Skip to content
2000
Volume 23, Issue 4
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Background

Plants contain a large number of molecules with various potentials, including antifungal impact. () is a yeast that causes Cryptococcosis infection in both immunocompromised and normal individuals worldwide.

Objective

This study aimed to investigate the inhibitory impact of plant extracts on and perform purification of the most bioactive product for further chemical identification.

Methods

The anti- potential of fourteen plants extracted by using various solvents, including water, methanol, and benzene, was tested. The most promising compound with anti- was purified. The minimal inhibitory level of the purified sub-fraction as compared to fluconazole as a standard drug was determined. The chemical identification of the purified product was carried out using FTIR, 1HNMR, elemental analysis, and Mass spectroscopy.

Results

() methanolic extract has the highest antifungal impact on and showed an inhibition zone of 3.2±0.2 cm. The methanolic extract was separated into 14 fractions, where the fifth fraction showed the highest activity. It was further separated into four sub-fractions that were tested to characterize the most promising molecule with anti- impact, which was further chemically identified as 3-Ethyl-6,7-dihydroxy-2-phenyl-chromen-4-one. The purified product led to significant alterations in the ultra-structure of relative to the standard drug.

Conclusion

contains 3-ethyl, 6,7-dihydroxy-2-chromen-4-one as a promising molecule with anti- potential.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525326883240819041849
2024-09-19
2025-08-17
Loading full text...

Full text loading...

References

  1. SenT. SamantaS.K. Medicinal plants, human health and biodiversity: a broad review.Adv. Biochem. Eng. Biotechnol.20141475911010.1007/10_2014_273 25001990
    [Google Scholar]
  2. HouB.Y. ZhangL. DuG.H. Natural Small Molecule Drugs from Plants. Springer.SingaporeHouttuynin201810.1007/978‑981‑10‑8022‑7_69
    [Google Scholar]
  3. DittrichP.S. ManzA. Lab-on-a-chip: microfluidics in drug discovery.Nat. Rev. Drug Discov.20065321021810.1038/nrd1985 16518374
    [Google Scholar]
  4. AltemimiA. LakhssassiN. BaharloueiA. WatsonD. LightfootD. Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts.Plants2017644210.3390/plants6040042 28937585
    [Google Scholar]
  5. SaleemS. MuhammadG. HussainM.A. AltafM. BukhariS.N.A. Withania somnifera L.: Insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective.Iran. J. Basic Med. Sci.202023121501152610.22038/ijbms.2020.44254.10378 33489024
    [Google Scholar]
  6. ShadifarH. BahreiniM. KhamenehB. EmamiS.A. FatemiN. SharifmoghadamM.R. Antibacterial and synergistic effects of aqueous and methanol extracts of Artemisia annua against multidrug-resistant isolates of acinetobacter.Antiinfect. Agents2021191283510.2174/2211352518999200525002520
    [Google Scholar]
  7. SorokinaM. SteinbeckC. Review on natural products databases: where to find data in 2020.J. Cheminform.20201212010.1186/s13321‑020‑00424‑9 33431011
    [Google Scholar]
  8. AhmadN. BasriA.M. TahaH. A review on the pharmacological activities and phytochemicals of Alpinia officinarum (Galangal) extracts derived from bioassay-guided fractionation and isolation.Pharmacogn. Rev.20171121435610.4103/phrev.phrev_55_16 28503054
    [Google Scholar]
  9. ZhangJ.Q. WangY. LiH.L. WenQ. YinH. ZengN.K. LaiW-Y. WeiN. ChengS-Q. KangS-L. ChenF. LiY-B. Simultaneous quantification of seventeen bioactive components in rhizome and aerial parts of Alpinia officinarum Hance using LC-MS/MS.Anal. Methods20157124919492610.1039/C5AY00647C
    [Google Scholar]
  10. LiuD. LiuY.W. GuanF.Q. LiangJ.Y. New cytotoxic diarylheptanoids from the rhizomes of Alpinia officinarum Hance.Fitoterapia201496768010.1016/j.fitote.2014.04.008 24752140
    [Google Scholar]
  11. WeiN. ZhouZ. WeiQ. WangY. JiangJ. ZhangJ. WuL. DaiS. LiY. A novel diarylheptanoid-bearing sesquiterpene moiety from the rhizomes of Alpinia officinarum.Nat. Prod. Res.201630202344234910.1080/14786419.2016.1185716 27222912
    [Google Scholar]
  12. AbubakarA. HaqueM. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes.J. Pharm. Bioallied Sci.202012111010.4103/jpbs.JPBS_175_19 32801594
    [Google Scholar]
  13. HonmoreV.S. KandhareA.D. KadamP.P. KhedkarV.M. SarkarD. BodhankarS.L. ZanwarA.A. RojatkarS.R. NatuA.D. Isolates of Alpinia officinarum Hance as COX-2 inhibitors: Evidence from anti-inflammatory, antioxidant and molecular docking studies.Int. Immunopharmacol.20163381710.1016/j.intimp.2016.01.024 26849772
    [Google Scholar]
  14. SasidharanS. ChenY. SaravananD. SundramK.M. Yoga LathaL. Extraction, isolation and characterization of bioactive compounds from plants’ extracts.Afr. J. Tradit. Complement. Altern. Med.201181110 22238476
    [Google Scholar]
  15. JonesW.P. KinghornA.D. Extraction of plant secondary metabolites.Methods Mol. Biol.201286434136610.1007/978‑1‑61779‑624‑1_13 22367903
    [Google Scholar]
  16. YingL. WangD. DuG. Analysis of bioactive components in the fruit, roots, and leaves of Alpinia oxyphylla by UPLC-MS/MS.Evid. Based Complement. Alternat. Med.2021202111110.1155/2021/5592518 34335828
    [Google Scholar]
  17. A AlasmaryF. AssireyE.A. El-MeligyR.M. AwaadA.S. El-SawafL.A. AllahM.M. AlqasoumiS.I. Analysis of Alpina officinarum Hance, chemically and biologically.Saudi Pharm. J.20192781107111210.1016/j.jsps.2019.09.007 31885470
    [Google Scholar]
  18. KralovicS.M. RhodesJ.C. Utility of routine testing of bronchoalveolar lavage fluid for cryptococcal antigen.J. Clin. Microbiol.199836103088308910.1128/JCM.36.10.3088‑3089.1998 9738078
    [Google Scholar]
  19. SousaN.S.O. AlmeidaJ.D.R. FrickmannH. LacerdaM.V.G. SouzaJ.V.B. Searching for new antifungals for the treatment of cryptococcosis.Rev. Soc. Bras. Med. Trop.20235610.1590/0037‑8682‑0121‑2023 37493736
    [Google Scholar]
  20. MoreiraI.M.B. CortezA.C.A. de SouzaÉ.S. PinheiroS.B. de Souza OliveiraJ.G. SadahiroA. CruzK.S. MatsuuraA.B.J. MelhemM.S.C. FrickmannH. de SouzaJ.V.B. Investigation of fluconazole heteroresistance in clinical and environmental isolates of Cryptococcus neoformans complex and Cryptococcus gattii complex in the state of Amazonas, Brazil.Med. Mycol.2022603510.1093/mmy/myac005 35084497
    [Google Scholar]
  21. ZakerM. MosallanejH. Antifungal activity of some plant extracts on Alternaria alternata, the causal agent of alternaria leaf spot of potato.Pak. J. Biol. Sci.201013211023102910.3923/pjbs.2010.1023.1029 21313872
    [Google Scholar]
  22. SharmaR.A. ChandrawatP. SharmaS. SharmaD. SharmaB. SinghD. Ethnomedicinal, pharmacological properties and chemistry of some medicinal plants of Boraginaceae in India.J. Med. Plants Res.2010313441444
    [Google Scholar]
  23. ShittulL.A.J. BankoleM.A. AhmedT. BankoleM.N. ShittulR.K. SaaluC.L. AshiruS. Antibacterial and antifungal activities of essential oils of crude extracts of Sesame Radiatum against some common Pathogenic Micro-Organisms Biol.Sci.20071310231029
    [Google Scholar]
  24. Abd RashedA. RathiD.N.G. Ahmad NasirN.A.H. Abd RahmanA.Z. Antifungal properties of essential oils and their compounds for application in skin fungal infections: conventional and nonconventional approaches.Molecules2021264109310.3390/molecules26041093 33669627
    [Google Scholar]
  25. PereiraC. BarrosL. FerreiraI.C.F.R. Extraction, identification, fractionation and isolation of phenolic compounds in plants with hepatoprotective effects.J. Sci. Food Agric.20169641068108410.1002/jsfa.7446 26333346
    [Google Scholar]
  26. YosriM. AminB.H. AbedN.N. ElithyA.S. KareemS.M. SidkeyN.M. Identification of novel bioactive compound derived from Rheum officinalis against Campylobacter jejuni NCTC11168.ScientificWorldJournal202020201910.1155/2020/3591276 32665768
    [Google Scholar]
  27. AminB.H. AhmedH.Y. El GazzarE.M. BadawyM.M.M. Enhancement the mycosynthesis of selenium nanoparticles by using gamma radiation.Dose Response202119410.1177/15593258211059323 34987335
    [Google Scholar]
  28. BasmaH. YosriM. NerminA. SayedA. AmalE. NagwaS. Characterization of antimicrobial compound produced from Hericium erinaceus combating campylobacter jejuni.Anti-Infective Agents202010.2174/2211352518999200831150742
    [Google Scholar]
  29. ElghaffarR.Y.A. AminB.H. HashemA.H. SehimA.E. Promising Endophytic Alternaria alternata from leaves of Ziziphus spina-christi: phytochemical analyses, antimicrobial and antioxidant activities.Appl. Biochem. Biotechnol.202219493984400110.1007/s12010‑022‑03959‑9 35579741
    [Google Scholar]
  30. AminB.H. AyyatN.M. Mohamed El-SharkawyR. HafezA.M. Investigation of Antifungal Action of Fractions C17H31NO15 Isolated from Artemisia herba-alba extract versus Isolated Aspergillus niger from Zee maize.Recent Advances in Anti-Infective Drug Discovery202419215917210.2174/2772434418666230627141639 37366361
    [Google Scholar]
  31. WerknehS. OrefuwaE. DenningD.W. Current situation of fungal diseases in Eritrea.Mycoses202265880681410.1111/myc.13474 35633079
    [Google Scholar]
  32. MapengoR.E. MaphangaT.G. GraysonW. GovenderN.P. Endemic mycoses in South Africa, 2010–2020: A decade-long description of laboratory-diagnosed cases and prospects for the future.PLoS Negl. Trop. Dis.20221691073710.1371/journal.pntd.0010737 36170322
    [Google Scholar]
  33. SuH. HanL. HuangX. Potential targets for the development of new antifungal drugs.J. Antibiot. (Tokyo)2018711297899110.1038/s41429‑018‑0100‑9 30242283
    [Google Scholar]
  34. MinaS. YaakoubH. AnnweilerC. DubéeV. PaponN. COVID-19 and fungal infections: a double debacle.Microbes Infect.202224810503910.1016/j.micinf.2022.105039 36030024
    [Google Scholar]
  35. PengM. ZhangC. DuanY.Y. LiuH.B. PengX.Y. WeiQ. ChenQ.Y. SangH. KongQ.T. Antifungal activity of the repurposed drug disulfiram against Cryptococcus neoformans.Front. Pharmacol.202414126864910.3389/fphar.2023.1268649 38273827
    [Google Scholar]
  36. KongQ. CaoZ. LvN. ZhangH. LiuY. HuL. LiJ. Minocycline and fluconazole have a synergistic effect against Cryptococcus neoformans both in vitro and in vivo.Front. Microbiol.20201183610.3389/fmicb.2020.00836 32431685
    [Google Scholar]
  37. Dávila-RangelI.E. Charles-RodríguezA.V. López-RomeroJ.C. Flores-LópezM.L. Plants from arid and semi-arid zones of mexico used to treat respiratory diseases: A Review.Plants202413679210.3390/plants13060792 38592789
    [Google Scholar]
  38. AbubakarI.B. MalamiI. YahayaY. SuleS.M. A review on the ethnomedicinal uses, phytochemistry and pharmacology of Alpinia officinarum Hance.J. Ethnopharmacol.2018224456210.1016/j.jep.2018.05.027 29803568
    [Google Scholar]
  39. FuJ. WangY. SunM. XuY. ChenL. Antibacterial activity and components of the methanol-phase extract from rhizomes of pharmacophagous plant Alpinia officinarum Hance.Molecules20222713430810.3390/molecules27134308 35807553
    [Google Scholar]
  40. LeeK.H. RheeK.H. Anti-microbial effects of rhizome extracts of Alpinia officinarum Hance against VRE (vancomycin-resistant enterococci) and other pathogenic microorganisms.Nat. Prod. Sci.20111716016410.1080/14756360701622099
    [Google Scholar]
  41. LodewykM.W. SiebertM.R. TantilloD.J. Computational prediction of 1H and 13C chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry.Chem. Rev.201211231839186210.1021/cr200106v 22091891
    [Google Scholar]
  42. EmwasA.H. RoyR. McKayR.T. TenoriL. SaccentiE. GowdaG.A.N. RafteryD. AlahmariF. JaremkoL. JaremkoM. WishartD.S. NMR spectroscopy for metabolomics research.Metabolites20199712310.3390/metabo9070123 31252628
    [Google Scholar]
  43. ShiL. ZhangN. Applications of solution NMR in drug discovery.Molecules202126357610.3390/molecules26030576 33499337
    [Google Scholar]
  44. WeiW. LiaoY. WangY. WangS. DuW. LuH. KongB. YangH. ZhangZ. Learning-based method for compound identification in NMR spectra of mixtures.Molecules20222712365310.3390/molecules27123653 35744782
    [Google Scholar]
  45. Kunze-SzikszayN. EulerM. PerlT. Identification of volatile compounds from bacteria by spectrometric methods in medicine diagnostic and other areas: current state and perspectives.Appl. Microbiol. Biotechnol.202110516-176245625510.1007/s00253‑021‑11469‑7 34415392
    [Google Scholar]
  46. Al-OdainiN. LiX. LiB. ChenX. HuangC. LvC. PanK. ZhengD. ZhengY. LiaoW. CaoC. In vitro antifungal susceptibility profiles of Cryptococcus neoformans var. grubii and Cryptococcus gattii clinical isolates in guangxi, southern China.Front. Microbiol.20211270828010.3389/fmicb.2021.708280 34447360
    [Google Scholar]
  47. KassiF.K. DrakulovskiP. BelletV. RogerF. ChabrolA. KrastevaD. DoumbiaA. LandmanR. KakouA. ReynesJ. DelaporteE. MenanH.E.I. BertoutS. Cryptococcus genetic diversity and mixed infections in Ivorian HIV patients: A follow up study.PLoS Negl. Trop. Dis.20191311781210.1371/journal.pntd.0007812 31738768
    [Google Scholar]
  48. DrakulovskiP. KrastevaD. BelletV. RandazzoS. RogerF. PottierC. BertoutS. Exposure of cryptococcus neoformans to seven commonly used agricultural azole fungicides induces resistance to fluconazole as well as cross-resistance to voriconazole, posaconazole, itraconazole and isavuconazole.Pathogens202312566210.3390/pathogens12050662 37242332
    [Google Scholar]
  49. TuJ. ZhuT. WangQ. YangW. HuangY. XuD. LiuN. ShengC. Discovery of a new chemical scaffold for the treatment of superbug Candida auris infections.Emerg. Microbes Infect.2023121220868710.1080/22221751.2023.2208687 37102336
    [Google Scholar]
  50. YangX. BaiS. WuJ. FanY. ZouY. XiaZ. AoJ. ChenT. ZhangM. YangR. Antifungal activity and potential action mechanism of allicin against Trichosporon asahii.Microbiol. Spectr.202311390792310.1128/spectrum.00907‑23 37199655
    [Google Scholar]
/content/journals/aia/10.2174/0122113525326883240819041849
Loading
/content/journals/aia/10.2174/0122113525326883240819041849
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test