Skip to content
2000
Volume 23, Issue 4
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

The Marburg virus (MARV), which belongs to the family Filoviridae, is the cause of Marburg virus disease (MVD), a disease that can be fatal. Laboratories employees of Marburg and Frankfurt cities of Germany, and Belgrade city of Yugoslavia (now Serbia), contracted an infection caused by a hitherto unidentified infectious pathogen in August 1967. According to the World Health Organization (WHO), MARV is one of the most important issues in the world. With a case fatality rate ranging from 24.0 to 88.0%, the virus is very dangerous, underscoring the need for public awareness. This outbreak was determined to be caused by the MARV, one of the deadliest viruses that infect humans. However, African green monkeys (Chlorocebus aethiops), which were imported from Uganda and transported to all three locations, were discovered to be the virus's primary source, while fruit bats (Rosettus aegyptiacus), which belong to the Pteropodidae family, act as the MARV's natural hosts. The disease's pathophysiology indicates significant antiviral suppression as a result of alterations in gene expression and the synthesis of interferon-stimulated genes in the hepatic cells. Along with the advent of hemorrhagic manifestations, which can result in a patient's death, the condition may worsen and cause abdominal discomfort, nausea, vomiting, pharyngitis, diarrhea, and other symptoms. The countermeasures against MVD are outlined in this article, with an emphasis on the ecology, traits, virion proteins, pathology, and transmission of MARV clinical aspects along with diagnostic, patient therapy, and management.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525341920241015041123
2024-11-11
2025-08-14
Loading full text...

Full text loading...

References

  1. KortepeterM.G. DierbergK. ShenoyE.S. CieslakT.J. Marburg virus disease: A summary for clinicians.Int. J. Infect. Dis.20209923324210.1016/j.ijid.2020.07.042 32758690
    [Google Scholar]
  2. OlejnikJ. MühlbergerE. HumeA.J. Recent advances in marburgvirus research.F1000 Res.2019870410.12688/f1000research.17573.1 31131088
    [Google Scholar]
  3. ZhaoF. HeY. LuH. Marburg virus disease: A deadly rare virus is coming.Biosci. Trends202216431231610.5582/bst.2022.01333 35908851
    [Google Scholar]
  4. KinyenjeE. HokororoJ. NgowiR. KiremejiM. MnungaE. SamwelA. SylvanusE. MnkenE. YangoM. MtalikaM. MmbagaV. SaitotiN. MalechaA. KundyF. RwabilimboM. KanikiI. MwisombaG. CharlesE. MughangaP. KitambiM. PaulR. RichardE. MusyaniA. RabielI. HauleG. MaranduL. MwakapasaE. ManassehG. SindatoC. BeyangaM. KapyoloE. JacobF. McharoJ. MayigeM. MsemwaF. SagutiG. KaukiG. MasumaJ. MremaG. KohiM. YotiZ. HabtuM. MwengeeW. MukurasiK. GateiW. RuggajoP. KwesiE. EliakimuE. HorumpendeP. MagembeG. NaguT. Infection prevention and control of highly infectious pathogens in resource-limited countries: An experience from Marburg viral disease outbreak in Kagera Region - Tanzania.BMC Infect. Dis.202424162810.1186/s12879‑024‑09508‑5 38914946
    [Google Scholar]
  5. ChowA. LeoY-S. Surveillance of Disease: Overview.Int. Encyclopedia Pub. Health20172017124138
    [Google Scholar]
  6. BlutA. Filovirus – Auslöser von hämorrhagischem Fieber: Stellungnahmen des Arbeitskreises Blut des Bundesministeriums für Gesundheit.Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz201861894907
    [Google Scholar]
  7. PalM. GutamaK. SharmaH. Marburg Haemorrhagic Fever: A Highly Fatal Emerging Viral Zoonosis, Madridge.J. Mol. Biol.2021212629
    [Google Scholar]
  8. BremanJ.G. JohnsonK.M. van der GroenG. RobbinsC.B. SzczeniowskiM.V. RutiK. WebbP.A. MeierF. HeymannD.L. A search for Ebola virus in animals in the Democratic Republic of the Congo and Cameroon: Ecologic, virologic, and serologic surveys, 1979-1980.J. Infect. Dis.1999179s1Suppl. 1S139S14710.1086/514278 9988177
    [Google Scholar]
  9. LeirsH. MillsJ.N. KrebsJ.W. ChildsJ.E. AkaibeD. WoollenN. LudwigG. PetersC.J. KsiazekT.G. Search for the Ebola virus reservoir in Kikwit, Democratic Republic of the Congo: Reflections on a vertebrate collection.J. Infect. Dis.1999179s1Suppl. 1S155S16310.1086/514299 9988179
    [Google Scholar]
  10. ReiterP. TurellM. ColemanR. MillerB. MaupinG. LizJ. KuehneA. BarthJ. GeisbertJ. DohmD. GlickJ. PecorJ. RobbinsR. JahrlingP. PetersC. KsiazekT. Field investigations of an outbreak of Ebola hemorrhagic fever, Kikwit, Democratic Republic of the Congo, 1995: Arthropod studies.J. Infect. Dis.1999179s1Suppl. 1S148S15410.1086/514304 9988178
    [Google Scholar]
  11. MonathT.P. Ecology of Marburg and Ebola viruses: Speculations and directions for future research.J. Infect. Dis.1999179s1Suppl. 1S127S13810.1086/514281 9988176
    [Google Scholar]
  12. PetersonA.T. CarrollD.S. MillsJ.N. JohnsonK.M. Potential mammalian filovirus reservoirs.Emerg. Infect. Dis.200410122073208110.3201/eid1012.040346 15663841
    [Google Scholar]
  13. PetersonA.T. LashR.R. CarrollD.S. JohnsonK.M. Geographic potential for outbreaks of Marburg hemorrhagic fever.Am. J. Trop. Med. Hyg.200675191510.4269/ajtmh.2006.75.1.0750009
    [Google Scholar]
  14. BauschD.G. BorchertM. GreinT. RothC. SwanepoelR. LibandeM.L. TalarminA. BertheratE. Muyembe-TamfumJ.J. TugumeB. ColebundersR. KondéK.M. PirardP. OlindaL.L. RodierG.R. CampbellP. TomoriO. KsiazekT.G. RollinP.E. Risk factors for Marburg hemorrhagic fever, Democratic Republic of the Congo.Emerg. Infect. Dis.20039121531153710.3201/eid0912.030355 14720391
    [Google Scholar]
  15. TownerJ.S. PourrutX. AlbariñoC.G. NkogueC.N. BirdB.H. GrardG. KsiazekT.G. GonzalezJ.P. NicholS.T. LeroyE.M. Marburg virus infection detected in a common African bat.PLoS One200728e76410.1371/journal.pone.0000764 17712412
    [Google Scholar]
  16. SwanepoelR. SmitS.B. RollinP.E. FormentyP. LemanP.A. KempA. BurtF.J. GrobbelaarA.A. CroftJ. BauschD.G. ZellerH. LeirsH. BraackL.E.O. LibandeM.L. ZakiS. NicholS.T. KsiazekT.G. PaweskaJ.T. Studies of reservoir hosts for Marburg virus.Emerg. Infect. Dis.200713121847185110.3201/eid1312.071115 18258034
    [Google Scholar]
  17. KhrustalevV.V. BarkovskyE.V. KhrustalevaT.A. Local mutational pressures in genomes of Zaire ebolavirus and Marburg virus.Adv. Bioinforma.20152015111410.1155/2015/678587 26798338
    [Google Scholar]
  18. AbirM.H. RahmanT. DasA. EtuS.N. NafizI.H. RakibA. MitraS. EmranT.B. DhamaK. IslamA. SiyadatpanahA. MahmudS. KimB. HassanM.M. Pathogenicity and virulence of Marburg virus.Virulence202213160963310.1080/21505594.2022.2054760 35363588
    [Google Scholar]
  19. FanL. WangY. HuangH. WangZ. LiangC. YangX. YeP. LinJ. ShiW. ZhouY. YanH. LongZ. WangZ. LiuL. QianJ. RNA binding motif 4 inhibits the replication of ebolavirus by directly targeting 3′-leader region of genomic RNA.Emerg. Microbes Infect.2024131230076210.1080/22221751.2023.2300762 38164794
    [Google Scholar]
  20. BrauburgerK. DeflubéL.R. MühlbergerE. Filovirus transcription and replication.Biology and Pathogenesis of Rhabdo- and Filoviruses.SingaporeWorld Scientific Publishing201551555510.1142/9789814635349_0020
    [Google Scholar]
  21. KirchdoerferR.N. WassermanH. AmarasingheG.K. SaphireE.O. Filovirus structural biology: The molecules in the machine.Curr. Top. Microbiol. Immunol.2017411381417
    [Google Scholar]
  22. WanW. KolesnikovaL. ClarkeM. KoehlerA. NodaT. BeckerS. BriggsJ.A.G. Structure and assembly of the Ebola virus nucleocapsid.Nature2017551768039439710.1038/nature24490 29144446
    [Google Scholar]
  23. KolesnikovaL. MittlerE. SchudtG. Shams-EldinH. BeckerS. Phosphorylation of Marburg virus matrix protein VP40 triggers assembly of nucleocapsids with the viral envelope at the plasma membrane.Cell. Microbiol.201214218219710.1111/j.1462‑5822.2011.01709.x 21981045
    [Google Scholar]
  24. NodaT. KolesnikovaL. BeckerS. KawaokaY. The importance of the NP: VP35 ratio in Ebola virus nucleocapsid formation.J. Infect. Dis.2011204Suppl 3)(Suppl. 3S878S88310.1093/infdis/jir310 21987764
    [Google Scholar]
  25. FengT. ZhangJ. ChenZ. PanW. ChenZ. YanY. DaiJ. Glycosylation of viral proteins: Implication in virus–host interaction and virulence.Virulence202213167068310.1080/21505594.2022.2060464 35436420
    [Google Scholar]
  26. SrivastavaS. SharmaD. KumarS. SharmaA. RijalR. AsijaA. AdhikariS. RustagiS. SahS. Al-qaimZ.H. BashyalP. MohantyA. BarbozaJ.J. Rodriguez-MoralesA.J. SahR. Emergence of Marburg virus: A global perspective on fatal outbreaks and clinical challenges.Front. Microbiol.202314123907910.3389/fmicb.2023.1239079 37771708
    [Google Scholar]
  27. SrivastavaS. KumarS. AshiqueS. SridharS.B. ShareefJ. ThomasS. Novel antiviral approaches for Marburg: A promising therapeutics in the pipeline.Front. Microbiol.202415138762810.3389/fmicb.2024.1387628 38725678
    [Google Scholar]
  28. DolnikO. StevermannL. KolesnikovaL. BeckerS. Marburg virus inclusions: A virus-induced microcompartment and interface to multivesicular bodies and the late endosomal compartment.Eur. J. Cell Biol.2015947-932333110.1016/j.ejcb.2015.05.006 26070789
    [Google Scholar]
  29. SchudtG. KolesnikovaL. DolnikO. SodeikB. BeckerS. Live-cell imaging of Marburg virus-infected cells uncovers actin-dependent transport of nucleocapsids over long distances.Proc. Natl. Acad. Sci. USA201311035144021440710.1073/pnas.1307681110 23940347
    [Google Scholar]
  30. DolnikO. KolesnikovaL. WelschS. StreckerT. SchudtG. BeckerS. Interaction with Tsg101 is necessary for the efficient transport and release of nucleocapsids in marburg virus-infected cells.PLoS Pathog.20141010e100446310.1371/journal.ppat.1004463 25330247
    [Google Scholar]
  31. MittlerE. SchudtG. HalweS. RohdeC. BeckerS. A fluorescently labeled Marburg virus glycoprotein as a new tool to study viral transport and assembly.J. Infect. Dis.2018218Suppl. 5S318S32610.1093/infdis/jiy424 30165666
    [Google Scholar]
  32. BruhnJ.F. KirchdoerferR.N. UrataS.M. LiS. TickleI.J. BricogneG. SaphireE.O. Crystal structure of the Marburg virus VP35 oligomerization domain.J. Virol.2017912e01085e1610.1128/JVI.01085‑16 27847355
    [Google Scholar]
  33. KirchdoerferR.N. MoyerC.L. AbelsonD.M. SaphireE.O. The Ebola virus VP30-NP interaction is a regulator of viral RNA synthesis.PLoS Pathog.20161210e100593710.1371/journal.ppat.1005937 27755595
    [Google Scholar]
  34. LiuB. DongS. LiG. WangW. LiuX. WangY. YangC. RaoZ. GuoY. Structural insight into nucleoprotein conformation change chaperoned by VP35 peptide in Marburg virus.J. Virol.20179116e00825e1710.1128/JVI.00825‑17 28566377
    [Google Scholar]
  35. ZhuT. SongH. PengR. ShiY. QiJ. GaoG.F. Crystal structure of the Marburg virus nucleoprotein core domain chaperoned by a VP35 peptide reveals a conserved drug target for filovirus.J. Virol.20179118e00996e1710.1128/JVI.00996‑17 28659479
    [Google Scholar]
  36. BhattaraiN. GcJ.B. GerstmanB.S. StahelinR.V. ChapagainP.P. Plasma membrane association facilitates conformational changes in the Marburg virus protein VP40 dimer.RSC Advances2017737227412274810.1039/C7RA02940C 28580138
    [Google Scholar]
  37. OlejnikJ. HumeA.J. LeungD.W. AmarasingheG.K. BaslerC.F. MühlbergerE. Filovirus strategies to escape antiviral responses.Curr. Top. Microbiol. Immunol.2017411293322
    [Google Scholar]
  38. KirchdoerferR.N. AbelsonD.M. LiS. WoodM.R. SaphireE.O. Assembly of the Ebola virus nucleoprotein from a chaperoned VP35 complex.Cell Rep.201512114014910.1016/j.celrep.2015.06.003 26119732
    [Google Scholar]
  39. BaleS. JulienJ-P. BornholdtZ.A. KimberlinC.R. HalfmannP. ZandonattiM.A. KunertJ. KroonG.J. KawaokaY. MacRaeI.J. Marburg virus VP35 can both fully coat the backbone and cap the ends of dsRNA for interferon antagonism.PLoS Pathog.201289e100291610.1371/journal.ppat.1002916
    [Google Scholar]
  40. EdwardsM.R. BaslerC.F. Marburg virus VP24 protein relieves suppression of the NF–κB pathway through interaction with Kelchlike ECH-associated protein 1.J. Infect. Dis.2015212Suppl.2)(Suppl. 2S154S15910.1093/infdis/jiv050 25926686
    [Google Scholar]
  41. TigabuB. RamanathanP. IvanovA. LinX. IlinykhP.A. ParryC.S. FreibergA.N. NekhaiS. BukreyevA. Phosphorylated VP30 of Marburg virus is a repressor of transcription.J. Virol.20189221e00426e1810.1128/JVI.00426‑18 30135121
    [Google Scholar]
  42. EnterleinS. VolchkovV. WeikM. KolesnikovaL. VolchkovaV. KlenkH.D. MühlbergerE. Rescue of recombinant Marburg virus from cDNA is dependent on nucleocapsid protein VP30.J. Virol.20068021038104310.1128/JVI.80.2.1038‑1043.2006 16379005
    [Google Scholar]
  43. FowlerT. BambergS. MöllerP. KlenkH.D. MeyerT.F. BeckerS. RudelT. Inhibition of Marburg virus protein expression and viral release by RNA interference.J. Gen. Virol.20058641181118810.1099/vir.0.80622‑0 15784912
    [Google Scholar]
  44. ModrofJ. MöritzC. KolesnikovaL. KonakovaT. HartliebB. RandolfA. MühlbergerE. BeckerS. Phosphorylation of Marburg virus VP30 at serines 40 and 42 is critical for its interaction with NP inclusions.Virology2001287117118210.1006/viro.2001.1027 11504552
    [Google Scholar]
  45. YenB.C. BaslerC.F. Effects of filovirus interferon antagonists on responses of human monocyte-derived dendritic cells to RNA virus infection.J. Virol.201690105108511810.1128/JVI.00191‑16 26962215
    [Google Scholar]
  46. LeungD.W. BorekD. LuthraP. BinningJ.M. AnantpadmaM. LiuG. HarveyI.B. SuZ. Endlich-FrazierA. PanJ. ShabmanR.S. ChiuW. DaveyR.A. OtwinowskiZ. BaslerC.F. AmarasingheG.K. An intrinsically disordered peptide from Ebola virus VP35 controls viral RNA synthesis by modulating nucleoprotein-RNA interactions.Cell Rep.201511337638910.1016/j.celrep.2015.03.034 25865894
    [Google Scholar]
  47. EdwardsM.R. LiuG. MireC.E. SureshchandraS. LuthraP. YenB. ShabmanR.S. LeungD.W. MessaoudiI. GeisbertT.W. AmarasingheG.K. BaslerC.F. Differential regulation of interferon responses by Ebola and Marburg virus VP35 proteins.Cell Rep.20161471632164010.1016/j.celrep.2016.01.049 26876165
    [Google Scholar]
  48. GuitoJ.C. AlbariñoC.G. ChakrabartiA.K. TownerJ.S. Novel activities by ebolavirus and marburgvirus interferon antagonists revealed using a standardized in vitro reporter system.Virology201750114716510.1016/j.virol.2016.11.015 27930961
    [Google Scholar]
  49. XueQ. ZhengQ.C. ZhangJ.L. CuiY.L. ZhangH.X. Exploring the mechanism how Marburg virus VP35 recognizes and binds dsRNA by molecular dynamics simulations and free energy calculations.Biopolymers2014101884986010.1002/bip.22463 24459115
    [Google Scholar]
  50. KoehlerA. PfeifferS. KolesnikovaL. BeckerS. Analysis of the multifunctionality of Marburg virus VP40.J. Gen. Virol.201899121614162010.1099/jgv.0.001169 30394868
    [Google Scholar]
  51. WijesingheK.J. UrataS. BhattaraiN. KooijmanE.E. GerstmanB.S. ChapagainP.P. LiS. StahelinR.V. Detection of lipid-induced structural changes of the Marburg virus matrix protein VP40 using hydrogen/deuterium exchange-mass spectrometry.J. Biol. Chem.2017292156108612210.1074/jbc.M116.758300 28167534
    [Google Scholar]
  52. LiangJ. SagumC.A. BedfordM.T. SidhuS.S. SudolM. HanZ. HartyR.N. Chaperone-mediated autophagy protein BAG3 negatively regulates Ebola and Marburg VP40-mediated egress.PLoS Pathog.2017131e100613210.1371/journal.ppat.1006132 28076420
    [Google Scholar]
  53. BanadygaL. DolanM.A. EbiharaH. Rodent-adapted filoviruses and the molecular basis of pathogenesis.J. Mol. Biol.2016428173449346610.1016/j.jmb.2016.05.008 27189922
    [Google Scholar]
  54. LoftsL.L. WellsJ.B. BavariS. WarfieldK.L. Key genomic changes necessary for an in vivo lethal mouse marburgvirus variant selection process.J. Virol.20118583905391710.1128/JVI.02372‑10 21289122
    [Google Scholar]
  55. WarfieldK.L. BradfuteS.B. WellsJ. LoftsL. CooperM.T. AlvesD.A. ReedD.K. VanTongerenS.A. MechC.A. BavariS. Development and characterization of a mouse model for Marburg hemorrhagic fever.J. Virol.200983136404641510.1128/JVI.00126‑09 19369350
    [Google Scholar]
  56. ValmasC. BaslerC.F. Marburg virus VP40 antagonizes interferon signaling in a species-specific manner.J. Virol.20118594309431710.1128/JVI.02575‑10 21325424
    [Google Scholar]
  57. FeaginsA.R. BaslerC.F. Amino acid residue at position 79 of Marburg virus VP40 confers interferon antagonism in mouse cells.J. Infect. Dis.2015212Suppl 2)(Suppl. 2S219S22510.1093/infdis/jiv010 25926685
    [Google Scholar]
  58. FeaginsA.R. BaslerC.F. The VP40 protein of Marburg virus exhibits impaired budding and increased sensitivity to human tetherin following mouse adaptation.J. Virol.20148824144401445010.1128/JVI.02069‑14 25297995
    [Google Scholar]
  59. KoehlerA. KolesnikovaL. WelzelU. SchudtG. HerwigA. BeckerS. A single amino acid change in the Marburg virus matrix protein VP40 provides a replicative advantage in a species-specific manner.J. Virol.20169031444145410.1128/JVI.02670‑15 26581998
    [Google Scholar]
  60. KoehlerA. KolesnikovaL. BeckerS. An active site mutation increases the polymerase activity of the guinea pig-lethal Marburg virus.J. Gen. Virol.201697102494250010.1099/jgv.0.000564 27450090
    [Google Scholar]
  61. ChengH. KoningK. O’HearnA. WangM. Rumschlag-BoomsE. VarhegyiE. RongL. A parallel genome-wide RNAi screening strategy to identify host proteins important for entry of Marburg virus and H5N1 influenza virus.Virol. J.201512119410.1186/s12985‑015‑0420‑3 26596270
    [Google Scholar]
  62. KondohT. LetkoM. MunsterV.J. ManzoorR. MaruyamaJ. FuruyamaW. MiyamotoH. ShigenoA. FujikuraD. TakadateY. YoshidaR. IgarashiM. FeldmannH. MarziA. TakadaA. Single-nucleotide polymorphisms in human NPC1 influence filovirus entry into cells.J. Infect. Dis.2018218Suppl. 5S397S40210.1093/infdis/jiy248 30010949
    [Google Scholar]
  63. OlsonM.A. LeeM.S. YehI.C. Membrane insertion of fusion peptides from Ebola and Marburg viruses studied by replica‐exchange molecular dynamics simulations.J. Comput. Chem.201738161342135210.1002/jcc.24717 28130780
    [Google Scholar]
  64. GnirßK. FiedlerM. Krämer-KühlA. BolduanS. MittlerE. BeckerS. SchindlerM. PöhlmannS. Analysis of determinants in filovirus glycoproteins required for tetherin antagonism.Viruses2014641654167110.3390/v6041654 24721789
    [Google Scholar]
  65. NoyoriO. MatsunoK. KajiharaM. NakayamaE. IgarashiM. KurodaM. IsodaN. YoshidaR. TakadaA. Differential potential for envelope glycoprotein-mediated steric shielding of host cell surface proteins among filoviruses.Virology20134461-215216110.1016/j.virol.2013.07.029 24074577
    [Google Scholar]
  66. NoyoriO. NakayamaE. MaruyamaJ. YoshidaR. TakadaA. Suppression of Fas-mediated apoptosis via steric shielding by filovirus glycoproteins.Biochem. Biophys. Res. Commun.2013441499499810.1016/j.bbrc.2013.11.018 24239546
    [Google Scholar]
  67. DyeJ.M. HerbertA.S. KuehneA.I. BarthJ.F. MuhammadM.A. ZakS.E. OrtizR.A. PrugarL.I. PrattW.D. Postexposure antibody prophylaxis protects nonhuman primates from filovirus disease.Proc. Natl. Acad. Sci. USA2012109135034503910.1073/pnas.1200409109 22411795
    [Google Scholar]
  68. MireC.E. GeisbertJ.B. BorisevichV. FentonK.A. AgansK.N. FlyakA.I. DeerD.J. SteinkellnerH. BohorovO. BohorovaN. GoodmanC. HiattA. KimD.H. PaulyM.H. VelascoJ. WhaleyK.J. CroweJ.E.Jr ZeitlinL. GeisbertT.W. Therapeutic treatment of Marburg and Ravn virus infection in nonhuman primates with a human monoclonal antibody.Sci. Transl. Med.20179384eaai871110.1126/scitranslmed.aai8711 28381540
    [Google Scholar]
  69. KingL.B. WestB.R. SchendelS.L. SaphireE.O. The structural basis for filovirus neutralization by monoclonal antibodies.Curr. Opin. Immunol.20185319620210.1016/j.coi.2018.05.001 29940415
    [Google Scholar]
  70. KingL.B. FuscoM.L. FlyakA.I. IlinykhP.A. HuangK. GunnB. KirchdoerferR.N. HastieK.M. SanghaA.K. MeilerJ. The marburgvirus-neutralizing human monoclonal antibody MR191 targets a conserved site to block virus receptor binding.Cell Host Microbe2018231101109.e4
    [Google Scholar]
  71. SanghaA.K. DongJ. WilliamsonL. HashiguchiT. SaphireE.O. CroweJ.E. MeilerJ. Role of non-local interactions between CDR loops in binding affinity of MR78 antibody to Marburg virus glycoprotein.Structure2017251218201828e2.
    [Google Scholar]
  72. FuscoM.L. HashiguchiT. CassanR. BigginsJ.E. MurinC.D. WarfieldK.L. LiS. HoltsbergF.W. ShuleninS. VuH. OlingerG.G. KimD.H. WhaleyK.J. ZeitlinL. WardA.B. NykiforukC. AmanM.J. BerryJ. SaphireE.O. Protective mAbs and cross-reactive mAbs raised by immunization with engineered Marburg virus GPs.PLoS Pathog.2015116e100501610.1371/journal.ppat.1005016 26115029
    [Google Scholar]
  73. SaphireE.O. SchendelS.L. FuscoM.L. GangavarapuK. GunnB.M. WecA.Z. HalfmannP.J. BrannanJ.M. HerbertA.S. QiuX. Systematic analysis of monoclonal antibodies against Ebola virus GP defines features that contribute to protection.Cell20181744938952e13.
    [Google Scholar]
  74. ShifflettK. MarziA. Marburg virus pathogenesis – differences and similarities in humans and animal models.Virol. J.201916116510.1186/s12985‑019‑1272‑z 31888676
    [Google Scholar]
  75. RougeronV. FeldmannH. GrardG. BeckerS. LeroyE.M. Ebola and Marburg haemorrhagic fever.J. Clin. Virol.20156411111910.1016/j.jcv.2015.01.014 25660265
    [Google Scholar]
  76. HoffmannM. CroneL. DietzelE. PaijoJ. González-HernándezM. NehlmeierI. KalinkeU. BeckerS. PöhlmannS. A polymorphism within the internal fusion loop of the Ebola virus glycoprotein modulates host cell entry.J. Virol.2017919e00177e1710.1128/JVI.00177‑17 28228590
    [Google Scholar]
  77. CrossR.W. MireC.E. FeldmannH. GeisbertT.W. Post-exposure treatments for Ebola and Marburg virus infections.Nat. Rev. Drug Discov.201817641343410.1038/nrd.2017.251 29375139
    [Google Scholar]
  78. BrauburgerK. HumeA.J. MühlbergerE. OlejnikJ. Forty-five years of Marburg virus research.Viruses20124101878192710.3390/v4101878 23202446
    [Google Scholar]
  79. HashiguchiT. FuscoM.L. BornholdtZ.A. LeeJ.E. FlyakA.I. MatsuokaR. KohdaD. YanagiY. HammelM. CroweJ.E.Jr SaphireE.O. Structural basis for Marburg virus neutralization by a cross-reactive human antibody.Cell2015160590491210.1016/j.cell.2015.01.041 25723165
    [Google Scholar]
  80. ZhangY. ZhangM. WuH. WangX. ZhengH. FengJ. WangJ. LuoL. XiaoH. QiaoC. LiX. ZhengY. HuangW. WangY. WangY. ShiY. FengJ. ChenG. A novel MARV glycoprotein-specific antibody with potentials of broad-spectrum neutralization to filovirus.eLife202412RP9118110.7554/eLife.91181.3 38526940
    [Google Scholar]
  81. HumeA. MühlbergerE. Marburg virus viral protein 35 inhibits protein kinase R activation in a cell type–specific manner.J. Infect. Dis.2018218Suppl. 5S403S40810.1093/infdis/jiy473 30165526
    [Google Scholar]
  82. ShuT. GanT. BaiP. WangX. QianQ. ZhouH. ChengQ. QiuY. YinL. ZhongJ. ZhouX. Ebola virus VP35 has novel NTPase and helicase-like activities.Nucleic Acids Res.201947115837585110.1093/nar/gkz340 31066445
    [Google Scholar]
  83. GordonT.B. HaywardJ.A. MarshG.A. BakerM.L. TachedjianG. Host and viral proteins modulating ebola and marburg virus egress.Viruses20191112510.3390/v11010025 30609802
    [Google Scholar]
  84. BiedenkopfN. SchlerethJ. GrünwellerA. BeckerS. HartmannR.K. RNA binding of Ebola virus VP30 is essential for activating viral transcription.J. Virol.201690167481749610.1128/JVI.00271‑16 27279615
    [Google Scholar]
  85. EdwardsM.R. VogelO.A. MoriH. DaveyR.A. BaslerC.F. Marburg virus VP30 is required for transcription initiation at the glycoprotein gene.MBio2022135e02243e2210.1128/mbio.02243‑22 35997284
    [Google Scholar]
  86. BhattaraiN. GerstmanB.S. ChapagainP.P. Role of k-loop cysteine residues in the marburg virus protein VP24–human Keap1 complex.ACS Omega2018312186391864510.1021/acsomega.8b02386
    [Google Scholar]
  87. JasenoskyL.D. KawaokaY. Filovirus budding.Virus Res.2004106218118810.1016/j.virusres.2004.08.014 15567496
    [Google Scholar]
  88. KeshwaraR.B. Development of a rabies-vectored marburg virus vaccine and elucidation of a potential mechanism of protection., dissertations.Thomas Jefferson University2019
    [Google Scholar]
  89. NwalozieR. NnokamB.A. IkpeamaR.A. (Evd): Nigeria Perspective.J. Appl. Health Sci. Med.2023311910.58614/jahsm311
    [Google Scholar]
  90. EdwardsM.R. JohnsonB. MireC.E. XuW. ShabmanR.S. SpellerL.N. LeungD.W. GeisbertT.W. AmarasingheG.K. BaslerC.F. The Marburg virus VP24 protein interacts with Keap1 to activate the cytoprotective antioxidant response pathway.Cell Rep.2014661017102510.1016/j.celrep.2014.01.043 24630991
    [Google Scholar]
  91. JohnsonB. LiJ. AdhikariJ. EdwardsM.R. ZhangH. SchwarzT. LeungD.W. BaslerC.F. GrossM.L. AmarasingheG.K. Dimerization controls Marburg virus VP24-dependent modulation of host antioxidative stress responses.J. Mol. Biol.2016428173483349410.1016/j.jmb.2016.07.020 27497688
    [Google Scholar]
  92. VainionpääR. WarisM. LeinikkiP. Diagnostic techniques: Serological and molecular approaches.Encyclopedia Virol.200820082937
    [Google Scholar]
  93. AmmanB.R. SchuhA.J. AlbariñoC.G. TownerJ.S. Marburg virus persistence on fruit as a plausible route of bat to primate filovirus transmission.Viruses20211312239410.3390/v13122394 34960663
    [Google Scholar]
  94. FalzaranoD. GeisbertT.W. FeldmannH. Progress in filovirus vaccine development: Evaluating the potential for clinical use.Expert Rev. Vaccines2011101637710.1586/erv.10.152 21162622
    [Google Scholar]
  95. HickmanM.R. SaundersD.L. BiggerC.A. KaneC.D. IversenP.L. The development of broad-spectrum antiviral medical countermeasures to treat viral hemorrhagic fevers caused by natural or weaponized virus infections.PLoS Negl. Trop. Dis.2022163e001022010.1371/journal.pntd.0010220 35259154
    [Google Scholar]
  96. ZhuW. ZhangZ. HeS. WongG. BanadygaL. QiuX. Successful treatment of Marburg virus with orally administrated T-705 (Favipiravir) in a mouse model.Antiviral Res.2018151394910.1016/j.antiviral.2018.01.011 29369776
    [Google Scholar]
  97. DulinN. SpanierA. MerinoK. HutterJ.N. WatermanP.E. LeeC. HamerM.J. Systematic review of Marburg virus vaccine nonhuman primate studies and human clinical trials.Vaccine202139220220810.1016/j.vaccine.2020.11.042 33309082
    [Google Scholar]
  98. SimmonsG. Filovirus Entry.Viral Entry Host Cells.20137908394
    [Google Scholar]
  99. HamerM.J. HouserK.V. HofstetterA.R. Ortega-VillaA.M. LeeC. PrestonA. AugustineB. AndrewsC. YamshchikovG.V. HickmanS. SchechS. HutterJ.N. ScottP.T. WatermanP.E. AmareM.F. KiokoV. StormeC. ModjarradK. McCauleyM.D. RobbM.L. GaudinskiM.R. GordonI.J. HolmanL.A. WidgeA.T. StromL. HappeM. CoxJ.H. VazquezS. StanleyD.A. MurrayT. DulanC.N.M. HunegnawR. NarpalaS.R. SwansonP.A.II BasappaM. ThillainathanJ. PadillaM. FlachB. O’ConnellS. TrofymenkoO. MorganP. CoatesE.E. GallJ.G. McDermottA.B. KoupR.A. MascolaJ.R. PloquinA. SullivanN.J. AkeJ.A. LedgerwoodJ.E. LampleyR. LarkinB. CostnerP. WilsonH. ReadM. Safety, tolerability, and immunogenicity of the chimpanzee adenovirus type 3-vectored Marburg virus (cAd3-Marburg) vaccine in healthy adults in the USA: A first-in-human, phase 1, open-label, dose-escalation trial.Lancet20234011037329430210.1016/S0140‑6736(22)02400‑X 36709074
    [Google Scholar]
  100. HofmeyerK.A. BianchiK.M. WolfeD.N. Utilization of viral vector vaccines in preparing for future pandemics.Vaccines (Basel)202210343610.3390/vaccines10030436 35335068
    [Google Scholar]
  101. IversenP.L. WarrenT.K. WellsJ.B. GarzaN.L. MourichD.V. WelchL.S. PanchalR.G. BavariS. Discovery and early development of AVI-7537 and AVI-7288 for the treatment of Ebola virus and Marburg virus infections.Viruses20124112806283010.3390/v4112806 23202506
    [Google Scholar]
  102. AnywaineZ. WhitworthH. KaleebuP. PraygodG. ShukarevG. MannoD. KapigaS. GrosskurthH. KalluvyaS. BockstalV. AnumendemD. LuhnK. RobinsonC. DouoguihM. Watson-JonesD. Safety and immunogenicity of a 2-dose heterologous vaccination regimen with Ad26. ZEBOV and MVA-BN-Filo Ebola vaccines: 12-month data from a phase 1 randomized clinical trial in Uganda and Tanzania.J. Infect. Dis.20192201465610.1093/infdis/jiz070 30796818
    [Google Scholar]
  103. JulanderJ.G. DemarestJ.F. TaylorR. GowenB.B. WallingD.M. MathisA. BabuY.S. An update on the progress of galidesivir (BCX4430), a broad-spectrum antiviral.Antiviral Res.202119510518010.1016/j.antiviral.2021.105180 34551346
    [Google Scholar]
  104. KaushikS. KaushikS. SharmaV. YadavJ. Antiviral and therapeutic uses of medicinal plants and their derivatives against dengue viruses.Pharmacogn. Rev.20181224
    [Google Scholar]
  105. SchaferA. Novel small molecule therapeutics and mechanisms of action for the treatment of filovirus diseases.Dissertation, University of Illinois at Chicago2021
    [Google Scholar]
  106. IlinykhP.A. HuangK. SantosR.I. GilchukP. GunnB.M. KarimM.M. LiangJ. FouchM.E. DavidsonE. ParekhD.V. Non-neutralizing antibodies from a marburg infection survivor mediate protection by Fc-effector functions and by enhancing efficacy of other antibodies.Cell Host Microbe2020276976991.e11
    [Google Scholar]
  107. GuoP. CobanO. SneadN.M. TrebleyJ. HoeprichS. GuoS. ShuY. Engineering RNA for targeted siRNA delivery and medical application.Adv. Drug Deliv. Rev.201062665066610.1016/j.addr.2010.03.008 20230868
    [Google Scholar]
  108. WardM.D. KennyT. BruggemanE. KaneC.D. MorrellC.L. KaneM.M. BixlerS. GradyS.L. QuizonR.S. AstatkeM. CazaresL.H. Early detection of Ebola virus proteins in peripheral blood mononuclear cells from infected mice.Clin. Proteomics20201711110.1186/s12014‑020‑09273‑y 32194356
    [Google Scholar]
  109. GeisbertT.W. JaaxN.K. Marburg hemorrhagic fever: Report of a case studied by immunohistochemistry and electron microscopy.Ultrastruct. Pathol.199822131710.3109/01913129809032253 9491211
    [Google Scholar]
  110. Daddario-DiCaprioK.M. GeisbertT.W. StröherU. GeisbertJ.B. GrollaA. FritzE.A. FernandoL. KaganE. JahrlingP.B. HensleyL.E. JonesS.M. FeldmannH. Postexposure protection against Marburg haemorrhagic fever with recombinant vesicular stomatitis virus vectors in non-human primates: An efficacy assessment.Lancet200636795201399140410.1016/S0140‑6736(06)68546‑2 16650649
    [Google Scholar]
  111. Grant-KleinR.J. AltamuraL.A. BadgerC.V. BoundsC.E. Van DeusenN.M. KwilasS.A. VuH.A. WarfieldK.L. HooperJ.W. HannamanD. DupuyL.C. SchmaljohnC.S. Codon-optimized filovirus DNA vaccines delivered by intramuscular electroporation protect cynomolgus macaques from lethal Ebola and Marburg virus challenges.Hum. Vaccin. Immunother.20151181991200410.1080/21645515.2015.1039757 25996997
    [Google Scholar]
  112. SchwartzD.A. Maternal and infant death and the rVSV-ZEBOV vaccine through three recent Ebola virus epidemics-West Africa, DRC Équateur and DRC Kivu: 4 years of excluding pregnant and lactating women and their infants from immunization.Curr. Trop. Med. Rep.20196421322210.1007/s40475‑019‑00195‑w
    [Google Scholar]
  113. AlbakriK. Al-HajaliM. SalehO. AlkhalilA.M. MohdA.B. SamainC.A. AbuasadN.N. HasanH. KhaityA. FarahatR.A. Marburg virus disease treatments and vaccines: Recent gaps and implications.Ann. Med. Surg. (Lond.)202385232833010.1097/MS9.0000000000000163 36845761
    [Google Scholar]
  114. MiragliaC.M. Marburgviruses: An Update.Lab. Med.2019501162810.1093/labmed/lmy046 30085179
    [Google Scholar]
  115. SaxenaD. KaulG. DasguptaA. ChopraS. Atoltivimab/maftivimab/odesivimab (Inmazeb) combination to treat infection caused by Zaire ebolavirus.Drugs of today (Barcelona, Spain: 1998)2021578483490
    [Google Scholar]
  116. Mane ManoharM.P. LeeV.J. Chinedum OdunukweE.U. SinghP.K. MpofuB.S. Oxley MdC. Advancements in Marburg (MARV) virus vaccine research with its recent reemergence in Equatorial Guinea and Tanzania: A scoping review.Cureus2023157e4201410.7759/cureus.42014 37593293
    [Google Scholar]
/content/journals/aia/10.2174/0122113525341920241015041123
Loading
/content/journals/aia/10.2174/0122113525341920241015041123
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): ecology; fever; filoviruses; Marburg virus; Marburg virus disease; RNA; vaccine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test