Skip to content
2000
image of Device Recommendation Based on Inference Using Big-Five Personality Trait

Abstract

Introduction

A device collaboration system provides services through the cooperation of nearby sharable devices. Therefore, such a system can be applied even to small personal devices with limited resources, such as smartwatches. Previous work proposed methods for device collaboration and recommendation. It also identified two key challenges: reducing inference time for collaboration among a large number of devices, and addressing the cold-start problem when introducing new devices. This paper proposes an approach to address both of these issues.

Methods

To reduce the time required for device recommendation, this paper proposes a preprocessing method based on the Big Five personality traits. A prototype system implementing the proposed collaboration method is developed on a mobile device and evaluated.

Results

The proposed method achieved faster device recommendation and higher user satisfaction compared to the previous approach.

Discussion

This study demonstrates that personality-based preprocessing enables the implementation of real-time recommendation services, even on devices with limited computing resources.

Conclusion

The proposed method can be applied not only to device collaboration in IoT environments but also to context-aware recommendation systems. The results of this study are expected to contribute to both the fields of psychology and computer science.

Loading

Article metrics loading...

/content/journals/swcc/10.2174/0122103279392276250801011829
2025-08-28
2025-11-07
Loading full text...

Full text loading...

References

  1. Zhong Y. Collaboration of IoT devices in smart home scenarios: Algorithm research based on graph neural networks and federated learning. Discov Internet Things 2025 5 1 1 10.1007/s43926‑025‑00096‑7
    [Google Scholar]
  2. Sun D. Wu J. Yang J. Wu H. Intelligent data collaboration in heterogeneous-device IoT platforms. ACM Trans. Sens. Netw. 2021 17 3 1 17 10.1145/3427912
    [Google Scholar]
  3. Hu S. Li M. Gao J. Zhou C. Shen X. Adaptive device-edge collaboration on DNN inference in AIoT: A digital-twin-assisted approach. IEEE Internet Things J. 2024 11 7 12893 12908 10.1109/JIOT.2023.3336600
    [Google Scholar]
  4. Schmidt A. Ubiquitous computing: Are we there yet? Computer 2010 43 2 95 97 10.1109/MC.2010.54
    [Google Scholar]
  5. Hernández-Ramos J.L. Moreno M.V. Bernabé J.B. Carrillo D.G. Skarmeta A.F. SAFIR: Secure access framework for IoT-enabled services on smart buildings. J. Comput. Syst. Sci. 2015 81 8 1452 1463 10.1016/j.jcss.2014.12.021
    [Google Scholar]
  6. Park J.H. Customized resource collaboration system based on ontology and user model in resource sharing environments. J Korea Soc Comput Inf 2018 23 4 107 114
    [Google Scholar]
  7. Park J.H. Kang J-H. Personalized recommendation based on context-aware for resource sharing in ubiquitous environments. J Korea Soc Comput Inf 2011 16 9 19 26 10.9708/jksci.2011.16.9.019
    [Google Scholar]
  8. Tkalcic M. Chen L. Recommender systems handbook Personality and recommender systems. Berlin Springer 2015 715 739 10.1007/978‑1‑4899‑7637‑6_21
    [Google Scholar]
  9. John O.P. Naumann L.P. Soto C.J. Paradigm shift to the integrative big five trait taxonomy: History, measurement, and conceptual issues. In: Handbook of Personality: Theory and Research 3rd ed. Guilford Press 2008 114 58
    [Google Scholar]
  10. Raad B. Perugini M. Big five factor assessment: introduction. Bif Five Assessment Cambridge: 2002 1 26
    [Google Scholar]
  11. Rana C. Jain S.K. A study of the dynamic features of recommender systems. Artif. Intell. Rev. 2015 43 1 141 153 10.1007/s10462‑012‑9359‑6
    [Google Scholar]
  12. Walek B. Fojtik V. A hybrid recommender system for recommending relevant movies using an expert system. Expert Syst. Appl. 2020 158 113452 10.1016/j.eswa.2020.113452
    [Google Scholar]
  13. Behera G. Panda S.K. Hsieh M.Y. Li K.C. Hybrid collaborative filtering using matrix factorization and XGBoost for movie recommendation. Comput. Stand. Interfaces 2024 90 103847 10.1016/j.csi.2024.103847
    [Google Scholar]
  14. Sharma S. Kumar Shakya H. Hybrid recommendation system for movies using artificial neural network. Expert Syst. Appl. 2024 258 125194 10.1016/j.eswa.2024.125194
    [Google Scholar]
  15. Liu H Kong X Bai X Wang W Bekele TM Xia F Context-based collaborative filtering for citation recommendation. IEEE Access 2015 3 1695 703 10.1109/ACCESS.2015.2481320
    [Google Scholar]
  16. Tian P. Collaborative filtering recommendation algorithm in cloud computing environment. Comput. Sci. Inf. Syst. 2021 18 2 517 534 10.2298/CSIS200119008T
    [Google Scholar]
  17. Aljunid M. Huchaiah M. Hooshmand M. Ali W. Shetty A. Alzoubah S. A collaborative filtering recommender systems: Survey. Neurocomputing 2025 617 128718 10.1016/j.neucom.2024.128718
    [Google Scholar]
  18. Alatrash R. Priyadarshini R. Ezaldeen H. Collaborative filtering integrated fine-grained sentiment for hybrid recommender system. J. Supercomput. 2024 80 4 4760 4807 10.1007/s11227‑023‑05600‑w
    [Google Scholar]
  19. Zanker M. Ricci F. Jannach D. Terveen L. Measuring the impact of personalization and recommendation on user behaviour. Int. J. Hum. Comput. Stud. 2010 68 8 469 471 10.1016/j.ijhcs.2010.04.002
    [Google Scholar]
  20. Niklander S. Emotions inference through content and sentimental analysis in COVID-19 context HCI International 2022 Posters. Cham, 16 June 2022 pp.589 592 10.1007/978‑3‑031‑06391‑6_73
    [Google Scholar]
  21. Magadum H. Azad H.K. Patel H. R RH. Music recommendation using dynamic feedback and content-based filtering. Multimedia Tools Appl. 2024 83 32 77469 77488 10.1007/s11042‑024‑18636‑8
    [Google Scholar]
  22. Parthasarathy G. Sathiya Devi S. Hybrid recommendation system based on collaborative and content-based filtering. Cybern. Syst. 2023 54 4 432 453 10.1080/01969722.2022.2062544
    [Google Scholar]
  23. Bai S. Hao B. Li A. Yuan S. Gao R. Zhu T. Predicting big five personality traits of microblog users. Proc Web Intelligence 2013 2013 501 508 10.1109/WI‑IAT.2013.70
    [Google Scholar]
  24. Mori K. Umemura H. An analysis of the relationship between immediate response syndrome and the big five personality scale using structural equation models. Procedia Comput. Sci. 2017 112 2014 2021 10.1016/j.procs.2017.08.140
    [Google Scholar]
  25. Celli F. Lepri B. Is big five better than MBTI? In: A personality computing challenge using Twitter data. Accademia University Press 2018 93 98 10.4000/books.aaccademia.3147
    [Google Scholar]
  26. Baruth O. Cohen A. Personality and satisfaction with online courses: The relation between the big five personality traits and satisfaction with online learning activities. Educ. Inf. Technol. 2023 28 1 879 904 10.1007/s10639‑022‑11199‑x 35818630
    [Google Scholar]
  27. Huang C. Social network site use and big five personality traits: A meta-analysis. Comput. Human Behav. 2019 97 280 290 10.1016/j.chb.2019.03.009
    [Google Scholar]
  28. Quwaider M. Alabed A. Duwairi R. In-video game player’s behavior measurement using big five personal traits. 2019 7th International Conference on Future Internet of Things and Cloud (FiCloud) Istanbul, Turkey 26-28 August 2019 pp.312 317 10.1109/FiCloud.2019.00052
    [Google Scholar]
  29. Kleć M. Wieczorkowska A. Szklanny K. Strus W. Beyond the big five personality traits for music recommendation systems. J Audio Speech Music Process 2023 4 1 4 10.1186/s13636‑022‑00269‑0
    [Google Scholar]
  30. Ga S. Cho P.H. Moon G.E. Jung S. Efficient GNN-based social recommender systems through social graph refinement. J. Supercomput. 2025 81 1 215 10.1007/s11227‑024‑06682‑w
    [Google Scholar]
  31. Anand V. Maurya A.K. A survey on recommender systems using graph neural network. ACM Trans. Inf. Syst. 2025 43 1 1 49 10.1145/3694784
    [Google Scholar]
  32. Ziaee S.S. Rahmani H. Nazari M. MoRGH: Movie recommender system using GNNs on heterogeneous graphs. Knowl. Inf. Syst. 2024 66 12 7419 7435 10.1007/s10115‑024‑02196‑2
    [Google Scholar]
  33. Amara A. Hadj Taieb M.A. Ben Aouicha M. A multi-view GNN-based network representation learning framework for recommendation systems. Neurocomputing 2025 619 c 129001 10.1016/j.neucom.2024.129001
    [Google Scholar]
  34. Nguyen BT Dung DN Big5 tool for tracking personality traits. Intelligent Information and Database Systems ACIIDS 2019. Cham, 07 March 2019 pp.726 736
    [Google Scholar]
  35. Wang Y Zhang M Soleimaninejadian P Tong H Feng Z Big five personality measurement based on lifelog. Association for Computing Machinery. New York, NY, USA, 23 October 2017 pp.25 28 10.1145/3133202.3133207
    [Google Scholar]
  36. KaKao Big five 2025 Available from:https://together.kakao.com/big-five
  37. Free open-source BigFive personality traits test 2024 Available from:https://bigfive-test.com
  38. Yan C Guan X Han H Zhang Z Zhang Y Enhancing multi-behavior recommendations through capturing dynamic preferences. Int J Softw Eng Knowl Eng 2023 33 11n12 1749 63 10.1142/S0218194023410012
    [Google Scholar]
/content/journals/swcc/10.2174/0122103279392276250801011829
Loading
/content/journals/swcc/10.2174/0122103279392276250801011829
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test