Skip to content
2000
image of Next-Gen Health Informatics- Artificial Intelligence Powered Diagnostics and Blockchain Enabled Data Integrity For Radiological Image Analysis

Abstract

The revolutionary effects of blockchain technology and artificial intelligence (AI) on the radiology department of healthcare administration are examined in this article. AI has become a vital tool in boosting image analysis precision, streamlining workflows, and improving patient outcomes as the need for prompt and accurate medical diagnosis increases. Concurrently, the incorporation of blockchain technology tackles important issues with patient privacy, interoperability, and data security. This paper presents the basic concepts of blockchain and artificial intelligence, with an emphasis on how they could cooperate in radiology. The primary objectives of integrating AI and blockchain in radiology are to increase diagnostic accuracy, safeguard the privacy and integrity of medical data, and facilitate seamless data sharing between healthcare providers. This essay demonstrates the effective use of AI-driven diagnostic tools in conjunction with blockchain's secure data management capabilities through a thorough literature research and analysis of recent deployments. According to research, combining these technologies can increase radiological practice efficiency, lower diagnostic error rates, and boost patient confidence in the healthcare system. Significant results could come from this integration, including improved data transparency, more efficient workflows, and more individualized patient care. To fully reap the benefits, however, issues like technological constraints, legal restrictions, and moral worries about algorithmic bias and data privacy must be resolved. In the end, this paper emphasizes how crucial it is to carry out more research and development in order to fully utilize blockchain and artificial intelligence (AI) to transform healthcare administration in radiology and beyond.

Loading

Article metrics loading...

/content/journals/swcc/10.2174/0122103279377272250418032737
2025-04-25
2025-09-13
Loading full text...

Full text loading...

References

  1. Singh Y. Jabbar M.A. Kumar Shandilya S. Vovk O. Hnatiuk Y. Exploring applications of blockchain in healthcare: Road map and future directions. Front. Public Health 2023 11 1229386 10.3389/fpubh.2023.1229386 37790716
    [Google Scholar]
  2. Srivastava S. Pant M. Jauhar S.K. Nagar A.K. Analyzing the prospects of blockchain in healthcare industry. Comput. Math. Methods Med. 2022 2022 1 24 10.1155/2022/3727389 36506597
    [Google Scholar]
  3. Li Y. Qian Y. Yu Y. Qin X. Zhang C. Liu Y. Yao K. Han J. Liu J. Ding E. StrucTexT: Structured text understanding with multi-modal transformers. Proceedings of the 29th ACM International Conference on Multimedia (MM ’21) Virtual Event, China, 2021, pp. 1912-1920 10.1145/3474085.3475345
    [Google Scholar]
  4. He K. Gan C. Li Z. Rekik I. Yin Z. Ji W. Gao Y. Wang Q. Zhang J. Shen D. Transformers in medical image analysis. Intell. Med. 2023 3 1 59 78 10.1016/j.imed.2022.07.002
    [Google Scholar]
  5. Kumar R. Arjunaditya Singh D. Srinivasan K. Hu Y.C. AI-powered blockchain technology for public health: A contemporary review, open challenges, and future research directions. Healthcare 2022 11 1 81 10.3390/healthcare11010081 36611541
    [Google Scholar]
  6. Saeed H. Malik H. Bashir U. Ahmad A. Riaz S. Ilyas M. Bukhari W.A. Khan M.I.A. Blockchain technology in healthcare: A systematic review. PLoS One 2022 17 4 e0266462 10.1371/journal.pone.0266462 35404955
    [Google Scholar]
  7. Pablo R.G.J. Roberto D.P. Victor S.U. Isabel G.R. Paul C. Elizabeth O.R. Big data in the healthcare system: A synergy with artificial intelligence and blockchain technology. J. Integr. Bioinform. 2022 19 1 20200035 10.1515/jib‑2020‑0035 34412176
    [Google Scholar]
  8. Kumar S. Lim W.M. Sivarajah U. Kaur J. Artificial Intelligence and blockchain integration in business: Trends from a bibliometric-content analysis. Inf. Syst. Front. 2022 25 2 871 896 10.1007/s10796‑022‑10279‑0 35431617
    [Google Scholar]
  9. Wang L. Alexander C.A. Big data analytics in medical engineering and healthcare: Methods, advances and challenges. J. Med. Eng. Technol. 2020 44 6 267 283 10.1080/03091902.2020.1769758 32498594
    [Google Scholar]
  10. McBee M.P. Wilcox C. Blockchain technology: Principles and applications in medical imaging. J. Digit. Imaging 2020 33 3 726 734 10.1007/s10278‑019‑00310‑3 31898037
    [Google Scholar]
  11. Dako F. Cook T. Zafar H. Schnall M. Population health management in radiology: Economic considerations. J. Am. Coll. Radiol. 2023 20 10 962 968 10.1016/j.jacr.2023.07.016 37597716
    [Google Scholar]
  12. Reilly R. Trends in healthcare and the changing role of radiology. Radiol. Manage. 2013 35 4 12 15 23986932
    [Google Scholar]
  13. Reiner B. Siegel E. Allman R. Strategies for the promotion of computer applications in radiology in healthcare delivery. J. Digit. Imaging 1998 11 3 Suppl 1 142 144 10.1007/BF03168286 9735453
    [Google Scholar]
  14. Arenson R.L. Andriole K.P. Avrin D.E. Gould R.G. Computers in imaging and health care: Now and in the future. J. Digit. Imaging 2000 13 4 145 156 10.1007/BF03168389 11110253
    [Google Scholar]
  15. Kansagra A.P. Yu J.P.J. Chatterjee A.R. Lenchik L. Chow D.S. Prater A.B. Yeh J. Doshi A.M. Hawkins C.M. Heilbrun M.E. Smith S.E. Oselkin M. Gupta P. Ali S. Big data and the future of radiology informatics. Acad. Radiol. 2016 23 1 30 42 10.1016/j.acra.2015.10.004 26683510
    [Google Scholar]
  16. Zoga A. Syed A. Artificial Intelligence in radiology: Current technology and future directions. Semin. Musculoskelet. Radiol. 2018 22 5 540 545 10.1055/s‑0038‑1673383 30399618
    [Google Scholar]
  17. van Leeuwen K.G. Schalekamp S. Rutten M.J.C.M. van Ginneken B. de Rooij M. Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. Eur. Radiol. 2021 31 6 3797 3804 10.1007/s00330‑021‑07892‑z 33856519
    [Google Scholar]
  18. Gore J.C. Artificial intelligence in medical imaging. Magn. Reson. Imaging 2020 68 A1 A4 10.1016/j.mri.2019.12.006 31857130
    [Google Scholar]
  19. Gallée L Kniesel H Ropinski T Götz M Artificial intelligence in radiology - Beyond the black box. Rofo 2023 195 9 797 803 10.1055/a‑2076‑6736
    [Google Scholar]
  20. Katzman B.D. van der Pol C.B. Soyer P. Patlas M.N. Artificial intelligence in emergency radiology: A review of applications and possibilities. Diagn. Interv. Imaging 2023 104 1 6 10 10.1016/j.diii.2022.07.005 35933269
    [Google Scholar]
  21. Heo M.S. Kim J.E. Hwang J.J. Han S.S. Kim J.S. Yi W.J. Park I.W. Artificial intelligence in oral and maxillofacial radiology: What is currently possible? Dentomaxillofac. Radiol. 2021 50 3 20200375 10.1259/dmfr.20200375 33197209
    [Google Scholar]
  22. Rubin D.L. Artificial Intelligence in radiology: Opportunities and challenges. Radiol. Clin. North Am. 2021 59 6 xv xvi 10.1016/j.rcl.2021.08.010 34689883
    [Google Scholar]
  23. Mello-Thoms C. Mello C.A.B. Clinical applications of artificial intelligence in radiology. Br. J. Radiol. 2023 96 1150 20221031 10.1259/bjr.20221031 37099398
    [Google Scholar]
  24. Richardson M.L. Garwood E.R. Lee Y. Li M.D. Lo H.S. Nagaraju A. Nguyen X.V. Probyn L. Rajiah P. Sin J. Wasnik A.P. Xu K. Noninterpretive uses of Artificial Intelligence in radiology. Acad. Radiol. 2021 28 9 1225 1235 10.1016/j.acra.2020.01.012 32059956
    [Google Scholar]
  25. Boverhof B.J. Redekop W.K. Bos D. Starmans M.P.A. Birch J. Rockall A. Visser J.J. Radiology A.I. Radiology AI deployment and assessment rubric (RADAR) to bring value-based AI into radiological practice. Insights Imaging 2024 15 1 34 10.1186/s13244‑023‑01599‑z 38315288
    [Google Scholar]
  26. Sivasankari B. Varalakshmi P. Blockchain and IoT technology in healthcare: A review. Stud. Health Technol. Inform. 2022 294 277 278 10.3233/SHTI220455 35612074
    [Google Scholar]
  27. Agbo C.C. Mahmoud Q.H. Eklund J.M. Blockchain technology in healthcare: A systematic review. Healthcare 2019 7 2 56 10.3390/healthcare7020056 30987333
    [Google Scholar]
  28. Mokhamed T. Talib M.A. Moufti M.A. Abbas S. Khan F. The potential of blockchain technology in dental healthcare: A literature review. Sensors 2023 23 6 3277 10.3390/s23063277 36991986
    [Google Scholar]
  29. AbuHalimeh A. Ali O. Comprehensive review for healthcare data quality challenges in blockchain technology. Front. Big Data 2023 6 1173620 10.3389/fdata.2023.1173620 37252129
    [Google Scholar]
  30. Ahmad S.S. Khan S. Kamal M.A. What is blockchain technology and its significance in the current healthcare system? A brief insight. Curr. Pharm. Des. 2019 25 12 1402 1408 10.2174/1381612825666190620150302 31258067
    [Google Scholar]
  31. Abu-elezz I. Hassan A. Nazeemudeen A. Househ M. Abd-alrazaq A. The benefits and threats of blockchain technology in healthcare: A scoping review. Int. J. Med. Inform. 2020 142 104246 10.1016/j.ijmedinf.2020.104246 32828033
    [Google Scholar]
  32. De Novi G. Sofia N. Vasiliu-Feltes I. Yan Zang C. Ricotta F. Blockchain technology predictions 2024: Transformations in healthcare, patient identity, and public health. Blockchain Healthc. Today 2023 6 10.30953/bhty.v6.287 38187958
    [Google Scholar]
  33. Ali A. Ali H. Saeed A. Ahmed Khan A. Tin T.T. Assam M. Ghadi Y.Y. Mohamed H.G. Blockchain-powered healthcare systems: Enhancing scalability and security with hybrid deep learning. Sensors 2023 23 18 7740 10.3390/s23187740 37765797
    [Google Scholar]
  34. Blazona B. Koncar M. HL7 and DICOM based integration of radiology departments with healthcare enterprise information systems. Int. J. Med. Inform. 2007 76 Suppl. 3 S425 S432 10.1016/j.ijmedinf.2007.05.001 17604684
    [Google Scholar]
  35. Baessler B. Artificial Intelligence in radiology - Definition, potential and challenges. Praxis 2021 110 1 48 53 10.1024/1661‑8157/a003597
    [Google Scholar]
  36. Mohseni A. Ghotbi E. Kazemi F. Shababi A. Jahan S.C. Mohseni A. Shababi N. Artificial Intelligence in radiology. Radiol. Clin. North Am. 2024 62 6 935 947 10.1016/j.rcl.2024.03.008 39393852
    [Google Scholar]
  37. Bucher AM Kleesiek J Artificial intelligence in oncological radiology: A (p)review. Radiologe 2021 61 1 52 59 10.1007/s00117‑020‑00787‑y
    [Google Scholar]
  38. Kumar R. Wang W. Kumar J. Yang T. Khan A. Ali W. Ali I. An Integration of blockchain and AI for secure data sharing and detection of CT images for the hospitals. Comput. Med. Imaging Graph. 2021 87 101812 10.1016/j.compmedimag.2020.101812 33279761
    [Google Scholar]
  39. Witowski J. Choi J. Jeon S. Kim D. Chung J. Conklin J. Figueiro Longo M.G. Succi M.D. Do S. MarkIt: A collaborative Artificial Intelligence annotation platform leveraging blockchain for medical imaging research. Blockchain Healthc. Today 2021 4 10.30953/bhty.v4.176 36777485
    [Google Scholar]
  40. Tagliafico A.S. Campi C. Bianca B. Bortolotto C. Buccicardi D. Francesca C. Prost R. Rengo M. Faggioni L. Blockchain in radiology research and clinical practice: Current trends and future directions. Radiol. Med. 2022 127 4 391 397 10.1007/s11547‑022‑01460‑1 35194720
    [Google Scholar]
  41. Shrivastava U. Song J. Han B.T. Dietzman D. Do data security measures, privacy regulations, and communication standards impact the interoperability of patient health information? A cross-country investigation. Int. J. Med. Inform. 2021 148 104401 10.1016/j.ijmedinf.2021.104401 33571743
    [Google Scholar]
  42. Gruson D. Controlling reliability, interoperability and security of mobile health solutions. EJIFCC 2021 32 2 118 123 34421479
    [Google Scholar]
  43. Fennelly O. Moroney D. Doyle M. Eustace-Cook J. Hughes M. Key interoperability Factors for patient portals and Electronic health Records: A scoping review. Int. J. Med. Inform. 2024 183 105335 10.1016/j.ijmedinf.2023.105335 38266425
    [Google Scholar]
  44. Ingle N.A. Aloraini R.A. Aljohany R.S. Samater F.M. Al Ageil A.A. Alshahrani M.M. Implementation of blockchain technology across different domains of dentistry: A systematic review. Cureus 2023 15 9 e45512 10.7759/cureus.45512 37868487
    [Google Scholar]
  45. Shader R.I. Some reflections on IBM watson and on women’s health. Clin. Ther. 2016 38 1 1 2 10.1016/j.clinthera.2015.12.008 26773356
    [Google Scholar]
  46. Jiang F. Jiang Y. Zhi H. Dong Y. Li H. Ma S. Wang Y. Dong Q. Shen H. Wang Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017 2 4 230 243 10.1136/svn‑2017‑000101 29507784
    [Google Scholar]
  47. Chen Y. Elenee Argentinis J.D. Weber G. IBM watson: How cognitive computing can be applied to big data challenges in life sciences research. Clin. Ther. 2016 38 4 688 701 10.1016/j.clinthera.2015.12.001 27130797
    [Google Scholar]
  48. Hoyt R.E. Snider D. Thompson C. Mantravadi S. IBM watson analytics: Automating visualization, descriptive, and predictive statistics. JMIR Public Health Surveill. 2016 2 2 e157 10.2196/publichealth.5810 27729304
    [Google Scholar]
  49. Pesce F. Albanese F. Mallardi D. Rossini M. Pasculli G. Suavo-Bulzis P. Granata A. Brunetti A. Cascarano G.D. Bevilacqua V. Gesualdo L. Identification of glomerulosclerosis using IBM Watson and shallow neural networks. J. Nephrol. 2022 35 4 1235 1242 10.1007/s40620‑021‑01200‑0 35041197
    [Google Scholar]
  50. Youssef A. Ng M.Y. Long J. Hernandez-Boussard T. Shah N. Miner A. Larson D. Langlotz C.P. Organizational factors in clinical data sharing for Artificial Intelligence in health care. JAMA Netw. Open 2023 6 12 e2348422 10.1001/jamanetworkopen.2023.48422 38113040
    [Google Scholar]
  51. Bosserdt M. Hamm B. Dewey M. Clinical trials in radiology and data sharing: Results from a survey of the European society of radiology (ESR) research committee. Eur. Radiol. 2019 29 9 4794 4802 10.1007/s00330‑019‑06105‑y 30810796
    [Google Scholar]
  52. White T. Blok E. Calhoun V.D. Data sharing and privacy issues in neuroimaging research: Opportunities, obstacles, challenges, and monsters under the bed. Hum. Brain Mapp. 2022 43 1 278 291 10.1002/hbm.25120 32621651
    [Google Scholar]
  53. Lepakshi VA Machine Learning and Deep Learning based AI tools for development of diagnostic tools Computational Approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV-2 Infection Academic Press Cambridge, Massachusetts 2022 399 420 10.1016/B978‑0‑323‑91172‑6.00011‑X
    [Google Scholar]
  54. Hasnain M. Albogamy F.R. Alamri S.S. Ghani I. Mehboob B. The Hyperledger fabric as a Blockchain framework preserves the security of electronic health records. Front. Public Health 2023 11 1272787 10.3389/fpubh.2023.1272787 38089022
    [Google Scholar]
  55. Hosny A. Parmar C. Quackenbush J. Schwartz L.H. Aerts H.J.W.L. Artificial intelligence in radiology. Nat. Rev. Cancer 2018 18 8 500 510 10.1038/s41568‑018‑0016‑5 29777175
    [Google Scholar]
  56. Lipkova J. Chen R.J. Chen B. Lu M.Y. Barbieri M. Shao D. Vaidya A.J. Chen C. Zhuang L. Williamson D.F.K. Shaban M. Chen T.Y. Mahmood F. Artificial intelligence for multimodal data integration in oncology. Cancer Cell 2022 40 10 1095 1110 10.1016/j.ccell.2022.09.012 36220072
    [Google Scholar]
  57. Kumar V. Gu Y. Basu S. Berglund A. Eschrich S.A. Schabath M.B. Forster K. Aerts H.J.W.L. Dekker A. Fenstermacher D. Goldgof D.B. Hall L.O. Lambin P. Balagurunathan Y. Gatenby R.A. Gillies R.J. Radiomics: The process and the challenges. Magn. Reson. Imaging 2012 30 9 1234 1248 10.1016/j.mri.2012.06.010 22898692
    [Google Scholar]
  58. Madabhushi A. Lee G. Image analysis and machine learning in digital pathology: Challenges and opportunities. Med. Image Anal. 2016 33 170 175 10.1016/j.media.2016.06.037 27423409
    [Google Scholar]
  59. Wu T.C. Ho C.T.B. Blockchain revolutionizing in emergency medicine: A scoping review of patient journey through the ED. Healthcare 2023 11 18 2497 10.3390/healthcare11182497 37761695
    [Google Scholar]
  60. Mazaheri S. Loya M.F. Newsome J. Lungren M. Gichoya J.W. Challenges of implementing Artificial Intelligence in interventional radiology. Semin. Intervent. Radiol. 2021 38 5 554 559 10.1055/s‑0041‑1736659 34853501
    [Google Scholar]
  61. Currie G. Hawk K.E. Rohren E. Vial A. Klein R. Machine Learning and Deep Learning in medical imaging: Intelligent imaging. J. Med. Imaging Radiat. Sci. 2019 50 4 477 487 10.1016/j.jmir.2019.09.005 31601480
    [Google Scholar]
  62. Petrick N. Chen W. Delfino J.G. Gallas B.D. Kang Y. Krainak D. Sahiner B. Samala R.K. Regulatory considerations for medical imaging AI/ML devices in the United States: Concepts and challenges. J. Med. Imaging 2023 10 5 051804 10.1117/1.JMI.10.5.051804 37361549
    [Google Scholar]
  63. Saw S.N. Ng K.H. Current challenges of implementing artificial intelligence in medical imaging. Phys. Med. 2022 100 12 17 10.1016/j.ejmp.2022.06.003 35714523
    [Google Scholar]
  64. Mienye I.D. Obaido G. Jere N. Mienye E. Aruleba K. Emmanuel I.D. Ogbuokiri B. A survey of explainable artificial intelligence in healthcare: Concepts, applications, and challenges. Inform. Med. Unlocked 2024 51 101587 10.1016/j.imu.2024.101587
    [Google Scholar]
  65. Najjar R. Redefining radiology: A review of artificial intelligence integration in medical imaging. Diagnostics 2023 13 17 2760 10.3390/diagnostics13172760 37685300
    [Google Scholar]
  66. Herington J. McCradden M.D. Creel K. Boellaard R. Jones E.C. Jha A.K. Rahmim A. Scott P.J.H. Sunderland J.J. Wahl R.L. Zuehlsdorff S. Saboury B. Ethical considerations for Artificial Intelligence in medical imaging: Data collection, development, and evaluation. J. Nucl. Med. 2023 64 12 1848 1854 10.2967/jnumed.123.266080 37827839
    [Google Scholar]
  67. Al-Naser Y.A. The impact of artificial intelligence on radiography as a profession: A narrative review. J. Med. Imaging Radiat. Sci. 2023 54 1 162 166 10.1016/j.jmir.2022.10.196 36376210
    [Google Scholar]
  68. Arslan M. Asim M. Sattar H. Khan A. Thoppil Ali F. Zehra M. Talluri K. Role of radiology in the diagnosis and treatment of breast cancer in women: A comprehensive review. Cureus 2024 16 9 e70097 10.7759/cureus.70097 39449897
    [Google Scholar]
  69. Kim M.K. Chang J.M. AI-driven selection of candidates for supplemental breast cancer screening. Radiology 2024 311 1 e240447 10.1148/radiol.240447 38591977
    [Google Scholar]
  70. Praet J. Anderhalten L. Comi G. Horakova D. Ziemssen T. Vermersch P. Lukas C. van Leemput K. Steppe M. Aguilera C. Kadas E.M. Bertrand A. van Rampelbergh J. de Boer E. Zingler V. Smeets D. Ribbens A. Paul F. A future of AI-driven personalized care for people with multiple sclerosis. Front. Immunol. 2024 15 1446748 10.3389/fimmu.2024.1446748 39224590
    [Google Scholar]
  71. Al-antari M.A. Advancements in Artificial Intelligence for medical computer-aided diagnosis. Diagnostics 2024 14 12 1265 10.3390/diagnostics14121265 38928680
    [Google Scholar]
  72. Cè M. Irmici G. Foschini C. Danesini G.M. Falsitta L.V. Serio M.L. Fontana A. Martinenghi C. Oliva G. Cellina M. Artificial Intelligence in brain tumor imaging: A step toward personalized medicine. Curr. Oncol. 2023 30 3 2673 2701 10.3390/curroncol30030203 36975416
    [Google Scholar]
  73. Ghenciu L.A. Dima M. Stoicescu E.R. Iacob R. Boru C. Hațegan O.A. Retinal imaging-based oculomics: Artificial Intelligence as a tool in the diagnosis of cardiovascular and metabolic diseases. Biomedicines 2024 12 9 2150 10.3390/biomedicines12092150 39335664
    [Google Scholar]
  74. Zhu J. Zeng L. Mo Z. Cao L. Wu Y. Hong L. Zhao Q. Su F. LMCD-OR: A large-scale, multilevel categorized diagnostic dataset for oral radiography. J. Transl. Med. 2024 22 1 930 10.1186/s12967‑024‑05741‑3 39402640
    [Google Scholar]
  75. Pinto-Coelho L. How Artificial Intelligence is shaping medical imaging technology: A survey of innovations and applications. Bioengineering 2023 10 12 1435 10.3390/bioengineering10121435 38136026
    [Google Scholar]
  76. Pokhriyal S.C. Shukla A. Gupta U. Al-Ghuraibawi M.M.H. Yadav R. Panigrahi K. Application of Artificial Intelligence in neuroendocrine lung cancer diagnosis and treatment: A systematic review. Cureus 2024 16 5 e61012 10.7759/cureus.61012 38910787
    [Google Scholar]
  77. Bibri S.E. Huang J. Jagatheesaperumal S.K. Krogstie J. The synergistic interplay of artificial intelligence and digital twin in environmentally planning sustainable smart cities: A comprehensive systematic review. Environ. Sci. Ecotechnol. 2024 20 100433 10.1016/j.ese.2024.100433 38831974
    [Google Scholar]
  78. Yagi M. Yamanouchi K. Fujita N. Funao H. Ebata S. Revolutionizing spinal care: Current applications and future directions of Artificial Intelligence and Machine Learning. J. Clin. Med. 2023 12 13 4188 10.3390/jcm12134188 37445222
    [Google Scholar]
  79. Kotsifa E. Mavroeidis V.K. Present and future applications of Artificial Intelligence in kidney transplantation. J. Clin. Med. 2024 13 19 5939 10.3390/jcm13195939 39407999
    [Google Scholar]
  80. Yang L. Ene I.C. Arabi Belaghi R. Koff D. Stein N. Santaguida P. Stakeholders’ perspectives on the future of artificial intelligence in radiology: A scoping review. Eur. Radiol. 2022 32 3 1477 1495 10.1007/s00330‑021‑08214‑z 34545445
    [Google Scholar]
  81. Fanni S.C. Neri E. Bystanders or stakeholders: Patient perspectives on the adoption of AI in radiology. Eur. Radiol. 2024 35 2 767 768 10.1007/s00330‑024‑11135‑2 39417868
    [Google Scholar]
  82. Sozio S.J. Soliman A. Shah K. Schonfeld S. Kempf J. Educating radiology stakeholders on relevant health issues and terminology regarding LGBTQIA+ patients in 2023. Acad. Radiol. 2023 30 10 2422 2428 10.1016/j.acra.2023.05.002 37311679
    [Google Scholar]
  83. Vagal A. Wahab S.A. Butcher B. Zettel N. Kemper E. Vogel C. Mahoney M. Human-centered design thinking in radiology. J. Am. Coll. Radiol. 2020 17 5 662 667 10.1016/j.jacr.2019.11.019 31891672
    [Google Scholar]
  84. Vo V. Chen G. Aquino Y.S.J. Carter S.M. Do Q.N. Woode M.E. Multi-stakeholder preferences for the use of artificial intelligence in healthcare: A systematic review and thematic analysis. Soc. Sci. Med. 2023 338 116357 10.1016/j.socscimed.2023.116357 37949020
    [Google Scholar]
  85. Rezazade Mehrizi M.H. van Ooijen P. Homan M. Applications of artificial intelligence (AI) in diagnostic radiology: A technography study. Eur. Radiol. 2021 31 4 1805 1811 10.1007/s00330‑020‑07230‑9 32945967
    [Google Scholar]
  86. Strohm L. Hehakaya C. Ranschaert E.R. Boon W.P.C. Moors E.H.M. Implementation of artificial intelligence (AI) applications in radiology: Hindering and facilitating factors. Eur. Radiol. 2020 30 10 5525 5532 10.1007/s00330‑020‑06946‑y 32458173
    [Google Scholar]
  87. Kaba E. Solak M. Çeliker F.B. The role of prompt engineering in radiology applications of generative AI. Acad. Radiol. 2024 31 6 2641 10.1016/j.acra.2024.03.005 38523008
    [Google Scholar]
  88. Hung K. Montalvao C. Tanaka R. Kawai T. Bornstein M.M. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: A systematic review. Dentomaxillofac. Radiol. 2020 49 1 20190107 10.1259/dmfr.20190107 31386555
    [Google Scholar]
  89. Harvey H.B. Gowda V. Clinical applications of AI in MSK imaging: A liability perspective. Skeletal Radiol. 2022 51 2 235 238 10.1007/s00256‑021‑03782‑z 33835241
    [Google Scholar]
  90. Ghorashi N.S. Rahimi M. Sirous R. Javan R. The intersection of radiology with blockchain and smart contracts: A perspective. Cureus 2023 15 10 e46941 10.7759/cureus.46941 38021752
    [Google Scholar]
  91. El Khatib M. Alzoubi H.M. Hamidi S. Alshurideh M. Baydoun A. Al-Nakeeb A. Impact of using the internet of medical things on e-healthcare performance: Blockchain assist in improving smart contract. Clinicoecon. Outcomes Res. 2023 15 397 411 10.2147/CEOR.S407778 37287899
    [Google Scholar]
  92. Kotter E. Marti-Bonmati L. Brady A.P. Desouza N.M. ESR white paper: Blockchain and medical imaging. Insights Imaging 2021 12 1 82 10.1186/s13244‑021‑01029‑y 34156562
    [Google Scholar]
  93. Kasyapa M.S.B. Vanmathi C. Blockchain integration in healthcare: A comprehensive investigation of use cases, performance issues, and mitigation strategies. Front. Digit. Health 2024 6 1359858 10.3389/fdgth.2024.1359858 38736708
    [Google Scholar]
  94. López Vivar A. Sandoval Orozco A.L. García Villalba L.J. A security framework for Ethereum smart contracts. Comput. Commun. 2021 172 119 129 10.1016/j.comcom.2021.03.008
    [Google Scholar]
  95. Mazurowski M.A. Buda M. Saha A. Bashir M.R. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI. J. Magn. Reson. Imaging 2019 49 4 939 954 10.1002/jmri.26534 30575178
    [Google Scholar]
  96. Ahmad H.K. Milne M.R. Buchlak Q.D. Ektas N. Sanderson G. Chamtie H. Karunasena S. Chiang J. Holt X. Tang C.H.M. Seah J.C.Y. Bottrell G. Esmaili N. Brotchie P. Jones C. Machine Learning augmented interpretation of chest X-rays: A systematic review. Diagnostics 2023 13 4 743 10.3390/diagnostics13040743 36832231
    [Google Scholar]
  97. Fusco R. Grassi R. Granata V. Setola S.V. Grassi F. Cozzi D. Pecori B. Izzo F. Petrillo A. Artificial Intelligence and COVID-19 using chest CT scan and chest X-ray images: Machine Learning and Deep Learning approaches for diagnosis and treatment. J. Pers. Med. 2021 11 10 993 10.3390/jpm11100993 34683133
    [Google Scholar]
  98. Patel V. A framework for secure and decentralized sharing of medical imaging data via blockchain consensus. Health Informatics J. 2019 25 4 1398 1411 10.1177/1460458218769699 29692204
    [Google Scholar]
  99. Tagde P. Tagde S. Bhattacharya T. Tagde P. Chopra H. Akter R. Kaushik D. Rahman M.H. Blockchain and artificial intelligence technology in e-Health. Environ. Sci. Pollut. Res. Int. 2021 28 38 52810 52831 10.1007/s11356‑021‑16223‑0 34476701
    [Google Scholar]
  100. Al Shareef A.M. Seçkiner S. Eid B. Abumeteir H. Integration of blockchain with artificial intelligence technologies in the energy sector: A systematic review. Front. Energy Res. 2024 12 1377950 10.3389/fenrg.2024.1377950
    [Google Scholar]
  101. Pan W. Fang X. Zang Z. Chi B. Wei X. Li C. Diagnostic efficiency of artificial intelligence for pulmonary nodules based on CT scans. Am. J. Transl. Res. 2023 15 5 3318 3325 37303635
    [Google Scholar]
  102. Bi W.L. Hosny A. Schabath M.B. Giger M.L. Birkbak N.J. Mehrtash A. Allison T. Arnaout O. Abbosh C. Dunn I.F. Mak R.H. Tamimi R.M. Tempany C.M. Swanton C. Hoffmann U. Schwartz L.H. Gillies R.J. Huang R.Y. Aerts H.J.W.L. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J. Clin. 2019 69 2 127 157 10.3322/caac.21552 30720861
    [Google Scholar]
  103. Bhandari A. Revolutionizing radiology With Artificial Intelligence. Cureus 2024 16 10 e72646 10.7759/cureus.72646 39474591
    [Google Scholar]
  104. Johnson K.B. Wei W.Q. Weeraratne D. Frisse M.E. Misulis K. Rhee K. Zhao J. Snowdon J.L. Precision medicine, AI, and the future of personalized health care. Clin. Transl. Sci. 2021 14 1 86 93 10.1111/cts.12884 32961010
    [Google Scholar]
  105. Bathula A. Gupta S.K. Merugu S. Saba L. Khanna N.N. Laird J.R. Sanagala S.S. Singh R. Garg D. Fouda M.M. Suri J.S. Blockchain, artificial intelligence, and healthcare: The tripod of future—a narrative review. Artif. Intell. Rev. 2024 57 9 238 10.1007/s10462‑024‑10873‑5
    [Google Scholar]
  106. Al-Khasawneh M.A. Faheem M. Alarood A.A. Habibullah S. Alzahrani A. A secure blockchain framework for healthcare records management systems. Healthc. Technol. Lett. 2024 11 6 461 470 10.1049/htl2.12092 39720755
    [Google Scholar]
  107. Ahmed M. Dar A.R. Helfert M. Khan A. Kim J. Data provenance in healthcare: Approaches, challenges, and future directions. Sensors 2023 23 14 6495 10.3390/s23146495 37514788
    [Google Scholar]
/content/journals/swcc/10.2174/0122103279377272250418032737
Loading
/content/journals/swcc/10.2174/0122103279377272250418032737
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test