Skip to content
2000
image of Extraction and Characterization of Iturin A as a Key Factor in the Antagonism of Bacillus amyloliquefaciens M13RW01 Toward Pathogenic Fungi

Abstract

Background

contains several fungal inhibitory compounds, such as peptides and lipopeptides, representing the remarkable potential for biotechnological, agricultural, and biopharmaceutical applications.

Objectives

This research aimed to extract and characterize iturin A as the key antagonism factor of M13RW01 toward pathogenic fungi, using HPLC and mass spectrometry (MS) analysis.

Methods

For this study, strain M13-RW01 isolated from Isfahan soil was used. The lipopeptide compounds of were examined for antagonistic performance against PTCC 5010, PTCC 5292, CBS 62087, and PTCC 5037 by well diffusion and percentage of growth inhibition. The crude extract was run on Waters μBondpak C18 column in the HPLC system to separate the antibiotics. Major antibiotics were analyzed based on MS.

Results

HPLC analysis demonstrated that the lipopeptide compound is similar to iturin A. Moreover, MS analysis of these compounds and purified iturin A revealed a high similarity between them, with the same molecular ion peaks identified. Results showed that the produced lipopeptides by were of iturin A genum. The molecular ion peaks of the M13RW01 methanolic fraction were at 1027.10, 1043.05, 1058, 1066, 1072, 1088.95. These compounds restrained fungal germination and growth. Inhibition growth percentages were 79.28, 76.13, 84.47and 59.15% for , s, and , respectively.

Conclusion

According to the present study, M13RW01 lipopeptides are able to inhibit the growth of some fungi. M13-RW01 isolated from Isfahan soil plays an essential part in antagonizing pathogenic fungi. Thus, this antifungal lipopeptide is supposed to be a biological protection agent for agricultural products and patents.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083352297250326041149
2025-04-16
2025-09-27
Loading full text...

Full text loading...

References

  1. Gakuubi M.M. Wagacha J.M. Dossaji S.F. Wanzala W. Chemical composition and antibacterial activity of essential oils of Tagetes minuta (Asteraceae) against selected plant pathogenic bacteria. Int. J. Microbiol. 2016 2016 1 7352509 27721831
    [Google Scholar]
  2. Andersen B. Frisvad J.C. Søndergaard I. Rasmussen I.S. Larsen L.S. Associations between fungal species and water-damaged building materials. Appl. Environ. Microbiol. 2011 77 12 4180 4188 10.1128/AEM.02513‑10 21531835
    [Google Scholar]
  3. Martinelli F. Scalenghe R. Davino S. Panno S. Scuderi G. Ruisi P. Villa P. Stroppiana D. Boschetti M. Goulart L.R. Davis C.E. Dandekar A.M. Advanced methods of plant disease detection. A review. Agron. Sustain. Dev. 2015 35 1 1 25 10.1007/s13593‑014‑0246‑1
    [Google Scholar]
  4. Zhang S.M. Wang Y.X. Meng L.Q. Isolation and characterization of antifungal lipopeptides produced by endophytic Bacillus amyloliquefaciens TF28. Afr. J. Microbiol. Res. 2012 6 8 1747 1755
    [Google Scholar]
  5. Chitarra G.S. Breeuwer P. Nout M.J.R. van Aelst A.C. Rombouts F.M. Abee T. An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. J. Appl. Microbiol. 2003 94 2 159 166 10.1046/j.1365‑2672.2003.01819.x 12534806
    [Google Scholar]
  6. Priest F.G. Goodfellow M. Bacillus amyloliquefaciens sp. nov.norn. rev. Int. J. Syst. Evol. Microbiol. 1987 37 1 69 7
    [Google Scholar]
  7. Gong AD Li HP Yuan QS Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS One. 2015 10 2 e0116871
    [Google Scholar]
  8. Salimi A. Motaharitabar E. Goudarzi M. Rezaie A. Kalantari H. Toxicity evaluation of microemulsion (nano size) of sour cherry kernel extract for the oral bioavailability enhancement. Jundishapur J. Nat. Pharm. Prod. 2014 9 1 16 23 10.17795/jjnpp‑14370 24644434
    [Google Scholar]
  9. Zhang X. Li B. Wang Y. Guo Q. Lu X. Li S. Ma P. Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Appl. Microbiol. Biotechnol. 2013 97 21 9525 9534 10.1007/s00253‑013‑5198‑x 24013222
    [Google Scholar]
  10. Caldeira A.T. Arteiro J.M.S. Coelho A.V. Roseiro J.C. Combined use of LC-ESI-MS and antifungal tests for rapid identification of bioactive lipopeptides produced by Bacillus amyloliquefaciens CCM1 1051. Process Biochem. 2011 9 1 9
    [Google Scholar]
  11. Romero D. de Vicente A. Rakotoaly R.H. Dufour S.E. Veening J.W. Arrebola E. Cazorla F.M. Kuipers O.P. Paquot M. Pérez-García A. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant Microbe Interact. 2007 20 4 430 440 10.1094/MPMI‑20‑4‑0430 17427813
    [Google Scholar]
  12. Yuan J. Raza W. Shen Q. Huang Q. Antifungal Activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl. Environ. Microbiol. 2012 78 16 5942 5944 10.1128/AEM.01357‑12 22685147
    [Google Scholar]
  13. Naghdifar S.H. Madani M. Ahadi A.M. Isolation and identification of inhibitory bacteria against pathogenic fungi from Isfahan using molecular method. Shahrekord Univ. Med. Sci. J. 2016 18 5 83 93 [in Persian].
    [Google Scholar]
  14. Chen H. Wang L. Su C.X. Gong G.H. Wang P. Yu Z.L. Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Lett. Appl. Microbiol. 2008 47 3 180 186 10.1111/j.1472‑765X.2008.02412.x 19552782
    [Google Scholar]
  15. Besson F. Peypoux F. Michel G. Delcambe L. Characterization of iturin a in antibiotics from various strains of Bacillus subtilis. J. Antibiot. (Tokyo) 1976 29 10 1043 1049 10.7164/antibiotics.29.1043 825665
    [Google Scholar]
  16. Cui T.B. Chai H.Y. Jiang L.X. Isolation and partial characterization of an antifungal protein produced by Bacillus licheniformis BS-3. Molecules 2012 17 6 7336 7347 10.3390/molecules17067336 22699567
    [Google Scholar]
  17. Indraningrat A. Smidt H. Sipkema D. Bioprospecting sponge-associated microbes for antimicrobial compounds. Mar. Drugs 2016 14 5 87 10.3390/md14050087 27144573
    [Google Scholar]
  18. Yoshida S. Hiradate S. Tsukamoto T. Hatakeda K. Shirata A. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 2001 91 2 181 187 10.1094/PHYTO.2001.91.2.181 18944392
    [Google Scholar]
  19. Malfanova N. Franzil L. Lugtenberg B. Chebotar V. Ongena M. Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Arch. Microbiol. 2012 194 11 893 899 10.1007/s00203‑012‑0823‑0 22648052
    [Google Scholar]
  20. Harwood C.R. Mouillon J.M. Pohl S. Arnau J. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol. Rev. 2018 42 6 721 738 10.1093/femsre/fuy028 30053041
    [Google Scholar]
  21. Lee T. Park D. Kim K. Lim S.M. Yu N.H. Kim S. Kim H.Y. Jung K.S. Jang J.Y. Park J.C. Ham H. Lee S. Hong S.K. Kim J.C. Characterization of Bacillus amyloliquefaciens DA12 showing potent antifungal activity against mycotoxigenic Fusarium species. Plant Pathol. J. 2017 33 5 499 507 10.5423/PPJ.FT.06.2017.0126 29018313
    [Google Scholar]
  22. Dimkić I. Stanković S. Nišavić M. Petković M. Ristivojević P. Fira D. Berić T. The profile and antimicrobial activity of Bacillus lipopeptide extracts of five potential biocontrol strains. Front. Microbiol. 2017 8 925 10.3389/fmicb.2017.00925 28588570
    [Google Scholar]
  23. Kim K. Lee Y. Ha A. Kim J.I. Park A.R. Yu N.H. Son H. Choi G.J. Park H.W. Lee C.W. Lee T. Lee Y.W. Kim J.C. Chemosensitization of Fusarium graminearum to chemical fungicides using cyclic lipopeptides produced by Bacillus amyloliquefaciens strain JCK-12. Front. Plant Sci. 2017 8 2010 10.3389/fpls.2017.02010 29230232
    [Google Scholar]
  24. Perez K.J. Viana J.S. Lopes F.C. Pereira J.Q. dos Santos D.M. Oliveira J.S. Velho R.V. Crispim S.M. Nicoli J.R. Brandelli A. Nardi R.M.D. Bacillus spp. isolated from puba as a source of biosurfactants and antimicrobial lipopeptides. Front. Microbiol. 2017 8 61 10.3389/fmicb.2017.00061 28197131
    [Google Scholar]
  25. Athukorala S.N.P. Fernando W.G.D. Rashid K.Y. Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry. Can. J. Microbiol. 2009 55 9 1021 1032 10.1139/W09‑067 19898544
    [Google Scholar]
  26. Kim P.I. Ryu J. Kim Y.H. Chi Y.T. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J. Microbiol. Biotechnol. 2010 20 1 138 145 10.4014/jmb.0905.05007 20134245
    [Google Scholar]
  27. Yuan J. Zhang F. Wu Y. Zhang J. Raza W. Shen Q. Huang Q. Recovery of several cell pellet-associated antibiotics produced by Bacillus amyloliquefaciens NJN-6. Lett. Appl. Microbiol. 2014 59 2 169 176 10.1111/lam.12260 24702101
    [Google Scholar]
  28. Munimbazi C. Bullerman L.B. Isolation and partial characterization of antifungal metabolites of Bacillus pumilus. J. Appl. Microbiol. 1998 84 6 959 968 10.1046/j.1365‑2672.1998.00431.x 9717280
    [Google Scholar]
  29. Singh A.K. Rautela R. Cameotra S.S. Substrate dependent in vitro antifungal activity of Bacillus sp strain AR2. Microb. Cell Fact. 2014 13 1 67 10.1186/1475‑2859‑13‑67 24885467
    [Google Scholar]
  30. Maget-Dana R. Peypoux F. Iturins, a special class of pore-forming lipopeptides: Biological and physicochemical properties. Toxicology 1994 87 1-3 151 174 10.1016/0300‑483X(94)90159‑7 8160184
    [Google Scholar]
  31. Winkelmann G. Allgaier H. Lupp R. Jung G. Iturin AL: A new long chain iturin a possessing an unusual high content of C16-.BETA.-amino acids. J. Antibiot. (Tokyo) 1983 36 11 1451 1457 10.7164/antibiotics.36.1451 6418701
    [Google Scholar]
  32. Pisheh S.M. Madani M. Shakib P. Detection of Iturin A from Bacillus atrophaeus by HPLC and mass spectrometry analysis and evaluation of its antifungal activity. Curr. Drug Ther. 2024 19 6 742 747 10.2174/1574885517666220601104811
    [Google Scholar]
  33. Wang S. Xu M. Han Y. Zhou Z. Exploring mechanisms of antifungal lipopeptide Iturin A from Bacillus against Aspergillus niger. J. Fungi 2024 10 3 172 10.3390/jof10030172 38535181
    [Google Scholar]
  34. Wang J. Qiu J. Yang X. Yang J. Zhao S. Zhou Q. Chen L. Identification of lipopeptide Iturin A produced by Bacillus amyloliquefaciens NCPSJ7 and its antifungal activities against Fusarium oxysporum f. sp. niveum. Foods 2022 11 19 2996 10.3390/foods11192996 36230072
    [Google Scholar]
  35. Jiang C. Li Z. Shi Y. Guo D. Pang B. Chen X. Shao D. Liu Y. Shi J. Bacillus subtilis inhibits Aspergillus carbonarius by producing iturin A, which disturbs the transport, energy metabolism, and osmotic pressure of fungal cells as revealed by transcriptomics analysis. Int. J. Food Microbiol. 2020 330 108783 10.1016/j.ijfoodmicro.2020.108783 32659523
    [Google Scholar]
/content/journals/biot/10.2174/0118722083352297250326041149
Loading
/content/journals/biot/10.2174/0118722083352297250326041149
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test