Skip to content
2000
Volume 23, Issue 4
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Background

Sulphamethoxazole-based Schiff-base compounds display potential antibacterial and antifungal activity. Sulphamethoxazole is considered to be a versatile pharmacophore that can be utilized for designing and developing numerous bioactive lead compounds. In this work, some new sulphamethoxazole-based Schiff base compounds were synthesized, which are expected to possess antimicrobial activity, making them potentially useful for treating microbial infections.

Objective

Concerning issues of drug resistance in presently available drugs, this study aimed to synthesize new sulphamethoxazole-based Schiff bases and evaluate their antimicrobial activity.

Methods

New sulphamethoxazole-based Schiff bases were synthesized by condensing sulphamethoxazole with various acetophenones in methanol in the presence of glacial acetic acid. The synthesized compounds were characterized using various techniques, such as TLC, melting point, IR, NMR, and mass analysis. The computational properties of the compounds were also assessed using online software programs, and the similarity of the target compounds was also calculated as compared to sulphamethoxazole and clotrimazole. The antimicrobial activity of the target compounds was tested against (Gram-positive), (Gram-negative), and

Results

The target compounds (3a-f) were successfully synthesized and characterized by spectroscopic and analytical methods. The results of computational properties, similarity, and antimicrobial activity against and of new sulphamethoxazole-based Schiff bases showed significant antimicrobial potential.

Conclusion

The synthesized new Schiff bases, particularly compound 3c, exhibited promising antimicrobial activity and good physicochemical properties as compared to standard drugs, indicating their potential for further development as antimicrobial agents.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525321240240805064910
2024-09-12
2025-08-17
Loading full text...

Full text loading...

References

  1. SchiffH. Mittheilungen aus dem Universitätslaboratorium in Pisa: eine neue Reihe organischer Basen.Justus Liebigs Ann. Chem.1864131111811910.1002/jlac.18641310113
    [Google Scholar]
  2. TidwellT.T. Hugo (Ugo) Schiff, Schiff bases, and a century of β-lactam synthesis.Angew. Chem. Int. Ed.20084761016102010.1002/anie.200702965 18022986
    [Google Scholar]
  3. EdebiN.V. SamuelJ.B. OyeintonbaraM. UchechiP.C. ChibuzorE.E. CyrilO.U. Synthesis and Anti-Microbial Evaluation of Some Schiff Base Derivatives.Pharmacy and Drug Development20243218
    [Google Scholar]
  4. ShoroukS.M. AshrafS.H. NesrinM.M. TaghridS.H. HamdiM.H. FatmaM.S. Overview on Synthesis, Reactions, Applications, and Biological Activities of Schiff Bases.Egypt. J. Chem.2021641165416554
    [Google Scholar]
  5. KajalA. BalaS. KambojS. SharmaN. Schiff bases: a versatile pharmacophore.J. Catal.20132013114
    [Google Scholar]
  6. RaczukE. DmochowskaB. Samaszko-FiertekJ. MadajJ. Different schiff bases-structure, importance and classification.Molecules202227378710.3390/molecules27030787 35164049
    [Google Scholar]
  7. PradeepS.D. GopalakrishnanA.K. ManoharanD.K. SoumyaR.S. GopalanR.K. MohananP.V. Isatin derived novel Schiff bases: An efficient pharmacophore for versatile biological applications.J. Mol. Struct.2023127113412110.1016/j.molstruc.2022.134121
    [Google Scholar]
  8. AbdellatifK.R.A. ElsaadyM.T. Abdel-AzizS.A. Abu SabahA.H.A. AhmedA. Synthesis, anti-inflammatory and molecular docking study of Schiff bases containing methanesulphonyl pharmacophore.Lett. Drug Des. Discov.201714893093710.2174/1570180814666161214163759
    [Google Scholar]
  9. SahooB. DindaS. KumarB.V.V. PandaJ. BrahmkshatriyaP. Design, green synthesis, and anti-inflammatory activity of Schiff base of 1,3,4-oxadiazole analogues.Lett. Drug Des. Discov.2013111828910.2174/15701808113109990041
    [Google Scholar]
  10. HamidS.J. SalihT. Design, synthesis, and anti-inflammatory activity of some coumarin Schiff base derivatives: in silico and in vitro study.Drug Des. Devel. Ther.2022162275228810.2147/DDDT.S364746 35860526
    [Google Scholar]
  11. AfridiH.H. ShoaibM. Al-JoufiF.A. ShahS.W.A. HussainH. UllahA. ZahoorM. MughalE.U. Synthesis and investigation of the analgesic potential of enantiomerically pure Schiff bases: a mechanistic approach.Molecules20222716520610.3390/molecules27165206 36014445
    [Google Scholar]
  12. ChinnasamyR. SundararajanR. GovindarajS. Synthesis, characterization, and analgesic activity of novel schiff base of isatin derivatives.J. Adv. Pharm. Technol. Res.20101334234710.4103/0110‑5558.72428 22247869
    [Google Scholar]
  13. SondhiS.M. SinghN. KumarA. LozachO. MeijerL. Synthesis, anti-inflammatory, analgesic and kinase (CDK-1, CDK-5 and GSK-3) inhibition activity evaluation of benzimidazole/benzoxazole derivatives and some Schiff’s bases.Bioorg. Med. Chem.200614113758376510.1016/j.bmc.2006.01.054 16480879
    [Google Scholar]
  14. SantosJ. LimaR. PereiraT. CarmoA. RaposoN. SilvaA. Antioxidant activity of thio-Schiff bases.Lett. Drug Des. Discov.201310755756010.2174/1570180811310070002
    [Google Scholar]
  15. BayrakH. FahimA.M. Yaylaci KarahalilF. AzafadI. BoyraciG.M. TaflanE. Synthesis, antioxidant activity, docking simulation, and computational investigation of novel heterocyclic compounds and Schiff bases from picric acid.J. Mol. Struct.2023128113518410.1016/j.molstruc.2023.135184
    [Google Scholar]
  16. Alipour NoghabiS. Ghamari kargar, P.; Bagherzade, G.; Beyzaei, H. Comparative study of antioxidant and antimicrobial activity of berberine-derived Schiff bases, nitro-berberine and amino-berberine.Heliyon2023912e2278310.1016/j.heliyon.2023.e22783 38058428
    [Google Scholar]
  17. MumtazA. ZahoorF. ZaibS. NawazM. SaeedA. WaseemA. KhanA. HussainI. IqbalJ. Synthesis, characterization and biological activities of creatinine amides and creatinine Schiff bases.Med. Chem.201713219620310.2174/1573406412666160805100313 27494039
    [Google Scholar]
  18. RudrapalM. DeB. DevannaN. Synthesis and antimicrobial activity of some novel Schiff bases of 4-methyl-2-thiazolamine.Antiinfect. Agents20121017274
    [Google Scholar]
  19. AsiriA.M. KhanS.A. Synthesis and anti-bacterial activities of some novel Schiff bases derived from aminophenazone.Molecules201015106850685810.3390/molecules15106850 20938399
    [Google Scholar]
  20. MatarS.A. TalibW.H. MustafaM.S. MubarakM.S. AlDamenM.A. Synthesis, characterization, and antimicrobial activity of Schiff bases derived from benzaldehydes and 3,3′-diaminodipropylamine.Arab. J. Chem.20158685085710.1016/j.arabjc.2012.12.039
    [Google Scholar]
  21. KumarS. KumarP. SatiN. Synthesis and biological evaluation of Schiff bases and azetidinones of 1-naphthol.J. Pharm. Bioallied Sci.20124324624910.4103/0975‑7406.99066 22923968
    [Google Scholar]
  22. SridharS.K. SaravananM. RameshA. Synthesis and antibacterial screening of hydrazones, Schiff and Mannich bases of isatin derivatives.Eur. J. Med. Chem.2001367-861562510.1016/S0223‑5234(01)01255‑7 11600231
    [Google Scholar]
  23. Haj Mohammad Ebrahim TehraniK. HashemiM. HassanM. KobarfardF. MohebbiS. Synthesis and antibacterial activity of Schiff bases of 5-substituted isatins.Chin. Chem. Lett.201627222122510.1016/j.cclet.2015.10.027
    [Google Scholar]
  24. ZhuJ. TengG. LiD. HouR. XiaY. Synthesis and antibacterial activity of novel Schiff bases of thiosemicarbazone derivatives with adamantane moiety.Med. Chem. Res.20213081534154010.1007/s00044‑021‑02759‑w
    [Google Scholar]
  25. FonkuiT.Y. IkhileM.I. NjobehP.B. NdintehD.T. Benzimidazole Schiff base derivatives: synthesis, characterization and antimicrobial activity.BMC Chem.201913112710.1186/s13065‑019‑0642‑3 31728454
    [Google Scholar]
  26. SwathyS.S. Selwin JoseyphusR. NishaV.P. SubhadrambikaN. MohananK. Synthesis, spectroscopic investigation and antimicrobial activities of some transition metal complexes of a [(2-hydroxyacetophenone)-3-isatin]-bishydrazone.Arab. J. Chem.20169S1847S185710.1016/j.arabjc.2012.05.004
    [Google Scholar]
  27. PandeyA. RajavelR. ChandrakerS. DashD. Synthesis of Schiff bases of 2- amino-5-aryl-1, 3, 4-thiadiazole and its analgesic, anti-inflammatory, anti-bacterial and antitubercular activity.E-J. Chem.2012942524253110.1155/2012/145028
    [Google Scholar]
  28. LemilemuF. BitewM. DemissieT.B. EswaramoorthyR. EndaleM. Synthesis, antibacterial and antioxidant activities of Thiazole-based Schiff base derivatives: a combined experimental and computational study.BMC Chem.20211516710.1186/s13065‑021‑00791‑w 34949213
    [Google Scholar]
  29. RajendranS.P. KarvembuR. Synthesis and antifungal activities of Schiff bases derived from 3-amino-2H-pyrano [2, 3-b] quinolin-2-ones.Indian J. Chem.200241B222224
    [Google Scholar]
  30. HassanzadehF. NasabR.R. MansourianM. Synthesis, antimicrobial evaluation and docking studies of some novel quinazolinone Schiff base derivatives.Res. Pharm. Sci.201813321322110.4103/1735‑5362.228942 29853931
    [Google Scholar]
  31. VermaM. PandeyaS.N. SinghK.N. StablesJ.P. Anticonvulsant activity of Schiff bases of isatin derivatives.Acta Pharm.20045414956 15050044
    [Google Scholar]
  32. BhatM.A. Al-OmarM.A. Synthesis, characterization and in vivo anticonvulsant and neurotoxicity screening of Schiff bases of phthalimide.Acta Pol. Pharm.2011683375380 21648191
    [Google Scholar]
  33. Aboul-FadlT. MohammedF.A.H. HassanE.A.S. Synthesis, antitubercular activity and pharmacokinetic studies of some schiff bases derived from 1- alkylisatin and isonicotinic acid hydrazide (inh).Arch. Pharm. Res.2003261077878410.1007/BF02980020 14609123
    [Google Scholar]
  34. SaeedA.M. AlNeyadiS.S. AbdouI.M. Anticancer activity of novel Schiff bases and azo dyes derived from 3-amino-4-hydroxy-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione.Heterocycl. Commun.202026119220510.1515/hc‑2020‑0116
    [Google Scholar]
  35. HusainA. VarshneyM.M. ParchaV. AhmadA. KhanS.A. Nalidixic acid Schiff bases: Synthesis and biological Evaluation.Lett. Drug Des. Discov.201815110311110.2174/1570180814666170710160751
    [Google Scholar]
  36. AzadA.S. AbbasL.J. HusseinK.A. Synthesis, characterisation, and biological and computational studies of novel schiff bases from heterocyclic molecules.Journal of Medicinal and Chemical Sciences20236817141726
    [Google Scholar]
  37. YuldashevaN. AcikyildizN. AkyuzM. Yabo-DambagiL. AydinT. CakirA. KazazC. The Synthesis of Schiff bases and new secondary amine derivatives of p-vanillin and evaluation of their neuroprotective, antidiabetic, antidepressant and antioxidant potentials.J. Mol. Struct.2022127013388310.1016/j.molstruc.2022.133883
    [Google Scholar]
  38. GoleijM. Youseftabar-MiriL. MontazeriM. KhakpaiF. Induction of anxiolytic, antidepressant and analgesic effects by Shiff base of (E)-3-(1H-imidazol-4-yl)-2-((2-oxoindolin-3-ylidene)amino)propanoic acid derivatives in diabetic rats.J. Diabetes Metab. Disord.2021201314010.1007/s40200‑020‑00689‑9 34222058
    [Google Scholar]
  39. AzamF. SinghS. KhokhraS.L. PrakashO. Synthesis of Schiff bases of naphtha[1,2-d]thiazol-2-amine and metal complexes of 2-(2′-hydroxy)benzylideneaminonaphthothiazole as potential antimicrobial agents.J. Zhejiang Univ. Sci. B20078644645210.1631/jzus.2007.B0446 17565517
    [Google Scholar]
  40. DainaA. MichielinO. ZoeteV. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  41. WiniwarterS. RidderströmM. UngellA.L. AnderssonT.B. ZamoraI. 5.22-Use of molecular descriptors for absorption, distribution, metabolism, and excretion predictions. Comprehensive Medicinal Chemistry II; John B.Taylor, David J. Triggle, Elsevier20075531554
    [Google Scholar]
  42. KumarB.R.P. SoniM. BhikhalalU.B. KakkotI.R. JagadeeshM. BommuP. NanjanM.J. Analysis of physicochemical properties for drugs from nature.Med. Chem. Res.201019898499210.1007/s00044‑009‑9244‑2
    [Google Scholar]
  43. BaellJ. CongreveM. LeesonP. Abad-ZapateroC. Ask the experts: past, present and future of the rule of five.Future Med. Chem.20135774575210.4155/fmc.13.61 23651089
    [Google Scholar]
  44. VermaS. KumarS. KumarS. Design, synthesis, computational and biological evaluation of new benzodiazepines as CNS agents.Arab. J. Chem.202013186387410.1016/j.arabjc.2017.08.005
    [Google Scholar]
  45. KumarS. WahiA.K. SinghR. Synthesis, computational studies and preliminary pharmacological evaluation of 2–[4-(aryl substituted) piperazin-1-yl] N, N-diphenylacetamides as potential antipsychotics.Eur. J. Med. Chem.20114694753475910.1016/j.ejmech.2011.07.028 21824691
    [Google Scholar]
  46. KumarS. KumarA. Synthesis, computational and pharmacological evaluation of 7-(2-(2- (3- (substituted phenyl) acryloyl) phenoxy) ethoxy)-4-methyl-2H-chromen- 2-ones as CNS agents.Cent. Nerv. Syst. Agents Med. Chem.2023231576410.2174/1871524923666230130134501 36717998
    [Google Scholar]
  47. BokhtiaR.M. GirgisA.S. IbrahimT.S. RasslanF. NossierE.S. BarghashR.F. SakhujaR. Abdel-AalE.H. PandaS.S. Al-MahmoudyA.M.M. Synthesis, antibacterial evaluation, and computational studies of a diverse set of linezolid conjugates.Pharmaceuticals (Basel)202215219110.3390/ph15020191 35215303
    [Google Scholar]
  48. KhalafH.S. NaglahA.M. Al-OmarM.A. MoustafaG.O. AwadH.M. BakheitA.H. Synthesis, docking, computational studies, and antimicrobial evaluations of new dipeptide derivatives based on nicotinoylglycylglycine hydrazide.Molecules20202516358910.3390/molecules25163589 32784576
    [Google Scholar]
  49. RbaaM. JabliS. LakhrissiY. OuhssineM. AlmalkiF. Ben HaddaT. Messgo-MoumeneS. ZarroukA. LakhrissiB. Synthesis, antibacterial properties and bioinformatics computational analyses of novel 8-hydroxyquinoline derivatives.Heliyon2019510e0268910.1016/j.heliyon.2019.e02689 31687516
    [Google Scholar]
  50. TheodoreC.E. SivaiahG. PrasadS.B.B. KumarK.Y. RaghuM.S. AlharethyF. PrashanthM.K. JeonB.H. Synthesis, antimicrobial activity and molecular docking studies of novel hydantoin derivatives as potential phospholipase A2 inhibitors.Chemical Physics Impact2023710031910.1016/j.chphi.2023.100319
    [Google Scholar]
  51. YaoX. HuH. WangS. ZhaoW. SongM. ZhouQ. Synthesis, antimicrobial activity, and molecular docking studies of aminoguanidine derivatives containing an acylhydrazone moiety.Iran. J. Pharm. Res.2021202536545 34567180
    [Google Scholar]
  52. AliD. AlarifiS. ChidambaramS.K. RadhakrishnanS.K. AkbarI. Antimicrobial activity of novel 5-benzylidene-3-(3-phenylallylideneamino)imidazolidine-2,4-dione derivatives causing clinical pathogens: Synthesis and molecular docking studies.J. Infect. Public Health202013121951196010.1016/j.jiph.2020.09.017 33289644
    [Google Scholar]
  53. BauerA.W. KirbyW.M.M. SherrisJ.C. TurckM. Antibiotic susceptibility testing by a standardized single disk method.Am. J. Clin. Pathol.1966454_ts49349610.1093/ajcp/45.4_ts.493 5325707
    [Google Scholar]
  54. CollinsC.H. LyneP.M. GrangeJ.M. FalkinhamJ.O. III Microbiological Methods.8th edLondon, UKArnold2004168186
    [Google Scholar]
  55. AliM. SholkamyE.N. AlobaidiA.S. Al-MuhannaM.K. BarakatA. Synthesis of schiff bases based on chitosan and heterocyclic moiety: evaluation of antimicrobial activity.ACS Omega2023849473044731210.1021/acsomega.3c08446 38107929
    [Google Scholar]
  56. BalouiriM. SadikiM. IbnsoudaS.K. Methods for in vitro evaluating antimicrobial activity: A review.J. Pharm. Anal.201662717910.1016/j.jpha.2015.11.005 29403965
    [Google Scholar]
  57. LiuQ. MengX. LiY. ZhaoC.N. TangG.Y. LiH.B. Antibacterial and antifungal activities of spices.Int. J. Mol. Sci.2017186128310.3390/ijms18061283 28621716
    [Google Scholar]
  58. CeramellaJ. IacopettaD. CatalanoA. CirilloF. LappanoR. SinicropiM.S. A review on the antimicrobial activity of Schiff bases: data collection and recent studies.Antibiotics (Basel)202211219110.3390/antibiotics11020191 35203793
    [Google Scholar]
  59. JoseyphusR.S. NairM.S. Antibacterial and antifungal studies on some Schiff base complexes of Zinc(II).Mycobiology2008362939810.4489/MYCO.2008.36.2.093 23990740
    [Google Scholar]
  60. PrakashC.R. RajaS. Synthesis, characterization and in vitro antimicrobial activity of some novel 5-substituted Schiff and Mannich base of isatin derivatives.J. Saudi Chem. Soc.201317333734410.1016/j.jscs.2011.10.022
    [Google Scholar]
  61. SharmaD. KumarS. NarasimhanB. RamasamyK. LimS.M. ShahS.A.A. ManiV. 4-(4-Bromophenyl)-thiazol-2-amine derivatives: synthesis, biological activity and molecular docking study with ADME profile.BMC Chem.20191316010.1186/s13065‑019‑0575‑x 31384808
    [Google Scholar]
  62. Al MogrenM.M. ZerrougE. BelaidiS. BenAmorA. Al HarbiS.D.A. Molecular structure, drug likeness and QSAR modeling of 1,2-diazole derivatives as inhibitors of enoyl-acyl carrier protein reductase.J. King Saud Univ. Sci.20203242301231010.1016/j.jksus.2020.03.007
    [Google Scholar]
  63. BalaS. KambojS. KajalA. SainiV. PrasadD.N. 1,3,4-oxadiazole derivatives: synthesis, characterization, antimicrobial potential, and computational studies.BioMed Res. Int.2014201411810.1155/2014/172791 25147788
    [Google Scholar]
  64. GhoshA.K. BrindisiM. Urea derivatives in modern drug discovery and medicinal chemistry.J. Med. Chem.20206362751278810.1021/acs.jmedchem.9b01541 31789518
    [Google Scholar]
  65. MladenovićM. VukovićN. SukdolakS. SolujićS. Design of novel 4-hydroxy-chromene-2-one derivatives as antimicrobial agents.Molecules20101564294430810.3390/molecules15064294 20657442
    [Google Scholar]
  66. AhmadI. KuznetsovA.E. PirzadaA.S. AlsharifK.F. DagliaM. KhanH. Computational pharmacology and computational chemistry of 4-hydroxyisoleucine: Physicochemical, pharmacokinetic, and DFT-based approaches.Front Chem.202311114597410.3389/fchem.2023.1145974 37123881
    [Google Scholar]
  67. BickertonG.R. PaoliniG.V. BesnardJ. MuresanS. HopkinsA.L. Quantifying the chemical beauty of drugs.Nat. Chem.201242909810.1038/nchem.1243 22270643
    [Google Scholar]
  68. IbrahimZ.Y. UzairuA. ShallangwaG.A. AbechiS.E. Pharmacokinetic predictions and docking studies of substituted aryl amine-based triazolopyrimidine designed inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH).Future J. Pharm. Sci.20217113310.1186/s43094‑021‑00288‑2
    [Google Scholar]
  69. NajarM. EswayahA. MoftahM.B. OmarM.K. BobtainaE. NajwaM. ElhisadiT.A. TahaniA. TawatiS.M. KhalifaM.M. AbdouA. DowAltome, A.E. Rigidity and flexibility of pyrazole, s-triazole, and v-triazole derivative of chloroquine as potential therapeutic against COVID-19.J Med Chem Sci.20236920562084
    [Google Scholar]
  70. KnollK.E. van der WaltM.M. LootsD.T. In silico drug discovery strategies identified ADMET properties of decoquinate RMB041 and its potential drug targets against Mycobacterium tuberculosis.Microbiol. Spectr.2022102e02315e0232110.1128/spectrum.02315‑21 35352998
    [Google Scholar]
  71. BibiS. SakataK. An integrated computational approach for plant-based protein tyrosine phosphatase non-receptor type 1 inhibitors.Curr. Computeraided Drug Des.2017134319335 28382867
    [Google Scholar]
  72. RaevskyO. Physicochemical descriptors in property-based drug design.Mini Rev. Med. Chem.20044101041105210.2174/1389557043402964 15579112
    [Google Scholar]
  73. DoğanayD. ÖzcanS.M. ŞentürkA.M. ÖlgenS. Antimicrobial evaluation, molecular docking and ADME properties of indole amide derivatives.Lett. Drug Des. Discov.202219538739610.2174/1570180818666211006122758
    [Google Scholar]
  74. KhanI.H. PatelN.B. PatelV.M. Synthesis, in silico molecular docking and pharmacokinetic studies, in vitro antimycobacterial and antimicrobial studies of new imidazolones clubbed with thiazolidinedione.Curr. Computeraided Drug Des.201814426928310.2174/1573409914666180516113552 29766819
    [Google Scholar]
  75. FranchinT.B. Ulian SilvaB.C. DeGrandisR.A. CorrêaM.F. de Queiroz AranhaC.M.S. FernandesJ.P.S. CamposM.L. PeccininiR.G. Assessment of the physicochemical properties and stability for pharmacokinetic prediction of pyrazinoic acid derivatives.Curr. Drug Metab.202021971472110.2174/1389200221666200907145722 32895039
    [Google Scholar]
/content/journals/aia/10.2174/0122113525321240240805064910
Loading
/content/journals/aia/10.2174/0122113525321240240805064910
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test