Skip to content
2000
image of Privacy-Preserving Sensing in MIMO Networks Using Federated Learning

Abstract

Introduction

The rapid growth of Internet of Things (IoT) devices and advancements in wireless communication have driven the adoption of multiple-input multiple-output (MIMO) networks for intelligent sensing. However, traditional centralized data processing raises significant privacy concerns, necessitating privacy-preserving alternatives.

Methods

This study introduces a federated learning (FL)-based distributed sensing architecture for MIMO networks. Each node locally trains a model using its received signal data and transmits only the model updates to a central server. A novel model aggregation strategy has been developed to account for spatial diversity and varying channel conditions in MIMO systems.

Results

Simulation results reveal that the proposed FL-MIMO framework achieves sensing accuracy comparable to centralized methods while maintaining raw data privacy. The approach exhibits robustness to non-independent and identically distributed (non-IID) data and asynchronous communication, with negligible performance degradation.

Discussion

The findings demonstrate the feasibility of applying federated learning to MIMO-based sensing, addressing key challenges such as communication overhead, model convergence, and security against adversarial threats. The method effectively mitigates privacy risks without compromising sensing performance.

Conclusion

The proposed FL-MIMO framework provides a practical and secure solution for privacy-preserving sensing in smart environments. By balancing efficiency and privacy, it facilitates scalable and trustworthy deployment of intelligent sensing applications in real-world MIMO networks.

Loading

Article metrics loading...

/content/journals/swcc/10.2174/0122103279378837250717041135
2025-07-30
2025-12-14
Loading full text...

Full text loading...

References

  1. Dong Ye Chen Xiaojun Shen Liyan Wang Dakui EaSTFLy: Efficient and secure ternary federated learning. Comput Secur 2020 94 101824 10.1016/j.cose.2020.101824
    [Google Scholar]
  2. Fang Chen Guo Yuanbo Wang Na Ju Ankang Highly efficient federated learning with strong privacy preservation in cloud computing. Comput Secur 2020 96 101889 10.1016/j.cose.2020.101889
    [Google Scholar]
  3. Ma Xu Zhang Fangguo Chen Xiaofeng Shen Jian Privacy preserving multi-party computation delegation for deep learning in cloud computing. Inf Sci 2018 459 103 116 10.1016/j.ins.2018.05.005
    [Google Scholar]
  4. Phong LT Aono Y Hayashi T Wang L Moriai S Privacy-preserving deep learning via additively homomorphic encryption. IEEE Trans Inf Forensics Secur 2018 13 5 1333 1345 10.1109/TIFS.2017.2787987
    [Google Scholar]
  5. Asad M Moustafa A Ito T FedOpt: Towards communication efficiency and privacy preservation in federated learning. Appl Sci 2020 10 2864 10.3390/app10082864
    [Google Scholar]
  6. ElGamal T. A public key cryptosystem and a signature scheme based on discrete logarithms. In: Advances in Cryptology. CRYPTO 1984. Lecture Notes in Computer Science Berlin, Heidelberg Springer 1985 10.1007/3‑540‑39568‑7_2
    [Google Scholar]
  7. Fredrikson M. Jha S. Model inversion attacks that exploit confidence information and basic countermeasures. Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security 2015.
    [Google Scholar]
  8. Hao M. Li L. Xu G. Towards efficient and privacy-preserving federated deep learning. ICC 2019-2019 IEEE International Conference on Communications (ICC) 20119.
    [Google Scholar]
  9. Hsieh K. Harlap A. Gaia: Geo-distributed machine learning approaching. In: This paper is included in the Proceedings of the 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’17) Boston, MA, USA CRC Press 2017
    [Google Scholar]
  10. Hao M. Li H. Luo X. Efficient and privacyenhanced federated learning for industrial artificial intelligence. In: IEEE Transactions on Industrial Informatics New Jersey IEEE 2020
    [Google Scholar]
  11. Polychroniadou D.B.A. Differentially private secure multi-party computation for federated learning in financial applications. arXiv:2010.05867 2020 1 8 10.48550/arXiv.2010.05867
    [Google Scholar]
  12. Björnson E Larsson EG Marzetta TL Massive MIMO: Ten myths and one critical question. IEEE Commun Mag 2016 54 2 114 123 10.1109/MCOM.2016.7402270
    [Google Scholar]
  13. Marzetta T.L. Fundamentals of massive MIMO. Cambridge, England Cambridge University Press 2016 10.1017/CBO9781316799895
    [Google Scholar]
  14. Zhang H.C.M.Z.X.Q.L.Y.Y. Rate analysis of cell-free massive MIMO with one-bit ADCs and DACs. 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) 2019. 10.1109/PIMRC.2019.8904115
    [Google Scholar]
  15. Nguyen L.D. Duong T.Q. Ngo H.Q. Tourki K. Energy efficiency in cell-free massive MIMO with zero-forcing precoding design. IEEE Commun. Lett. 2017 21 8 1871 1874 10.1109/LCOMM.2017.2694431
    [Google Scholar]
  16. Jeon Y.S. Amiri M.M. Li J. Poor H.V. A compressive sensing approach for federated learning over massive MIMO communication systems. IEEE Trans. Wirel. Commun. 2021 20 3 1990 2004 10.1109/TWC.2020.3038407
    [Google Scholar]
  17. Zhang J. Zhang J. Ng D.W.K. Ai B. Federated learning-based cell-free massive MIMO system for privacy-preserving. IEEE Trans. Wirel. Commun. 2023 22 7 4449 4460 10.1109/TWC.2022.3225812
    [Google Scholar]
  18. Nugroho V Ardianto Lee BM A survey of federated learning for mmWave massive MIMO. IEEE Internet Things J 2024 11 16 27167 27183 10.1109/JIOT.2024.3397302
    [Google Scholar]
  19. Zhang Y. Miao Y. Li X. Wei L. Liu Z. Choo K.K.R. Deng R.H. Efficient privacy-preserving federated learning with improved compressed sensing. IEEE Trans. Industr. Inform. 2024 20 3 3316 3326 10.1109/TII.2023.3297596
    [Google Scholar]
  20. Abasi A.K. Aloqaily M. Guizani M. 6G mmWave security advancements through federated learning and differential privacy. IEEE Trans. Netw. Serv. Manag. 2025 1 10.1109/TNSM.2025.3528235
    [Google Scholar]
  21. Wang D. Tao M. Zeng X. Liang J. Federated learning for precoding design in cell-free massive MIMO systems. IEEE Open J. Commun. Soc. 2023 4 1567 1582 10.1109/OJCOMS.2023.3293591
    [Google Scholar]
  22. Badr M.M. Mahmoud M.M.E.A. Fang Y. Abdulaal M. Aljohani A.J. Alasmary W. Ibrahem M.I. Privacy-preserving and communication-efficient energy prediction scheme based on federated learning for smart grids. IEEE Internet Things J. 2023 10 9 7719 7736 10.1109/JIOT.2022.3230586
    [Google Scholar]
  23. Tong Z. Wang J. Hou X. Jiang C. Liu J. UAV-assisted covert federated learning over mmWave massive MIMO. IEEE Trans. Wirel. Commun. 2024 23 9 11785 11798 10.1109/TWC.2024.3384957
    [Google Scholar]
  24. Fouda M.M. Fadlullah Z.M. Ibrahem M.I. Kato N. Privacy-preserving data-driven learning models for emerging communication networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2024 1 10.1109/COMST.2024.3486690
    [Google Scholar]
  25. Mu Y. Garg N. Ratnarajah T. Federated learning in massive MIMO 6G networks: Convergence analysis and communication-efficient design. IEEE Trans. Netw. Sci. Eng. 2022 9 6 4220 4234 10.1109/TNSE.2022.3196463
    [Google Scholar]
  26. Singh N. K. Chandel S. T. Lim S. Lee J. Federated learning-based energy-efficient consumer-centric access strategy for cell-free mimo in 6g wireless networks. IEEE Transactions on Consumer Electronics 2024. 10.1109/TCE.2024.3524328
    [Google Scholar]
  27. Wang D. Wu M. Chakraborty C. Min L. He Y. Guduri M. Covert communications in air-ground integrated urban sensing networks enhanced by federated learning. IEEE Sens. J. 2024 24 5 5636 5643 10.1109/JSEN.2023.3322784
    [Google Scholar]
  28. Qin F. Xu S. Li C. Xu Y. Yang L. Theoretical analysis of federated learning supported by cell-free massive MIMO networks with enhanced power allocation. IEEE Wirel. Commun. Lett. 2024 13 7 1893 1897 10.1109/LWC.2024.3395453
    [Google Scholar]
  29. Wang Q. Chen S. Wu M. Communication-efficient personalized federated learning with privacy-preserving. IEEE Trans. Netw. Serv. Manag. 2024 21 2 2374 2388 10.1109/TNSM.2023.3323129
    [Google Scholar]
  30. Li W. Chen G. Zhang X. Wang N. Ouyang D. Chen C. Efficient and secure aggregation framework for federated-learning-based spectrum sharing. IEEE Internet Things J. 2024 11 10 17223 17236 10.1109/JIOT.2024.3357575
    [Google Scholar]
  31. Li C. Li G. Varshney P.K. Communication-efficient federated learning based on compressed sensing. IEEE Internet Things J. 2021 8 20 15531 15541 10.1109/JIOT.2021.3073112
    [Google Scholar]
  32. Tegin B. Federated learning and distributed inference over wireless channels. Thesis, Doctoral Dissertation Bilkent University 2023
    [Google Scholar]
  33. Cui Y. Guo J. Wen C.K. Jin S. Communication-efficient personalized federated edge learning for massive mimo csi feedback. IEEE Trans. Wirel. Commun. 2024 23 7 7362 7375 10.1109/TWC.2023.3339824
    [Google Scholar]
  34. Vo V. Dayaratne T. Haydon B. Yuan X. Lai S. Abuadbba S. Security and privacy of 6G federated learning-enabled dynamic spectrum sharing. arXiv:2406.12330 2024 1 8 10.48550/arXiv.2406.12330
    [Google Scholar]
  35. Han H. Zhao J. Zhou X. A random access scheme for federated learning over massive MIMO systems. IEEE Internet Things J. 2023 10 21 19027 19042 10.1109/JIOT.2023.3278256
    [Google Scholar]
  36. Pala S. Singh K. Li C.P. Dobre O.A. Duong T.Q. Joint beamforming design and sensing in satellite and ris-enhanced terrestrial networks: A federated learning approach. IEEE Trans. Cogn. Commun. Netw. 2025 1 10.1109/TCCN.2025.3526781
    [Google Scholar]
  37. Le M. Hoang D.T. Nguyen D.N. Hwang W.J. Pham Q.V. Wirelessly powered federated learning networks: Joint power transfer, data sensing, model training, and resource allocation. IEEE Internet Things J. 2023 99 1 7 10.1109/JIOT.2023.3324151
    [Google Scholar]
  38. ZHAO Federated learning for 6G: A survey from perspective of integrated sensing, communication and computation. ZTE Commun. 2023 21 2 25
    [Google Scholar]
  39. Sharma D. Kumar A. Battula R.B. FedBeam: Federated learning based privacy preserved localization for mass-Beamforming in 5GB. 2023 International Conference on Information Networking (ICOIN) 2023, pp. 616-621. 10.1109/ICOIN56518.2023.10048980
    [Google Scholar]
  40. Xue Y Wu J Li J Mumtaz S Liao BL Green differentially private coded distributed learning over near-field MIMO systems. IEEE Trans. Green Commun. Netw. 2025 9 1 417 427 10.1109/TGCN.2024.3496556
    [Google Scholar]
  41. Gupta R. Gupta J. Privacy and convergence analysis for the internet of medical things using massive MIMO. Elect. Ener. 2024 8 100522
    [Google Scholar]
  42. Elbir A.M. Papazafeiropoulos A.K. Chatzinotas S. Federated learning for physical layer design. IEEE Commun. Mag. 2021 59 11 81 87 10.1109/MCOM.101.2100138
    [Google Scholar]
  43. Azeez S.D. Ilyas M. Bako I.M. Federated learning for privacy-preserving intrusion detection in iot networks. 2024 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) 2024, pp. 1-7. 10.1109/HORA61326.2024.10550685
    [Google Scholar]
  44. Feng C. Feng D. Huang G. Liu Z. Wang Z. Xia X.G. Robust privacy-preserving recommendation systems driven by multimodal federated learning. IEEE Trans. Neural Netw. Learn. Syst. 2024 PP 1 15 10.1109/TNNLS.2024.3411402 38896509
    [Google Scholar]
  45. Ergun I. Sami H.U. Guler B. Sparsified secure aggregation for privacy-preserving federated learning. arXiv:2112.12872 2021 1 5 10.48550/arXiv.2112.12872
    [Google Scholar]
  46. Han Y. A privacy preserving federated learning system for iot devices using blockchain and optimization. J. Comput. Communicat. 2024 12 9 78 102 10.4236/jcc.2024.129005
    [Google Scholar]
  47. Zeng Q. Lv Z. Li C. Shi Y. Lin Z. Liu C. Song G. FedProLs: Federated learning for IoT perception data prediction. Appl. Intell. 2023 53 3 3563 3575 10.1007/s10489‑022‑03578‑1
    [Google Scholar]
  48. Chen Y. Al-Rubaye S. Tsourdos A. Chu K. F. Wei Z. Baker L. Gillingham C. Federated deep reinforcement learning-based intelligent surface configuration in 6g secure airport networks. IEEE Transact. Intell. Transport. Sys. 2024 99 1 17 10.1109/TITS.2024.3463189
    [Google Scholar]
  49. Li L. Ma D. Ren H. Wang D. Tang X. Liang W. Bai T. Enhanced reconfigurable intelligent surface assisted mmWave communication: A federated learning approach. China Commun. 2020 17 10 115 128 10.23919/JCC.2020.10.008
    [Google Scholar]
  50. Gafni T. Shlezinger N. Cohen K. Eldar Y.C. Poor H.V. Federated Learning: A signal processing perspective. IEEE Signal Process. Mag. 2022 39 3 14 41 10.1109/MSP.2021.3125282
    [Google Scholar]
  51. Alshehri A. Badr M.M. Baza M. Alshahrani H. Deep anomaly detection framework utilizing federated learning for electricity theft zero-day cyberattacks. Sensors 2024 24 10 3236 10.3390/s24103236 38794091
    [Google Scholar]
  52. Shome D. Waqar O. Khan W.U. Federated learning and next generation wireless communications: A survey on bidirectional relationship. Trans. Emerg. Telecommun. Technol. 2022 33 7 4458 10.1002/ett.4458
    [Google Scholar]
  53. Gogineni V.C. Werner S. Gauthier F. Huang Y.F. Kuh A. Personalized online federated learning for IoT/CPS: Challenges and future directions. IEEE Internet of Things Magazine 2022 5 4 78 84 10.1109/IOTM.001.2200178
    [Google Scholar]
  54. Zhang M. Li Y. Liu D. Jin R. Zhu G. Zhong C. Quek T.Q.S. Joint compression and deadline optimization for wireless federated learning. IEEE Trans. Mobile Comput. 2024 23 7 7939 7951 10.1109/TMC.2023.3344108
    [Google Scholar]
  55. Mpembele A.B. Differential Privacy-Enabled Federated Learning for 5G-Edge-Cloud Framework in Smart Healthcare. Thesis, Doctoral Dissertation, Tennessee State University 2024
    [Google Scholar]
  56. Driss M.B. Sabir E. Elbiaze H. Saad W. Federated learning for 6G: Paradigms, taxonomy, recent advances and insights. arXiv:2312.04688 2023 1 7 10.48550/arXiv.2312.04688
    [Google Scholar]
  57. Aledhari M. Razzak R. Parizi R.M. Saeed F. Federated learning: A survey on enabling technologies, protocols, and applications. IEEE Access 2020 8 140699 140725 10.1109/ACCESS.2020.3013541 32999795
    [Google Scholar]
  58. Erdal Ş. Karakoç F. Özdemir E. A survey on security and privacy aspects and solutions for federated learning in mobile communication networks. ITU J. Wirel. Communicat. Cybersec. 2024 1 1 29 40
    [Google Scholar]
  59. Imteaj A. Amini M.H. Leveraging asynchronous federated learning to predict customers financial distress. Intell. Syst. Applicat. 2022 14 200064 10.1016/j.iswa.2022.200064
    [Google Scholar]
  60. Kim M. Oh I. Yim K. Sahlabadi M. Shukur Z. Security of 6G-enabled vehicle-to-everything communication in emerging federated learning and blockchain technologies. IEEE Access 2024 12 33972 34001 10.1109/ACCESS.2023.3348409
    [Google Scholar]
  61. Pham Q.V. Zeng M. Huynh-The T. Han Z. Hwang W.J. Aerial access networks for federated learning: Applications and challenges. IEEE Netw. 2022 36 3 159 166 10.1109/MNET.013.2100311
    [Google Scholar]
  62. Zheng J. Li K. Tovar E. Guizani M. Federated learning for energy-balanced client selection in mobile edge computing. In: 2021 International Wireless Communications and Mobile Computing (IWCMC) Cham Springer 2021 10.1109/IWCMC51323.2021.9498853
    [Google Scholar]
  63. An Q. Zhou Y. Wang Z. Shan H. Shi Y. Bennis M. Online optimization for over-the-air federated learning with energy harvesting. IEEE Trans. Wirel. Commun. 2024 23 7 7291 7306 10.1109/TWC.2023.3339298
    [Google Scholar]
  64. Ma Y. Zhou F. Jin S. Joint sensing and communication for massive MIMO radar networks: Opportunities and challenges. IEEE Commun. Mag. 2022 60 11 64 70
    [Google Scholar]
  65. Chen M. Yang Z. Saad W. Yin C. Poor H.V. Cui S. A joint learning and communications framework for federated learning over wireless networks. IEEE Trans. Wirel. Commun. 2021 20 1 269 283 10.1109/TWC.2020.3024629
    [Google Scholar]
  66. Lu Y. Xu D. Xu J. Liang Y-C. Collaborative sensing in vehicular networks via federated learning. IEEE Internet Things J. 2021 8 10 4960 4970
    [Google Scholar]
  67. Wang H. Zhao C. Wei X. Zhu J. Privacy-preserving federated learning for intelligent reflecting surface-assisted wireless sensing. IEEE Trans. Commun. 2023 71 4 2301 2314
    [Google Scholar]
  68. Truex S. Baracaldo N. Anwar A. Steinke T. Ludwig H. Zhang R. Zhou Y. A hybrid approach to privacy-preserving federated learning. Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security 2019, pp. 1-11. 10.1145/3338501.3357370
    [Google Scholar]
  69. Shi W. Zhou S. Niu Z. Device scheduling with fast convergence for wireless federated learning. IEEE Trans. Wirel. Commun. 2021 20 1 453 467 10.1109/TWC.2020.3025446
    [Google Scholar]
  70. Yang K. Tassiulas L. Shahrad M. Federated learning over MIMO wireless networks. IEEE J. Sel. Areas Comm. 2020 38 6 1395 1409
    [Google Scholar]
  71. Zhao P. Huang Y. Gao J. Xing L. Wu H. Ma H. Federated learning-based collaborative authentication protocol for shared data in social IoV. IEEE Sens. J. 2022 22 7 7385 7398 10.1109/JSEN.2022.3153338
    [Google Scholar]
  72. Li T. Sahu A.K. Talwalkar A. Smith V. Federated learning: Challenges, methods, and future directions. IEEE Signal Process. Mag. 2020 37 3 50 60 10.1109/MSP.2020.2975749
    [Google Scholar]
  73. He J. Chen X. Yin H. Wi-Fi sensing with channel state information: A survey. ACM Comput. Surv. 2021 54 2 1 36
    [Google Scholar]
/content/journals/swcc/10.2174/0122103279378837250717041135
Loading
/content/journals/swcc/10.2174/0122103279378837250717041135
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test