Skip to content
2000
Volume 23, Issue 4
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

DNA gyrase is a type II topoisomerase enzyme that can cause negative supercoiling in DNA by using the energy produced by ATP hydrolysis. There are two main types of topoisomerases: type I and type II. Type I enzymes cut a single strand of DNA and are further classified as type IA if they connect to a 5′ phosphate of DNA, or type IB if they link to a 3′ phosphate. Type II topoisomerases break both strands, creating a staggered double-strand break. Antimicrobial resistance is a major concern for the global healthcare system. Resistance is the ability of microorganisms to neutralize and withstand antimicrobial drugs previously used to treat microbial infections. Some known classes of DNA gyrase inhibitors are coumarins, cyclothialidines, and quinolones. Antimicrobial medicines such as quinolones have been widely used to treat microbiological diseases. However, the increased use of quinolones has led to the emergence of quinolone-resistant bacteria, which poses a serious risk to public health. Microorganisms can cause resistance due to changes in the target enzymes, DNA gyrase, and topoisomerase IV, which are responsible for transcription and DNA replication. Additionally, differences in drug entry and efflux may also play a role in resistance. Plasmids that produce the Qnr protein can mediate resistance to quinolones by protecting the quinolone targets from inhibition. This review aims to revolutionize the discovery of quinolone-based antibiotics, specifically targeting DNA gyrase, a critical enzyme in bacterial DNA replication, to enhance the efficacy and specificity of anti-microbail agents against microbial infections.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525318200240902062055
2024-10-16
2025-09-28
Loading full text...

Full text loading...

References

  1. CollinF. KarkareS. MaxwellA. Exploiting bacterial DNA gyrase as a drug target: current state and perspectives.Appl. Microbiol. Biotechnol.201192347949710.1007/s00253‑011‑3557‑z 21904817
    [Google Scholar]
  2. KhanT. SankheK. SuvarnaV. SherjeA. PatelK. DravyakarB. DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents.Biomed. Pharmacother.201810392393810.1016/j.biopha.2018.04.021 29710509
    [Google Scholar]
  3. DurcikM. TomašičT. ZidarN. ZegaA. KikeljD. MašičL.P. IlašJ. ATP-competitive DNA gyrase and topoisomerase IV inhibitors as antibacterial agents.Expert Opin. Ther. Pat.201929317118010.1080/13543776.2019.1575362 30686070
    [Google Scholar]
  4. ChampouxJ.J. DNA topoisomerases: structure, function, and mechanism.Annu. Rev. Biochem.200170136941310.1146/annurev.biochem.70.1.369 11395412
    [Google Scholar]
  5. SalmanM. SharmaP. KumarM. EthayathullaA.S. KaurP. Targeting novel sites in DNA gyrase for development of anti-microbials.Brief. Funct. Genomics202322218019410.1093/bfgp/elac029 36064602
    [Google Scholar]
  6. BatesA.D. MaxwellA. Energy coupling in type II topoisomerases: why do they hydrolyze ATP?Biochemistry200746277929794110.1021/bi700789g 17580973
    [Google Scholar]
  7. MdluliK. MaZ. Mycobacterium tuberculosis DNA gyrase as a target for drug discovery.Infect. Disord. Drug Targets20077215916810.2174/187152607781001763 17970226
    [Google Scholar]
  8. AnasM. KumarA. SinghK. HasanS.M. KushwahaS.P. MauryaS.K. YadavP. NishadS. Benzimidazole as promising antimicrobial agents: A systematic review.Ann. Phytomed.202211210.54085/ap.2022.11.2.11
    [Google Scholar]
  9. BrvarM. PerdihA. RenkoM. AnderluhG. TurkD. SolmajerT. Structure-based discovery of substituted 4,5′-bithiazoles as novel DNA gyrase inhibitors.J. Med. Chem.201255146413642610.1021/jm300395d 22731783
    [Google Scholar]
  10. ChitraS.R. RamalakshmiN. ArunkumarS. ManimegalaiP. A comprehensive review on DNA gyrase inhibitors.Infect. Disord. Drug Targets202120676577710.2174/1871526520666200102110235 33109068
    [Google Scholar]
  11. AlgammalA. HettaH.F. MabrokM. BehzadiP. Emerging multidrug-resistant bacterial pathogens “superbugs”: A rising public health threat.Front. Microbiol.202314113561410.3389/fmicb.2023.1135614 36819057
    [Google Scholar]
  12. AhmadiZ. NoormohammadiZ. BehzadiP. RanjbarR. Molecular detection of gyrA mutation in clinical strains of Klebsiella pneumoniae.Iran. J. Public Health202251102334233910.18502/ijph.v51i10.10992 36415795
    [Google Scholar]
  13. KleinE.Y. Van BoeckelT.P. MartinezE.M. PantS. GandraS. LevinS.A. GoossensH. LaxminarayanR. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015.Proc. Natl. Acad. Sci. USA201811515E3463E347010.1073/pnas.1717295115 29581252
    [Google Scholar]
  14. D’AndreaM.M. FrazianoM. ThallerM.C. RossoliniG.M. The urgent need for novel antimicrobial agents and strategies to fight antibiotic resistance.Antibiotics20198425410.3390/antibiotics8040254 31817707
    [Google Scholar]
  15. MattarC. EdwardsS. BaraldiE. HoodJ. An overview of the global antimicrobial resistance research and development hub and the current landscape.Curr. Opin. Microbiol.202057566110.1016/j.mib.2020.06.009 32777653
    [Google Scholar]
  16. Suvaiv; Singh, K.; Kumar, P.; Hasan, S.M.; Kushwaha, S.P.; Kumar, A.; Ismail, K.S.; Mujeeb, S.; Maurya, S.K.; Hasan Zaidi, S.M. Antibacterial potentiality of isatin-containing hybrid derivatives.Asian J. Chem.202335481582710.14233/ajchem.2023.27632
    [Google Scholar]
  17. Design, molecular docking, synthesis, and antibacterial activity of 1h-benzimidazole-2- carboxylic acid (2-oxo-1, 2-dihydro-indol-3-ylidene)-hydrazide derivatives.Indian J. Heterocycl. Chem.202333224910.59467/IJHC.2023.33.249
    [Google Scholar]
  18. ChristakiE. MarcouM. TofaridesA. Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence.J. Mol. Evol.2020881264010.1007/s00239‑019‑09914‑3 31659373
    [Google Scholar]
  19. ChinK.W. Michelle TiongH.L. Luang-InV. MaN.L. An overview of antibiotic and antibiotic resistance.Environ. Adv.20231110033110.1016/j.envadv.2022.100331
    [Google Scholar]
  20. KleinE.Y. Milkowska-ShibataM. TsengK.K. SharlandM. GandraS. PulciniC. LaxminarayanR. Assessment of WHO antibiotic consumption and access targets in 76 countries, 2000–15: an analysis of pharmaceutical sales data.Lancet Infect. Dis.202121110711510.1016/S1473‑3099(20)30332‑7 32717205
    [Google Scholar]
  21. KhoujaT. MitsantisukK. TadrousM. SudaK.J. Global consumption of antimicrobials: impact of the WHO Global Action Plan on Antimicrobial Resistance and 2019 coronavirus pandemic (COVID-19).J. Antimicrob. Chemother.20227751491149910.1093/jac/dkac028 35178565
    [Google Scholar]
  22. MorrisseyI. HackelM. BadalR. BouchillonS. HawserS. BiedenbachD. A Review of ten years of the study for monitoring antimicrobial resistance trends (SMART) from 2002 to 2011.Pharmaceuticals20136111335134610.3390/ph6111335 24287460
    [Google Scholar]
  23. KarampatakisT. TsergouliK. BehzadiP. Pan-genome plasticity and virulence factors: a natural treasure trove for Acinetobacter baumannii.Antibiotics202413325710.3390/antibiotics13030257 38534692
    [Google Scholar]
  24. KushwahaR.K. SinghK. KushwahaS.P. ChandraD. KumarA. KumarP. Design and synthesis of chroman isatin hybrid derivatives as antitubercular agents.Ann. Phytomed.202211210.54085/ap.2022.11.2.46
    [Google Scholar]
  25. Fraile-RibotP.A. CabotG. MuletX. PeriañezL. Martín-PenaM.L. JuanC. PérezJ.L. OliverA. Mechanisms leading to in vivo ceftolozane/tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa.J. Antimicrob. Chemother.201873365866310.1093/jac/dkx424 29149337
    [Google Scholar]
  26. HögbergL.D. HeddiniA. CarsO. The global need for effective antibiotics: challenges and recent advances.Trends Pharmacol. Sci.2010311150951510.1016/j.tips.2010.08.002 20843562
    [Google Scholar]
  27. SingerA.C. KirchhelleC. RobertsA.P. (Inter)nationalising the antibiotic research and development pipeline.Lancet Infect. Dis.2020202e54e6210.1016/S1473‑3099(19)30552‑3 31753765
    [Google Scholar]
  28. WatkinsR.R. BonomoR.A. Overview.Infect. Dis. Clin. North Am.202034464965810.1016/j.idc.2020.04.002 33011053
    [Google Scholar]
  29. DomínguezD.C. Meza-RodriguezS.M. Development of antimicrobial resistance: future challenges.Pharmaceuticals and personal care products: waste management and treatment technology.Elsevier201938340810.1016/B978‑0‑12‑816189‑0.00016‑0
    [Google Scholar]
  30. KokM. MatonL. van der PeetM. HankemeierT. van HasseltJ.G. Unraveling antimicrobial resistance using metabolomics.Drug Discov. Today20222761774178310.1016/j.drudis.2022.03.015 35341988
    [Google Scholar]
  31. HamadB. The antibiotics market.Nat. Rev. Drug Discov.20109967567610.1038/nrd3267 20811374
    [Google Scholar]
  32. DaviesS.C. FowlerT. WatsonJ. LivermoreD.M. WalkerD. Annual report of the chief medical officer: Infection and the rise of antimicrobial resistance.Lancet201338198781606160910.1016/S0140‑6736(13)60604‑2 23489756
    [Google Scholar]
  33. DiMasiJ.A. HansenR.W. GrabowskiH.G. The price of innovation: new estimates of drug development costs.J. Health Econ.200322215118510.1016/S0167‑6296(02)00126‑1 12606142
    [Google Scholar]
  34. FujimotoD.F. PinillaC. SegallA.M. New peptide inhibitors of type IB topoisomerases: similarities and differences vis-a-vis inhibitors of tyrosine recombinases.J. Mol. Biol.2006363589190710.1016/j.jmb.2006.08.052 16996084
    [Google Scholar]
  35. AdachiT. MizuuchiM. RobinsonE.A. AppellaE. O’DeaM.H. GellertM. MizuuchiK. DNA sequence of the E. coli gyr B gene: application of a new sequencing strategy.Nucleic Acids Res.198715277178410.1093/nar/15.2.771 3029692
    [Google Scholar]
  36. ReeceR.J. MaxwellA. DNA gyrase: structure and function.Crit. Rev. Biochem. Mol. Biol.1991263-433537510.3109/10409239109114072 1657531
    [Google Scholar]
  37. BushN. G. Evans-RobertsK. MaxwellA. DNA Topoisomerases.EcoSal Plus2015620010201410.1128/ecosalplus.esp‑0010‑2014
    [Google Scholar]
  38. MizuuchiK. FisherL.M. O’DeaM.H. GellertM. DNA gyrase action involves the introduction of transient double-strand breaks into DNA.Proc. Natl. Acad. Sci. USA19807741847185110.1073/pnas.77.4.1847 6246508
    [Google Scholar]
  39. BlondeauJ.M. Fluoroquinolones: Mechanism of action, classification, and development of resistance.Surv. Ophthalmol.2004492S73S7810.1016/j.survophthal.2004.01.005 15028482
    [Google Scholar]
  40. GotoT. WangJ.C. Yeast DNA topoisomerase II. An ATP-dependent type II topoisomerase that catalyzes the catenation, decatenation, unknotting, and relaxation of double-stranded DNA rings.J. Biol. Chem.1982257105866587210.1016/S0021‑9258(19)83859‑0 6279616
    [Google Scholar]
  41. GellertM. FisherL.M. O’DeaM.H. DNA gyrase: purification and catalytic properties of a fragment of gyrase B protein.Proc. Natl. Acad. Sci. USA197976126289629310.1073/pnas.76.12.6289 230505
    [Google Scholar]
  42. TretterE.M. BergerJ.M. Mechanisms for defining supercoiling set point of DNA gyrase orthologs: I. A nonconserved acidic C-terminal tail modulates Escherichia coli gyrase activity.J. Biol. Chem.201228722186361864410.1074/jbc.M112.345678 22457353
    [Google Scholar]
  43. HirschJ. KlostermeierD. What makes a type IIA topoisomerase a gyrase or a Topo IV?Nucleic Acids Res.202149116027604210.1093/nar/gkab270 33905522
    [Google Scholar]
  44. ChowdhuryS.R. MajumderH.K. DNA topoisomerases in unicellular pathogens: structure, function, and druggability.Trends Biochem. Sci.201944541543210.1016/j.tibs.2018.12.001 30609953
    [Google Scholar]
  45. BehzadiP. GajdácsM. Worldwide Protein Data Bank (wwPDB): A virtual treasure for research in biotechnology.Eur. J. Microbiol. Immunol.2022114778610.1556/1886.2021.00020 34908533
    [Google Scholar]
  46. SpencerA.C. PandaS.S. DNA gyrase as a target for quinolones.Biomedicines202311237110.3390/biomedicines11020371 36830908
    [Google Scholar]
  47. KampranisS.C. MaxwellA. Conversion of DNA gyrase into a conventional type II topoisomerase.Proc. Natl. Acad. Sci.19969325144161442110.1073/pnas.93.25.14416 8962066
    [Google Scholar]
  48. PommierY. LeoE. ZhangH. MarchandC. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs.Chem. Biol.201017542143310.1016/j.chembiol.2010.04.012 20534341
    [Google Scholar]
  49. NöllmannM. CrisonaN.J. ArimondoP.B. Thirty years of Escherichia coli DNA gyrase: From in vivo function to single-molecule mechanism.Biochimie200789449049910.1016/j.biochi.2007.02.012 17397985
    [Google Scholar]
  50. Vanden BroeckA. LotzC. OrtizJ. LamourV. Cryo-EM structure of the complete E. coli DNA gyrase nucleoprotein complex.Nat. Commun.2019101493510.1038/s41467‑019‑12914‑y 31666516
    [Google Scholar]
  51. SoczekK.M. GrantT. RosenthalP.B. MondragónA. CryoE.M. CryoEM structures of open dimers of gyrase A in complex with DNA illuminate mechanism of strand passage.eLife20187e4121510.7554/eLife.41215 30457554
    [Google Scholar]
  52. AndersonV. OsheroffN. TypeI.I. Type II topoisomerases as targets for quinolone antibacterials: turning Dr. Jekyll into Mr.Hyde. Curr. Pharm. Des.20017533735310.2174/1381612013398013 11254893
    [Google Scholar]
  53. DrlicaK. HiasaH. KernsR. MalikM. MustaevA. ZhaoX. Quinolones: action and resistance updated.Curr. Top. Med. Chem.200991198199810.2174/156802609789630947 19747119
    [Google Scholar]
  54. Piperazine: a promising scaffold with antimicrobial activity.Int. J. Biol. Pharm. Allied Sci.2023121110.31032/IJBPAS/2023/12.11.7523
    [Google Scholar]
  55. KohanskiM.A. DwyerD.J. HayeteB. LawrenceC.A. CollinsJ.J. A common mechanism of cellular death induced by bactericidal antibiotics.Cell2007130579781010.1016/j.cell.2007.06.049 17803904
    [Google Scholar]
  56. BisacchiG.S. Origins of the quinolone class of antibacterials: an expanded “discovery story”.J. Med. Chem.201558124874488210.1021/jm501881c 25738967
    [Google Scholar]
  57. GellertM. MizuuchiK. O’DeaM.H. NashH.A. DNA gyrase: an enzyme that introduces superhelical turns into DNA.Proc. Natl. Acad. Sci. USA197673113872387610.1073/pnas.73.11.3872 186775
    [Google Scholar]
  58. BushN.G. Diez-SantosI. AbbottL.R. MaxwellA. Quinolones: Mechanism, lethality and their contributions to antibiotic resistance.Molecules20202523566210.3390/molecules25235662 33271787
    [Google Scholar]
  59. DigheS.N. ColletT.A. Recent advances in DNA gyrase-targeted antimicrobial agents.Eur. J. Med. Chem.202019911232610.1016/j.ejmech.2020.112326 32460040
    [Google Scholar]
  60. LesherG.Y. FroelichE.J. GruettM.D. BaileyJ.H. BrundageR.P. 1,8-Naphthyridine Derivatives. A New class of chemotherapeutic agents.J. Med. Pharm. Chem.1962551063106510.1021/jm01240a021 14056431
    [Google Scholar]
  61. GuanX. XueX. LiuY. WangJ. WangY. WangJ. WangK. JiangH. ZhangL. YangB. WangN. PanL. Plasmid-mediated quinolone resistance – current knowledge and future perspectives.J. Int. Med. Res.2013411203010.1177/0300060513475965 23569126
    [Google Scholar]
  62. EmmersonA.M. JonesA.M. The quinolones: decades of development and use.J. Antimicrob. Chemother.20035190001Suppl. 1132010.1093/jac/dkg208 12702699
    [Google Scholar]
  63. MitscherL.A. Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents.Chem. Rev.2005105255959210.1021/cr030101q 15700957
    [Google Scholar]
  64. LinderJ.A. HuangE.S. SteinmanM.A. GonzalesR. StaffordR.S. Fluoroquinolone prescribing in the United States: 1995 to 2002.Am. J. Med.2005118325926810.1016/j.amjmed.2004.09.015 15745724
    [Google Scholar]
  65. CorreiaS. PoetaP. HébraudM. CapeloJ.L. IgrejasG. Mechanisms of quinolone action and resistance: where do we stand?J. Med. Microbiol.201766555155910.1099/jmm.0.000475 28504927
    [Google Scholar]
  66. AldredK.J. KernsR.J. OsheroffN. Mechanism of quinolone action and resistance.Biochemistry201453101565157410.1021/bi5000564 24576155
    [Google Scholar]
  67. KhodurskyA.B. ZechiedrichE.L. CozzarelliN.R. TopoisomeraseI.V. Topoisomerase IV is a target of quinolones in Escherichia coli.Proc. Natl. Acad. Sci. USA19959225118011180510.1073/pnas.92.25.11801 8524852
    [Google Scholar]
  68. AnderssonM.I. MacGowanA.P. Development of the quinolones.J. Antimicrob. Chemother.20035190001Suppl. 111110.1093/jac/dkg212 12702698
    [Google Scholar]
  69. DrlicaK. MalikM. KernsR.J. ZhaoX. Quinolone-mediated bacterial death.Antimicrob. Agents Chemother.200852238539210.1128/AAC.01617‑06 17724149
    [Google Scholar]
  70. FengL.S. LiuM.L. WangS. ChaiY. LvK. ShanG.Z. CaoJ. LiS.J. GuoH.Y. Synthesis of naphthyridone derivatives containing 8-alkoxyimino-1,6-dizaspiro[3.4]octane scaffolds.Tetrahedron201167438264827010.1016/j.tet.2011.08.089
    [Google Scholar]
  71. MugnainiC. PasquiniS. CorelliF. The 4-quinolone-3-carboxylic acid motif as a multivalent scaffold in medicinal chemistry.Curr. Med. Chem.200916141746176710.2174/092986709788186156 19442143
    [Google Scholar]
  72. BaumannM. BaxendaleI.R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles.Beilstein J. Org. Chem.201392265231910.3762/bjoc.9.265 24204439
    [Google Scholar]
  73. LiY. BiondaN. FleemanR. WangH. OzawaA. HoughtenR.A. ShawL. Identification of 5,6-dihydroimidazo[2,1- b]thiazoles as a new class of antimicrobial agents.Bioorg. Med. Chem.201624215633563810.1016/j.bmc.2016.09.027 27663549
    [Google Scholar]
  74. HooperD.C. JacobyG.A. Topoisomerase inhibitors: Fluoroquinolone mechanisms of action and resistance.Cold Spring Harb. Perspect. Med.201669a02532010.1101/cshperspect.a025320 27449972
    [Google Scholar]
  75. BaxB.D. ChanP.F. EgglestonD.S. FosberryA. GentryD.R. GorrecF. GiordanoI. HannM.M. HennessyA. HibbsM. HuangJ. JonesE. JonesJ. BrownK.K. LewisC.J. MayE.W. SaundersM.R. SinghO. SpitzfadenC.E. ShenC. ShillingsA. TheobaldA.J. WohlkonigA. PearsonN.D. GwynnM.N. Type IIA topoisomerase inhibition by a new class of antibacterial agents.Nature2010466730993594010.1038/nature09197 20686482
    [Google Scholar]
  76. WohlkonigA. ChanP.F. FosberryA.P. HomesP. HuangJ. KranzM. LeydonV.R. MilesT.J. PearsonN.D. PereraR.L. ShillingsA.J. GwynnM.N. BaxB.D. Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance.Nat. Struct. Mol. Biol.20101791152115310.1038/nsmb.1892 20802486
    [Google Scholar]
  77. LaponogovI. SohiM.K. VeselkovD.A. PanX.S. SawhneyR. ThompsonA.W. McAuleyK.E. FisherL.M. SandersonM.R. Structural insight into the quinolone–DNA cleavage complex of type IIA topoisomerases.Nat. Struct. Mol. Biol.200916666766910.1038/nsmb.1604 19448616
    [Google Scholar]
  78. OnseedaengS. RatthawongjirakulP. Rapid detection of genomic mutations in gyra and parc genes of escherichia coli by multiplex allele specific polymerase chain reaction.J. Clin. Lab. Anal.201630694795510.1002/jcla.21961 27075845
    [Google Scholar]
  79. AldredK.J. SchwanzH.A. LiG. WilliamsonB.H. McPhersonS.A. TurnboughC.L. KernsR.J. OsheroffN. Activity of quinolone CP-115,955 against bacterial and human type II topoisomerases is mediated by different interactions.Biochemistry20155451278128610.1021/bi501073v 25586498
    [Google Scholar]
  80. HooperD.C. Mode of action of fluoroquinolones.Drugs19995861010.2165/00003495‑199958002‑00002 10553698
    [Google Scholar]
  81. HooperD.C. Mechanisms of action of antimicrobials: focus on fluoroquinolones.Clin. Infect. Dis.200132S9S1510.1086/319370 11249823
    [Google Scholar]
  82. FournierB. ZhaoX. LuT. DrlicaK. HooperD.C. Selective targeting of topoisomerase IV and DNA gyrase in Staphylococcus aureus: different patterns of quinolone-induced inhibition of DNA synthesis.Antimicrob. Agents Chemother.20004482160216510.1128/AAC.44.8.2160‑2165.2000 10898691
    [Google Scholar]
  83. PriceL.B. VoglerA. PearsonT. BuschJ.D. SchuppJ.M. KeimP. In vitro selection and characterization of Bacillus anthracis mutants with high-level resistance to ciprofloxacin.Antimicrob. Agents Chemother.20034772362236510.1128/AAC.47.7.2362‑2365.2003 12821500
    [Google Scholar]
  84. Morgan-LinnellS.K. Becnel BoydL. SteffenD. ZechiedrichL. Mechanisms accounting for fluoroquinolone resistance in Escherichia coli clinical isolates.Antimicrob. Agents Chemother.200953123524110.1128/AAC.00665‑08 18838592
    [Google Scholar]
  85. DrlicaK. ZhaoX. DNA gyrase, topoisomerase IV, and the 4-quinolones.Microbiol. Mol. Biol. Rev.199761337739210.1128/mmbr.61.3.377‑392.1997 9293187
    [Google Scholar]
  86. LiZ. DeguchiT. YasudaM. KawamuraT. KanematsuE. NishinoY. IshiharaS. KawadaY. Alteration in the GyrA subunit of DNA gyrase and the ParC subunit of DNA topoisomerase IV in quinolone-resistant clinical isolates of Staphylococcus epidermidis.Antimicrob. Agents Chemother.199842123293329510.1128/AAC.42.12.3293 9835531
    [Google Scholar]
  87. AldredK.J. McPhersonS.A. TurnboughC.L.Jr KernsR.J. OsheroffN. Topoisomerase IV-quinolone interactions are mediated through a water-metal ion bridge: mechanistic basis of quinolone resistance.Nucleic Acids Res.20134184628463910.1093/nar/gkt124 23460203
    [Google Scholar]
  88. PanX.S. GouldK.A. FisherL.M. Probing the differential interactions of quinazolinedione PD 0305970 and quinolones with gyrase and topoisomerase IV.Antimicrob. Agents Chemother.20095393822383110.1128/AAC.00113‑09 19564360
    [Google Scholar]
  89. OppegardL.M. StreckK.R. RosenJ.D. SchwanzH.A. DrlicaK. KernsR.J. HiasaH. Comparison of in vitro activities of fluoroquinolone-like 2,4- and 1,3-diones.Antimicrob. Agents Chemother.20105473011301410.1128/AAC.00190‑10 20404126
    [Google Scholar]
  90. AndersonV.E. ZaniewskiR.P. KaczmarekF.S. GootzT.D. OsheroffN. Action of quinolones against Staphylococcus aureus topoisomerase IV: basis for DNA cleavage enhancement.Biochemistry200039102726273210.1021/bi992302n 10704224
    [Google Scholar]
  91. WillmottC.J. MaxwellA. A single point mutation in the DNA gyrase A protein greatly reduces binding of fluoroquinolones to the gyrase-DNA complex.Antimicrob. Agents Chemother.199337112612710.1128/AAC.37.1.126 8381633
    [Google Scholar]
  92. BarnardF.M. MaxwellA. Interaction between DNA gyrase and quinolones: effects of alanine mutations at GyrA subunit residues Ser(83) and Asp(87).Antimicrob. Agents Chemother.20014571994200010.1128/AAC.45.7.1994‑2000.2001 11408214
    [Google Scholar]
  93. HiasaH. The Glu-84 of the ParC subunit plays critical roles in both topoisomerase IV-quinolone and topoisomerase IV-DNA interactions.Biochemistry20024139117791178510.1021/bi026352v 12269820
    [Google Scholar]
  94. HiramatsuK. IgarashiM. MorimotoY. BabaT. UmekitaM. AkamatsuY. Curing bacteria of antibiotic resistance: reverse antibiotics, a novel class of antibiotics in nature.Int. J. Antimicrob. Agents201239647848510.1016/j.ijantimicag.2012.02.007 22534508
    [Google Scholar]
  95. Martínez-MartínezL. PascualA. JacobyG.A. Quinolone resistance from a transferable plasmid.Lancet1998351910579779910.1016/S0140‑6736(97)07322‑4 9519952
    [Google Scholar]
  96. CarattoliA. Plasmids and the spread of resistance.Int. J. Med. Microbiol.20133036-729830410.1016/j.ijmm.2013.02.001 23499304
    [Google Scholar]
  97. RobicsekA. JacobyG.A. HooperD.C. The worldwide emergence of plasmid-mediated quinolone resistance.Lancet Infect. Dis.200661062964010.1016/S1473‑3099(06)70599‑0 17008172
    [Google Scholar]
  98. StrahilevitzJ. JacobyG.A. HooperD.C. RobicsekA. Plasmid-mediated quinolone resistance: a multifaceted threat.Clin. Microbiol. Rev.200922466468910.1128/CMR.00016‑09 19822894
    [Google Scholar]
  99. JacobyG.A. Plasmid-Mediated Quinolone Resistance.Antimicrobial Drug Resistance. MayersD.L. Totowa, NJHumana Press200920721010.1007/978‑1‑59745‑180‑2_17
    [Google Scholar]
  100. TranJ.H. JacobyG.A. Mechanism of plasmid-mediated quinolone resistance.Proc. Natl. Acad. Sci. USA20029985638564210.1073/pnas.082092899 11943863
    [Google Scholar]
  101. XiongX. BromleyE.H. OelschlaegerP. WoolfsonD.N. SpencerJ. Structural insights into quinolone antibiotic resistance mediated by pentapeptide repeat proteins: conserved surface loops direct the activity of a Qnr protein from a Gram-negative bacterium.Nucleic Acids Res.20113993917392710.1093/nar/gkq1296 21227918
    [Google Scholar]
  102. SunH.I. JeongD.U. LeeJ.H. WuX. ParkK.S. LeeJ.J. JeongB.C. LeeS.H. A novel family (QnrAS) of plasmid-mediated quinolone resistance determinant.Int. J. Antimicrob. Agents201036657857910.1016/j.ijantimicag.2010.08.009 20947314
    [Google Scholar]
  103. AlbornozE. TijetN. De BelderD. GomezS. MartinoF. CorsoA. MelanoR.G. PetroniA. qnrE1, a member of a new family of plasmid-located quinolone resistance genes, originated from the chromosome of enterobacter species.Antimicrob. Agents Chemother.2017615e02555e1610.1128/AAC.02555‑16 28193666
    [Google Scholar]
  104. TavíoM.M. JacobyG.A. HooperD.C. QnrS1 structure-activity relationships.J. Antimicrob. Chemother.20146982102210910.1093/jac/dku102 24729602
    [Google Scholar]
  105. TranJ.H. JacobyG.A. HooperD.C. Interaction of the plasmid-encoded quinolone resistance protein Qnr with Escherichia coli DNA gyrase.Antimicrob. Agents Chemother.200549111812510.1128/AAC.49.1.118‑125.2005 15616284
    [Google Scholar]
  106. TranJ.H. JacobyG.A. HooperD.C. Interaction of the plasmid-encoded quinolone resistance protein QnrA with Escherichia coli topoisomerase IV.Antimicrob. Agents Chemother.20054973050305210.1128/AAC.49.7.3050‑3052.2005 15980397
    [Google Scholar]
  107. YamaneK. WachinoJ. SuzukiS. KimuraK. ShibataN. KatoH. ShibayamaK. KondaT. ArakawaY. New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate.Antimicrob. Agents Chemother.20075193354336010.1128/AAC.00339‑07 17548499
    [Google Scholar]
  108. CattoirV. PoirelL. NordmannP. Plasmid-mediated quinolone resistance pump QepA2 in an Escherichia coli isolate from France.Antimicrob. Agents Chemother.200852103801380410.1128/AAC.00638‑08 18644958
    [Google Scholar]
  109. HansenL.H. SørensenS.J. JørgensenH.S. JensenL.B. The prevalence of the OqxAB multidrug efflux pump amongst olaquindox-resistant Escherichia coli in pigs.Microb. Drug Resist.200511437838210.1089/mdr.2005.11.378 16359198
    [Google Scholar]
  110. KimH.B. WangM. ParkC.H. KimE.C. JacobyG.A. HooperD.C. oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae.Antimicrob. Agents Chemother.20095383582358410.1128/AAC.01574‑08 19528276
    [Google Scholar]
  111. Martínez-MartínezL. PascualA. GarcíaI. TranJ. JacobyG.A. Interaction of plasmid and host quinolone resistance.J. Antimicrob. Chemother.20035141037103910.1093/jac/dkg157 12654766
    [Google Scholar]
  112. JacobyG.A. Mechanisms of resistance to quinolones.Clin. Infect. Dis.200541S120S12610.1086/428052 15942878
    [Google Scholar]
  113. PooleK. Efflux pumps as antimicrobial resistance mechanisms.Ann. Med.200739316217610.1080/07853890701195262 17457715
    [Google Scholar]
  114. GoldmanJ.D. WhiteD.G. LevyS.B. Multiple antibiotic resistance (mar) locus protects Escherichia coli from rapid cell killing by fluoroquinolones.Antimicrob. Agents Chemother.19964051266126910.1128/AAC.40.5.1266 8723480
    [Google Scholar]
  115. SinghR. SwickM.C. LedesmaK.R. YangZ. HuM. ZechiedrichL. TamV.H. Temporal interplay between efflux pumps and target mutations in development of antibiotic resistance in Escherichia coli.Antimicrob. Agents Chemother.20125641680168510.1128/AAC.05693‑11 22232279
    [Google Scholar]
  116. IssakhanianL. BehzadiP. Antimicrobial agents and urinary tract infections.Curr. Pharm. Des.201925121409142310.2174/1381612825999190619130216 31218955
    [Google Scholar]
/content/journals/aia/10.2174/0122113525318200240902062055
Loading
/content/journals/aia/10.2174/0122113525318200240902062055
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): AMR; ATPase; DNA gyrase; DNA supercoiling; efflux pump; quinolone; topoisomerase
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test