. Chauhan B Kumar R Mazumder A Updates on the synthetic strategies and structure-activity relationship of anticonvulsant benzothiazole and benzimidazole derivatives. Lett. Drug Des. Discov. 2022 20 10 1458 1482 10.2174/03666220606143616
    [Google Scholar]
  72. Devi S.M. Srinivasan S. Muthuvel A. Biocatalysis and Agricultural Biotechnology Selenium nanomaterial is a promising nanotechnology for biomedical and environmental remediation: A detailed review. Biocat. Agricult. Biotech. 2023 51 102766 10.1016/j.bcab.2023.102766
    [Google Scholar]
  73. Hang S. Lu H. Jiang Y. Marine-derived metabolites act as promising antifungal agents. Mar. Drugs 2024 22 4 180 10.3390/md22040180
    [Google Scholar]
  74. Nahar D Mohite P Lonkar A Chidrawar VR Dodiya R Uddin MJ An insight into new strategies and targets to combat antifungal resistance: A comprehensive review. Europ. J. Med. Chem. Rep. 2024 10 100120 10.1016/j.ejmcr.2023.100120
    [Google Scholar]
  75. Al-Kazweeny R. Muhi-Eldeen Z.A. Al-Kaissi E. Al-Tameemi S. Tayeh S.S. Al-Hussenini J. Designs, synthesis, structural elucidation and antimicrobial evaluation of various derivatives of 2-mercaptobenzimidazole as possible antimicrobial agents. Int. J. Med. Res. Health Sci. 2020 2020 12 1 13
    [Google Scholar]
  76. Al-Mahdawi A.S. Al-Obaidi N.S. Ahmad A.A. Jumaa T.A. Abas Z.A. Mahdi H.S. Synthesis, characterization and evaluation biological activity of some 2-mercaptobinzemidazol complexes. Res. Chem. 2025 13 101893 10.1016/j.rechem.2024.101893
    [Google Scholar]
  77. Porto R.S. Costa L.F de L. Porto V.A. Identification of Synthetic 2-Mercaptobenzimidazole Derivatives as Inhibitors of Spike Protein of SARS-CoV-2 by Virtual Screening. Lett. App. Nano. Sci. 2023 12 2 1 9 10.33263/LIANBS122.031
    [Google Scholar]
  78. Devi P. Shahnaz M. Prasad D.N. Recent overview on synthesis of 2-mercaptobenzimidazole derivatives and its activities. J. Drug Deliv. Ther. 2022 12 1 203 207 10.22270/jddt.v12i1.5166
    [Google Scholar]
  79. Alkhafaji A. Profile S. Muhi-Eldeen Z.A. Al-Kaissi E. Al-Muhtaseb N. Synthesis, structural elucidation, and evaluation of antimicrobial activity of 5-ethoxy-2-mercaptobenzimidazole derivatives. Inter. J. Med. Res. Health Sci. 2018 1 6
    [Google Scholar]
  80. Guillaume K. Etienne T. Adeyolé T. Souleymane C Faustin A. Siomenan C Design, synthesis of bisbenzimidazole dithiol derivatives and analogs. Adv. Res. Rev. 2022 13 02 085 090 10.30574/gscarr.2022.13.2.0300
    [Google Scholar]
  81. Zubair A.M. Malik M.N. Younis W. Malik M.A. Jahan S. Ahmed I Yuchi A. Mushtaq M.N. Tahir R. Sarwar M.B.. Roman M. Novel acetamide derivatives of 2-aminobenzimidazole prevent inflammatory arthritis in rats via suppression of pro-inflammatory mediators. Inflammopharmacology. 2022 30 3 1005 9
    [Google Scholar]
  82. Tahlan S. Narasimhan B. Lim S.M. Ramasamy K. Mani V. Shah S.A.A. 2-Mercaptobenzimidazole schiff bases: Design, synthesis, antimicrobial studies and anticancer activity on HCT-116 cell line. Mini Rev. Med. Chem. 2019 19 13 1080 1092 10.2174/1389557518666181009151008 30306865
    [Google Scholar]
  83. Suaad M.H.A.M. Halah A.R.I. Yasser A.H.A.I. Synthesis and identification of some new derivatives of ([Benzyl Thio) benzimidazole -N- (Methylene-5-Yl)] - 4,5- di substituted 1,2,4-Triazole and evaluation of their activity as antimicrobial and anti-inflammatory agents. Iraqi J. Sci. 2021 62 4 1054 1065 10.24996/ijs.2021.62.4.2
    [Google Scholar]
  84. Turkey R.H. kubba M.A.A.B.R. Fadhil A.A. AlShawi N.N. Synthesis and anti-inflammatory activity of some -5-ethoxy-2- mercapto benzimidazole derivatives. Inter. J. Current Pharm. Rev. Res. 2017 8 1 1 9 10.25258/ijcprr.v8i01.9084
    [Google Scholar]
  85. Al-Warhi T. Said M. Hassab E.M. Aljaeed N. Ghabour H. Almahli H. Eldehna W. Abdel-Aziz H. Unexpected synthesis, single-crystal x-ray structure, anticancer activity, and molecular docking studies of certain 2–((imidazole/benzimidazol–2–yl)thio)– 1–arylethanones. Crystals 2020 10 6 446 10.3390/cryst10060446
    [Google Scholar]
  86. Nayagam R.D. Vadivel E. Ravindran B. Nayagam D. Daisy C. Vadivel E. Anticancer activity of derivatives of 2-Mercaptobenzimidazole-Molecular docking approach. Pharma. Innovat. J. 2018 7 10 279 283
    [Google Scholar]
  87. Andrade P. Dias F.A. Figueiró F. Torres F.C. Kawano D.F. Battastini O.A.M. Carvalho I. Tomich de Paula da Silva C.H. Campos J.M. 1,2,3-Triazole tethered 2-mercaptobenzimidazole derivatives: Design, synthesis and molecular assessment toward C6 glioma cell line. Future Med. Chem. 2020 12 8 689 708 10.4155/fmc‑2019‑0227 32193951
    [Google Scholar]
  88. Khalifa M.E. Synthesis and evaluation of new 2‐mercaptomethyl benzimidazole scaffolds as potential antibacterial, antioxidant and cytotoxic agents. ChemistrySelect 2020 5 34 10562 10566 10.1002/slct.202002822
    [Google Scholar]
  89. Ali M. Ali S. Khan M. Rashid U. Ahmad M. Khan A. Al-Harrasi A. Ullah F. Latif A. Synthesis, biological activities, and molecular docking studies of 2-mercaptobenzimidazole based derivatives. Bioorg. Chem. 2018 80 472 479 10.1016/j.bioorg.2018.06.032 29990895
    [Google Scholar]
  90. Abd El-All A.S. Ragab F.A. Magd El-Din A.A. Abdalla M.M. El-Hefnawi M.M. El-Rashedy A.A. Design, synthesis and anticancer evaluation of some selected Schiff bases derived from benzimidazole derivative. Glob. J. Pharmacol. 2013 7 143 152
    [Google Scholar]
  91. Shabbir R. Malik H.M.N. Zaib M. Alamgeer Jahan S. Khan M.T. Amino acid conjugates of 2-mercaptobenzimidazole ameliorates high-fat diet-induced hyperlipidemia in rats via attenuation of HMGCR, APOB, and PCSK9. ACS Omega 2022 7 44 40502 40511 10.1021/acsomega.2c05735 36385864
    [Google Scholar]
  92. Voronin M.V. Kadnikov I.A. Zainullina L.F. Logvinov I.O. Verbovaya E.R. Antipova T.A. Vakhitova Y.V. Seredenin S.B. Neuroprotective properties of quinone reductase 2 inhibitor M-11, a 2-mercaptobenzimidazole derivative. Int. J. Mol. Sci. 2021 22 23 13061 10.3390/ijms222313061 34884863
    [Google Scholar]
  93. Begum F. Rehman N.U. Khan A. Iqbal S. Paracha R.Z. Uddin J. Al-Harrasi A. Lodhi M.A. 2-Mercaptobenzimidazole clubbed hydrazone for Alzheimer’s therapy: In vitro, kinetic, in silico, and in vivo potentials. Front. Pharmacol. 2022 13 946134 10.3389/fphar.2022.946134 36059999
    [Google Scholar]
  94. Ebenezer O Oyetunde-Joshua F Omotoso OD Shapi M Benzimidazole and its derivatives: Recent advances (2020–2022). Res. Chem. 2023 5 100925 10.1016/j.rechem.2023.100925
    [Google Scholar]
  95. Tweedie D. Sambamurti K. Greig N.H. TNF-α inhibition as a treatment strategy for neurodegenerative disorders: New drug candidates and targets. Current Alzheimer Research. 2007 4 4 378 85 10.2174/156720507781788873
    [Google Scholar]
  96. Imran M. Shah F.A. Nadeem H. Zeb A. Faheem M. Naz S. Bukhari A. Ali T. Li S. Synthesis and biological evaluation of benzimidazole derivatives as potential neuroprotective agents in an ethanol-induced rodent model. ACS Chem. Neurosci. 2021 12 3 489 505 10.1021/acschemneuro.0c00659 33430586
    [Google Scholar]
  97. Alnaaim SA Al-kuraishy HM Al-Gareeb AI Ali NH Alexiou A Papadakis M New insights on the potential anti-epileptic effect of metformin: Mechanistic pathway. J. Cell. Mol. Med. 2023 27 24 3953 3965 10.1111/jcmm.17965
    [Google Scholar]
  98. Rahim F Azizimalamiri R Sayyah M Malayeri A Experimental therapeutic strategies in epilepsies using anti-seizure medications. J. Exp. Pharmacol. 2021 13 265 290 10.2147/JEP.S267029
    [Google Scholar]
  99. Kuzmanova R. Stefanova I. Basic mechanisms of action of the antiepileptic drugs. Acta Med. Bulg. 2017 44 2 52 58 10.1515/amb‑2017‑0020
    [Google Scholar]
  100. Rizo J. Mechanism of neurotransmitter release coming into focus. Protein. Sci. 2018 27 8 1364 1391 10.1002/pro.3445
    [Google Scholar]
  101. Jarosz M. Olbert M. Wyszogrodzka G. Młyniec K. Librowski T. Antioxidant and anti-inflammatory effects of zinc. Inflammopharmacol 2017 25 11 24 10.1007/s10787‑017‑0309‑4
    [Google Scholar]
  102. Farhadi F. Khameneh B. Iranshahi M. Iranshahy M. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phytother. Res. 2019 33 1 13 40 10.1002/ptr.6208
    [Google Scholar]
  103. Chen G Xu B Lu M Chen NS Exploring blockchain technology and its potential applications for education. Smart Learn. Enviro. 2018 5 1 1 10 10.1186/s40561‑017‑0050‑x
    [Google Scholar]
  104. Brishty S.R. Hossain M.J. Khandaker M.U. Faruque M.R.I. Osman H. Rahman S.M.A. A comprehensive account on recent progress in pharmacological activities of benzimidazole derivatives. Front. Pharm. 2021 12 762807
    [Google Scholar]
  105. Shu L.R. Yi M.T. Ling Z. Chen H.Z. Comprehensive insights into medicinal research on imidazole-based supramolecular complexes. Pharmaceutics 2023 15 5 1348 10.3390/pharmaceutics15051348
    [Google Scholar]
/content/journals/biot/10.2174/0118722083345879250403115017
Loading
/content/journals/biot/10.2174/0118722083345879250403115017
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test