Skip to content
2000
Volume 23, Issue 4
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

is amongst those microorganisms that have the ability to cause broad-spectrum infections. The bacteria can be both hospital and community-acquired due to the resistance mechanism developed against the available antibiotics. As the bacteria is resistant to almost all β-lactam antibiotic family, its treatment is becoming increasingly difficult. Therefore, new strategies should be implemented to control the pathogen which is fast transforming as a multi-drug resistant (MDR) microorganism. Medicinal plants serve as an alternative candidate to antibiotics due to the medicated efficacy attracting many researchers in the last decade. Several studies are being carried out worldwide to treat this pathogenic bacterium with the active ingredients present in various plant species. This review paper aims to depict the antibacterial activity of different medicinal plants and the impact of the isolated bioactive compounds against the multi-drug resistant (MDR) pathogen-methicillin-resistant (MRSA) and to introspect the mechanism of action of the natural products in interrupting the resistance mechanism of MRSA thereby killing the bacteria.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525320352240812073441
2024-09-23
2025-08-14
Loading full text...

Full text loading...

References

  1. TaraiB. DasP. KumarD. Recurrent challenges for clinicians: emergence of methicillin-resistant Staphylococcus aureus, vancomycin resistance, and current treatment options.J. Lab. phys.201350207107810.4103/0974‑2727.119843
    [Google Scholar]
  2. GaddadS.M. ThatiV. ShivannavarC.T. Vancomycin resistance among methicillin resistant Staphylococcus aureus isolates from intensive care units of tertiary care hospitals in Hyderabad.Indian J. Med. Res.2011134570470810.4103/0971‑5916.91001 22199111
    [Google Scholar]
  3. BoucherH.W. Challenges in anti-infective development in the era of bad bugs, no drugs: a regulatory perspective using the example of bloodstream infection as an indication.Clin. Infect. Dis.201050s1Suppl. 1S4S910.1086/647937 20067391
    [Google Scholar]
  4. KurodaM. OhtaT. UchiyamaI. BabaT. YuzawaH. KobayashiI. CuiL. OguchiA. AokiK. NagaiY. LianJ. ItoT. KanamoriM. MatsumaruH. MaruyamaA. MurakamiH. HosoyamaA. Mizutani-UiY. TakahashiN.K. SawanoT. InoueR. KaitoC. SekimizuK. HirakawaH. KuharaS. GotoS. YabuzakiJ. KanehisaM. YamashitaA. OshimaK. FuruyaK. YoshinoC. ShibaT. HattoriM. OgasawaraN. HayashiH. HiramatsuK. Whole genome sequencing of meticillin-resistant Staphylococcus aureus.Lancet200135792641225124010.1016/S0140‑6736(00)04403‑2 11418146
    [Google Scholar]
  5. BrownD.F.J. EdwardsD.I. HawkeyP.M. MorrisonD. RidgwayG.L. TownerK.J. WrenM.W.D. Guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA).J. Antimicrob. Chemother.20055661000101810.1093/jac/dki372 16293678
    [Google Scholar]
  6. DavidM.Z. DaumR.S. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic.Clin. Microbiol. Rev.201023361668710.1128/CMR.00081‑09 20610826
    [Google Scholar]
  7. CorriereM.D. DeckerC.F. MRSA: an evolving pathogen.Dis. Mon.2008541275175510.1016/j.disamonth.2008.09.007 18996275
    [Google Scholar]
  8. LoombaP. TanejaJ. MishraB. Methicillin and vancomycin resistant S. aureus in hospitalized patients.J. Glob. Infect. Dis.20102327528310.4103/0974‑777X.68535 20927290
    [Google Scholar]
  9. OkwuM.U. OlleyM. AkpokaA.O. IzevbuwaO.E. Methicillin-resistant Staphylococcus aureus (MRSA) and anti-MRSA activities of extracts of some medicinal plants: A brief review.AIMS Microbiol.20195211713710.3934/microbiol.2019.2.117 31384707
    [Google Scholar]
  10. NavidiniaM. FallahF. LajevardiB. ShirdoostM. JamaliJ. Epidemiology of methicillin-resistant Staphylococcus aureus isolated from health care providers in mofid children hospital.Arch. Pediatr. Infect. Dis.20153210.5812/pedinfect.16458
    [Google Scholar]
  11. JohnsonN.B. HayesL.D. BrownK. HooE.C. EthierK.A. CDC National Health Report: leading causes of morbidity and mortality and associated behavioral risk and protective factors--United States, 2005-2013.MMWR Suppl.2014634327 25356673
    [Google Scholar]
  12. SabirovaJ.S. HernalsteensJ-P. De BackerS. XavierB.B. MoonsP. Turlej-RogackaA. De GreveH. GoossensH. Malhotra-KumarS. Fatty acid kinase A is an important determinant of biofilm formation in Staphylococcus aureus USA300.BMC Genomics201516186110.1186/s12864‑015‑1956‑8 25553907
    [Google Scholar]
  13. ZhouY. LiuM.J. LiaoX.Y. ChenY.T. LiaoQ.X. LinJ.D. New Attempts to Inhibit Methicillin-Resistant Staphylococcus aureus Biofilm? A Combination of Daptomycin and Azithromycin.Infec. Drug Resist20237029704010.2147/IDR.S433439
    [Google Scholar]
  14. DalalV. KumarP. RakhaminovG. QamarA. FanX. HunterH. TomarS. Golemi-KotraD. KumarP. Repurposing an Ancient Protein Core Structure: Structural Studies on FmtA, a Novel Esterase of Staphylococcus aureus.J. Mol. Biol.2019431173107312310.1016/j.jmb.2019.06.019 31260692
    [Google Scholar]
  15. RaynerC. MunckhofW.J. Antibiotics currently used in the treatment of infections caused by Staphylococcus aureus.Intern. Med. J.200535s2Suppl. 2S3S1610.1111/j.1444‑0903.2005.00976.x 16271060
    [Google Scholar]
  16. CunhaB.A. Methicillin-resistant Staphylococcus aureus: clinical manifestations and antimicrobial therapy.Clin. Microbiol. Infect.200511Suppl. 4334210.1111/j.1469‑0691.2005.01162.x 15997484
    [Google Scholar]
  17. AskariniaM. GanjiA. Jadidi-NiaraghF. HasanzadehS. MohammadiB. GhalamfarsaF. GhalamfarsaG. MahmoudiH. A review on medicinal plant extracts and their active ingredients against methicillin-resistant and methicillin-sensitive Staphylococcus aureus.Journal of Herbmed Pharmacology20198317318410.15171/jhp.2019.27
    [Google Scholar]
  18. CoutinhoH.D.M. CostaJ.G.M. LimaE.O. Falcão-SilvaV.S. Siqueira JúniorJ.P. Herbal therapy associated with antibiotic therapy: potentiation of the antibiotic activity against methicillin – resistant Staphylococcus aureus by Turnera ulmifolia L.BMC Complement. Altern. Med.2009911310.1186/1472‑6882‑9‑13 19426487
    [Google Scholar]
  19. ChoiJ.G. ChoiJ.Y. MunS.H. KangO.H. BharajP. ShinD.W. ChongM.S. KwonD.Y. Antimicrobial activity and synergism of Sami-Hyanglyun-Hwan with ciprofloxacin against methicillin-resistant Staphylococcus aureus.Asian Pac. J. Trop. Med.20158753854210.1016/j.apjtm.2015.06.010 26276284
    [Google Scholar]
  20. TohidpourA. SattariM. OmidbaigiR. YadegarA. NazemiJ. Antibacterial effect of essential oils from two medicinal plants against Methicillin-resistant Staphylococcus aureus (MRSA).Phytomedicine201017214214510.1016/j.phymed.2009.05.007 19576738
    [Google Scholar]
  21. RanjuthaV. ChenY. Al-KeridisL.A. PatelM. AlshammariN. AdnanM. SahreenS. GopinathS.C.B. SasidharanS. Synergistic Antimicrobial Activity of Ceftriaxone and Polyalthia longifolia Methanol (MEPL) Leaf Extract against Methicillin-Resistant Staphylococcus aureus and Modulation of mecA Gene Presence.Antibiotics (Basel)202312347710.3390/antibiotics12030477 36978344
    [Google Scholar]
  22. ZuoG.Y. WangG.C. ZhaoY.B. XuG.L. HaoX.Y. HanJ. ZhaoQ. Screening of Chinese medicinal plants for inhibition against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA).J. Ethnopharmacol.2008120228729010.1016/j.jep.2008.08.021 18804522
    [Google Scholar]
  23. NjeruS.N. ObonyoM.A. NyambatiS.O. NgariS.M. Antimicrobial and cytotoxicity properties of the crude extracts and fractions of Premna resinosa (Hochst.) Schauer (Compositae): Kenyan traditional medicinal plant.BMC Complement. Altern. Med.201515129510.1186/s12906‑015‑0811‑4 26303771
    [Google Scholar]
  24. JeongS.I. KimS.Y. KimS.J. HwangB.S. KwonT.H. YuK.Y. HangS.H. SuzukiK. KimK.J. Antibacterial activity of phytochemicals isolated from Atractylodes japonica against methicillin-resistant Staphylococcus aureus.Molecules201015107395740210.3390/molecules15107395 20966880
    [Google Scholar]
  25. OdongoE.A. MutaiP.C. AmuguneB.K. MungaiN.N. AkinyiM.O. KimondoJ. Evaluation of the antibacterial activity of selected Kenyan medicinal plant extract combinations against clinically important bacteria.BMC Complementary Medicine and Therapies202323110010.1186/s12906‑023‑03939‑4 37013533
    [Google Scholar]
  26. MohtarM. JohariS.A. LiA.R. IsaM.M. MustafaS. AliA.M. BasriD.F. Inhibitory and resistance-modifying potential of plant-based alkaloids against methicillin-resistant Staphylococcus aureus (MRSA).Curr. Microbiol.200959218118610.1007/s00284‑009‑9416‑9 19475447
    [Google Scholar]
  27. AbulrobA.N. SullerM.T.E. GumbletonM. SimonsC. RussellA.D. Identification and biological evaluation of grapefruit oil components as potential novel efflux pump modulators in methicillin-resistant Staphylococcus aureus bacterial strains.Phytochemistry200465223021302710.1016/j.phytochem.2004.08.044 15504436
    [Google Scholar]
  28. VeereshamC. Natural products derived from plants as a source of drugs.J. Adv. Pharm. Technol. Res.20123420020110.4103/2231‑4040.104709 23378939
    [Google Scholar]
  29. LeeY.S. LeeD.Y. KimY.B. LeeS.W. ChaS.W. ParkH.W. The mechanism underlying the antibacterial activity of shikonin against methicillin-resistant Staphylococcus aureus.Evidence-based Compl. Alt. Medi2015201510.1155/2015/520578
    [Google Scholar]
  30. W Obiang-ObounouB. KangO.H. ChoiJ.G. KeumJ.H. KimS.B. Mun, S.H.; Shin, D.W.; Woo Kim, K.; Park, C.B.; Kim, Y.G.; Han, S.H.; Kwon, D.Y. The mechanism of action of sanguinarine against methicillin-resistant Staphylococcus aureus.J. Toxicol. Sci.201136327728310.2131/jts.36.277 21628956
    [Google Scholar]
  31. ChewY.L. MahadiA.M. WongK.M. GohJ.K. Anti-methicillin-resistance Staphylococcus aureus (MRSA) compounds from Bauhinia kockiana Korth. And their mechanism of antibacterial activity.BMC Complement. Altern. Med.20181817010.1186/s12906‑018‑2137‑5 29463252
    [Google Scholar]
  32. WuS.C. YangZ.Q. LiuF. PengW.J. QuS.Q. LiQ. SongX.B. ZhuK. ShenJ.Z. Antibacterial Effect and Mode of Action of Flavonoids From Licorice Against Methicillin-Resistant Staphylococcus aureus.Front. Microbiol.201910248910.3389/fmicb.2019.02489 31749783
    [Google Scholar]
  33. LiJ. XieS. GaoQ. DengZ. Evaluation of the potential of endophytic Trichoderma sp. isolated from medicinal plant Ampelopsis japonica against MRSA and bioassay-guided separation of the anti-MRSA compound.Braz. J. Microbiol.202455154355610.1007/s42770‑024‑01250‑z 38261262
    [Google Scholar]
  34. DalalV. DhankharP. SinghV. SinghV. RakhaminovG. Golemi-KotraD. KumarP. Structure-based identification of potential drugs against FmtA of Staphylococcus aureus: Virtual screening, molecular dynamics, MM-GBSA, and QM/MM.Protein J.202140214816510.1007/s10930‑020‑09953‑6 33421024
    [Google Scholar]
  35. KumariR. DalalV. Identification of potential inhibitors for LLM of Staphylococcus aureus: structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies.J. Biomol. Struct. Dyn.202240209833984710.1080/07391102.2021.1936179 34096457
    [Google Scholar]
  36. KumariR. RathiR. PathakS.R. DalalV. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus.J. Mol. Struct.2022125513247610.1016/j.molstruc.2022.132476
    [Google Scholar]
  37. DalalV. KumariR. Screening and identification of natural product‐like compounds as potential antibacterial agents targeting FemC of Staphylococcus aureus: an in silico approach.ChemistrySelect2022742e20220172810.1002/slct.202201728
    [Google Scholar]
  38. KumarP. DalalV. KotraD.G. KumarP. i In-silico i approach to identify novel potent inhibitors against GraR of i S. aureus i.Front. Biosci.20202571337136010.2741/4859 32114436
    [Google Scholar]
  39. FernandesT. G. de MesquitaA. R. C. RandauK. P. FranchittiA. A. XimenesE. A. In vitro synergistic effect of Psidium guineense (Swartz) in combination with antimicrobial agents against methicillin-resistant Staphylococcus aureus strains.Sci. World J.2012201210.1100/2012/158237
    [Google Scholar]
  40. SilvaR.R. e SilvaD.O. FontesH.R. AlvianoC.S. FernandesP.D. AlvianoD.S. Anti-inflammatory, antioxidant, and antimicrobial activities of Cocos nucifera var. typica.BMC Complement. Altern. Med.201313110710.1186/1472‑6882‑13‑107 23680079
    [Google Scholar]
  41. ZuoG.Y. MengF.Y. HaoX.Y. ZhangY.L. WangG.C. XuG.L. Antibacterial alkaloids from chelidonium majus linn (papaveraceae) against clinical isolates of methicillin-resistant Staphylococcus aureus.J. Pharm. Pharm. Sci.2009114909410.18433/J3D30Q 19183517
    [Google Scholar]
  42. ChoY.S. SchillerN.L. OhK.H. Antibacterial effects of green tea polyphenols on clinical isolates of methicillin-resistant Staphylococcus aureus.Curr. Microbiol.200857654254610.1007/s00284‑008‑9239‑0 18781360
    [Google Scholar]
  43. LaiH.Y. LimY.Y. KimK.H. Blechnum Orientale Linn - a fern with potential as antioxidant, anticancer and antibacterial agent.BMC Complement. Altern. Med.20101011510.1186/1472‑6882‑10‑15 20429956
    [Google Scholar]
  44. Abu-ShanabB. AdwanG.M. JarrarN. Abu-HijlehA. AdwanK. Antibacterial activity of four plant extracts used in Palestine in folkloric medicine against methicillin-resistant Staphylococcus aureus.Turk. J. Biol.2006304195198https://dergipark.org.tr/en/pub/tbtkbiology/issue/11723/139974
    [Google Scholar]
  45. Sunil KumarK.N. SaraswathyA. AmerjothyS. RavishankarB. Antimicrobial Potential of Helicanthuselastica (Desr.) Danser-A less explored Indian mistletoe growing on mango trees.J. Tradit. Complement. Med.20144425826210.4103/2225‑4110.126183 25379468
    [Google Scholar]
  46. GunesH. GulenD. MutluR. GumusA. TasT. TopkayaA.E. Antibacterial effects of curcumin.Toxicol. Ind. Health201632224625010.1177/0748233713498458 24097361
    [Google Scholar]
  47. ShresthaG. ThompsonA. RobisonR. St ClairL.L. LethariavulpinaL.L. Letharia vulpina, a vulpinic acid containing lichen, targets cell membrane and cell division processes in methicillin-resistant Staphylococcus aureus.Pharm. Biol.201654341341810.3109/13880209.2015.1038754 25919857
    [Google Scholar]
  48. CotéH. BoucherM.A. PichetteA. RogerB. LegaultJ. New antibacterial hydrophobic assay reveals Abies balsamea oleoresin activity against Staphylococcus aureus and MRSA.J. Ethnopharmacol.201619468468910.1016/j.jep.2016.10.035 27769946
    [Google Scholar]
  49. HariharanP. Paul-SatyaseelaM. GnanamaniA. In vitro profiling of antimethicillin-resistant Staphylococcus aureus activity of thymoquinone against selected type and clinical strains.Lett. Appl. Microbiol.201662328328910.1111/lam.12544 26743923
    [Google Scholar]
  50. ZhangY. AdnaniN. BraunD.R. EllisG.A. BarnsK.J. Parker-NanceS. GuzeiI.A. BugniT.S. Micromonohalimanes A and B: Antibacterial Halimane-Type Diterpenoids from a Marine Micromonospora Species.J. Nat. Prod.201679112968297210.1021/acs.jnatprod.6b00555 27813411
    [Google Scholar]
  51. YinS. RaoG. WangJ. LuoL. HeG. WangC. Roemerine improves the survival rate of septicemic BALB/c mice by increasing the cell membrane permeability of Staphylococcus aureus.PLoS One20151011e014386310.1371/journal.pone.0143863
    [Google Scholar]
  52. BlainskiA. GioncoB. OliveiraA.G. AndradeG. ScarminioI.S. SilvaD.B. LopesN.P. MelloJ.C.P. Antibacterial activity of Limonium brasiliense (Baicuru) against multidrug-resistant bacteria using a statistical mixture design.J. Ethnopharmacol.201719831332310.1016/j.jep.2017.01.013 28089736
    [Google Scholar]
  53. UdumulaV. EndresJ.L. HarperC.N. JaramilloL. ZhongH.A. BaylesK.W. Conda-SheridanM. Simple synthesis of endophenazine G and other phenazines and their evaluation as anti-methicillin-resistant Staphylococcus aureus agents.Eur. J. Med. Chem.201712571072110.1016/j.ejmech.2016.09.079 27721155
    [Google Scholar]
  54. RatnaweeraP.B. WilliamsD.E. PatrickB.O. de SilvaE.D. AndersenR.J. Solanioic acid, an antibacterial degraded steroid produced in culture by the fungus Rhizoctonia solani isolated from tubers of the medicinal plant Cyperus rotundus.Org. Lett.20151792074207710.1021/acs.orglett.5b00596 25860081
    [Google Scholar]
  55. CaoF. PengW. LiX. LiuM. LiB. QinR. JiangW. CenY. PanX. YanZ. XiaoK. ZhouH. Emodin is identified as the active component of ether extracts from Rhizoma Polygoni Cuspidati, for anti-MRSA activity.Can. J. Physiol. Pharmacol.201593648549310.1139/cjpp‑2014‑0465 25966789
    [Google Scholar]
  56. YeP. WeiS. LuoC. WangQ. LiA. WeiF. Long-term effect against methicillin-resistant Staphylococcus aureus of emodin released from coaxial electrospinning nanofiber membranes with a biphasic profile.Biomolecules202010336210.3390/biom10030362 32120815
    [Google Scholar]
  57. ChewJ. PehS. Sin YeangT. Non-microbial natural products that inhibit drug-resistant Staphylococcus aureus.Staphylococcus aureus201913010.5772/intechopen.74588
    [Google Scholar]
  58. KimS. Y. KimJ. JeongS. I. JahngK. Y. YuK. Y. Antimicrobial effects and resistant regulation of magnolol and honokiol on methicillin-resistant Staphylococcus aureus.BioMed Res. Int.2015201510.1155/2015/283630
    [Google Scholar]
  59. WangS.Y. SunZ.L. LiuT. GibbonsS. ZhangW.J. QingM. Flavonoids from Sophora moorcroftiana and their synergistic antibacterial effects on MRSA.Phytother. Res.20142871071107610.1002/ptr.5098 24338874
    [Google Scholar]
  60. TeowS. Y. LiewK. AliS. A. KhooA. S. B. PehS. C. Antibacterial action of curcumin against Staphylococcus aureus: a brief review.Journal of tropical medicine2016201610.1155/2016/2853045
    [Google Scholar]
  61. ShresthaG. RaphaelJ. LeavittS.D. St ClairL.L. In vitro evaluation of the antibacterial activity of extracts from 34 species of North American lichens.Pharm. Biol.201452101262126610.3109/13880209.2014.889175 24863278
    [Google Scholar]
/content/journals/aia/10.2174/0122113525320352240812073441
Loading
/content/journals/aia/10.2174/0122113525320352240812073441
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test