Skip to content
2000
Volume 15, Issue 4
  • ISSN: 2210-3279
  • E-ISSN: 2210-3287

Abstract

Background and Objective

Enhancing localization accuracy while minimizing development costs poses significant challenges in deploying and managing wireless sensor networks (WSNs). This paper presents an advanced algorithm for node localization in indoor environments, integrating sophisticated optimization techniques. The hybrid algorithm, HSPPSO-TLBO, combines Hierarchical Structure Poly Particle Swarm Optimization (HSPPSO) with Teaching–Learning-Based Optimization (TLBO).

Methods

The proposed algorithm HSPPSO-TLBO aims to minimize the mean squared range error (MSRE) resulted by calculating internal distances between nodes using Received Signal Strength Indicator (RSSI). TLBO, with its robust global search capabilities, complements HSPPSO’s local search, preventing convergence to inappropriate local optima. HSPPSO-TLBO offers easy implementation and leverages the cost-free feature of RSSI, making it an attractive choice for enhancing localization precision.

Results and Discussion

Simulation results demonstrate the superior performance of HSPPSO-TLBO compared to other algorithms using different meta-heuristic optimization techniques. The outstanding performance of HSPPSO-TLBO is evident across various evaluation metrics, including localization error, localization rate, and simulation runtime.

Conclusion

The proposed algorithm utilizing HSPPSO and TLBO is exceptionally effective in improving localization precision in indoor WSNs due to several key characteristics. These include the seamless integration and easy implementation of both HSPPSO and TLBO, along with the cost-free advantage of using the RSSI technique. This combination makes the algorithm a highly functional solution for improving localization accuracy.

Loading

Article metrics loading...

/content/journals/swcc/10.2174/0122103279335199240912100619
2024-09-27
2026-01-03
Loading full text...

Full text loading...

References

  1. SinghS. ShivangnaS. MittalE. Range based wireless sensor node localization using PSO and BBO and its variants.2013 International Conference on Communication Systems and Network Technologies, Gwalior, India, 06-08 April 2013, pp. 309-315.10.1109/CSNT.2013.72
    [Google Scholar]
  2. AggarwalN. SharmaN. BhaleY. Performance analysis of power efficient routing protocols for wireless sensor networks: A survey.2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 28-29 April 2022, pp. 270-274.10.1109/ICACITE53722.2022.9823426
    [Google Scholar]
  3. PerumalP.S. UthariarajV.R. Novel localization of sensor nodes in wireless sensor networks using co-ordinate signal strength database.Procedia Eng.201230066266810.1016/j.proeng.2012.01.912
    [Google Scholar]
  4. ZainI.F.M. ShinS.Y. Distributed localization for wireless sensor networks using binary particle swarm optimization (BPSO).2014 IEEE 79th Vehicular Technology Conference (VTC Spring), Seoul, Korea (South), 2014, pp. 1-5.10.1109/VTCSpring.2014.7022886
    [Google Scholar]
  5. FangX. JiangZ. NanL. ChenL. Noise-aware localization algorithms for wireless sensor networks based on multidimensional scaling and adaptive Kalman filtering.Comput. Commun.2017101576810.1016/j.comcom.2016.10.011
    [Google Scholar]
  6. VilasecaD.I. GiribetJ.I. Indoor navigation using WiFi signals.2013 Fourth Argentine Symposium and Conference on Embedded Systems (SASE/CASE), Buenos Aires, Argentina, 14-16 August 2013, pp. 1-6.10.1109/SASE‑CASE.2013.6636772
    [Google Scholar]
  7. ChandirasekaranD. JayabarathiT. Wireless sensor networks node localization-a performance comparison of shuffled frog leaping and firefly algorithm in LabVIEW.TELKOMNIKA Indones. J. Electr. Eng.2015143516524
    [Google Scholar]
  8. OguejioforO.S. OkoroguV.N. AdewaleA. OsuesuB.O. Outdoor localization system using RSSI measurement of wireless sensor network.Int. J. Innov. Technol. Explor. Eng.20132216
    [Google Scholar]
  9. OlivaG. PanzieriS. PascucciF. SetolaR. Sensor networks localization: Extending trilateration via shadow edges.IEEE Trans. Automat. Contr.201560102752275510.1109/TAC.2015.2404253
    [Google Scholar]
  10. XuJ. HeJ. ZhangY. XuF. CaiF. A distance-based maximum likelihood estimation method for sensor localization in wireless sensor networks.Int. J. Distrib. Sens. Netw.2016124208053610.1155/2016/2080536
    [Google Scholar]
  11. MisraR. ShuklaS. ChandelV. Lightweight localization using trilateration for sensor networks.Int. J. Wirel. Inf. Netw.20142128910010.1007/s10776‑014‑0239‑7
    [Google Scholar]
  12. KenchannavarH.H. BeedakarS. KulkarniU.P. Optimization techniques to improve lifetime of wireless sensor networks: A review.2015 International Conference on Energy Systems and Applications, Pune, India, 2015, pp. 446-450.10.1109/ICESA.2015.7503389
    [Google Scholar]
  13. StojkoskaB.R. KirandziskaV. Improved MDS-based algorithm for nodes localization in wireless sensor networks.Eurocon 2013.IEEE201360861310.1109/EUROCON.2013.6625044
    [Google Scholar]
  14. WachowiakM.P. TimsonM.C. DuValD.J. Adaptive particle swarm optimization with heterogeneous multicore parallelism and GPU acceleration.IEEE Trans. Parallel Distrib. Syst.201728102784279310.1109/TPDS.2017.2687461
    [Google Scholar]
  15. JanapatiR. BalaswamyC. SoundararajanK. Localization of cooperative WSN using distributed PSO with optimum references.Iran. J. Electr. Comput. Eng.201666
    [Google Scholar]
  16. ShiehC-S. SaiV-O. LinY-C. LeeT-F. NguyenT-T. LeQ-D. Improved node localization for WSN using heuristic optimization approaches.2016 International Conference on Networking and Network Applications (NaNA), Hakodate, Japan, 23-25 July 2016, pp. 95-98.10.1109/NaNA.2016.58
    [Google Scholar]
  17. ElkinC. KumarasiriR. RawatD.B. DevabhaktuniV. Localization in wireless sensor networks: A Dempster-Shafer evidence theoretical approach.Ad Hoc Netw.201754304110.1016/j.adhoc.2016.09.020
    [Google Scholar]
  18. ZhangY. HuH. FuW. JiangH. Particle swarm optimization–based minimum residual algorithm for mobile robot localization in indoor environment.Int. J. Adv. Robot. Syst.201714510.1177/1729881417729277
    [Google Scholar]
  19. AA. A comparative analysis of localization techniques in wireless sensor network.2022 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), THIRUVANANTHAPURAM, India, 2022, pp. 285-289.10.1109/SPICES52834.2022.9774208
    [Google Scholar]
  20. ArampatzisT. LygerosJ. ManesisS. A survey of applications of wireless sensors and wireless sensor networks.Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005, Limassol, Cyprus, 27-29 June 2005, pp. 719-724.10.1109/.2005.1467103
    [Google Scholar]
  21. AmundsonI. KoutsoukosX. A survey on localization for mobile wireless sensor networks.Mob. Entity Localization Track200923525410.1007/978‑3‑642‑04385‑7_16
    [Google Scholar]
  22. MaoG. FidanB. AndersonB.D.O. Wireless sensor network localization techniques.Comput. Netw.200751102529255310.1016/j.comnet.2006.11.018
    [Google Scholar]
  23. YickJ. MukherjeeB. GhosalD. MukherjeeB. GhosalD. Wireless sensor network survey.Comput. Netw.200852122292233010.1016/j.comnet.2008.04.002
    [Google Scholar]
  24. RawatP. SinghK.D. ChaouchiH. BonninJ.M. Wireless sensor networks: A survey on recent developments and potential synergies.J. Supercomput.201468114810.1007/s11227‑013‑1021‑9
    [Google Scholar]
  25. Tagne FuteE. Nyabeye PangopD.K. TonyeE. A new hybrid localization approach in wireless sensor networks based on particle swarm optimization and tabu search.Appl. Intell.20235377546756110.1007/s10489‑022‑03872‑y
    [Google Scholar]
  26. KagiS. MathapatiB.S. Localization in wireless sensor networks: A compact review on state-of-the-art models.2021 6th International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 20-22 January 2021, pp. 5-12.10.1109/ICICT50816.2021.9358793
    [Google Scholar]
  27. TamizharasiA. ArthiR. MuruganK. Bio-inspired algorithm for optimizing the localization of wireless sensor networks.2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, India, 04-06 July 2013, pp. 1-5.10.1109/ICCCNT.2013.6726485
    [Google Scholar]
  28. LowK.S. NguyenH.A. GuoH. A particle swarm optimization approach for the localization of a wireless sensor network.2008 IEEE International Symposium on Industrial Electronics, Cambridge, UK, 30 June 2008 - 02 July 2008, pp. 1820-1825.
    [Google Scholar]
  29. TangC. LiuR. NiJ. A novel wireless sensor network localization approach: Localization based on plant growth simulation algorithm.Elektron. Elektrotech.20131989710010.5755/j01.eee.19.8.5326
    [Google Scholar]
  30. NjimaW. BazziA. ChafiiM. DNN-based indoor localization under limited dataset using GANs and semi-supervised learning.IEEE Access202210698966990910.1109/ACCESS.2022.3187837
    [Google Scholar]
  31. KannanA.A. MaoG. VuceticB. Simulated annealing based localization in wireless sensor network.The IEEE Conference on Local Computer Networks 30th Anniversary (LCN'05)l, Sydney, NSW, Australia, 2005, pp. 2-514.10.1109/LCN.2005.125
    [Google Scholar]
  32. KannanA.A. MaoG. VuceticB. Simulated annealing based wireless sensor network localization with flip ambiguity mitigation.2006 IEEE 63rd Vehicular Technology Conference, Melbourne, VIC, Australia, 07-10 May 2006, pp. 1022-1026.10.1109/VETECS.2006.1682979
    [Google Scholar]
  33. NjimaW. AhrizI. ZayaniR. TerreM. BouallegueR. Deep CNN for indoor localization in iot-sensor systems.Sensors20191914312710.3390/s1914312731311205
    [Google Scholar]
  34. AlfawazO. OsamyW. SaadM. KhedrA.M. Modified rat swarm optimization based localization algorithm for wireless sensor networks.Wirel. Pers. Commun.202313031617163710.1007/s11277‑023‑10347‑x
    [Google Scholar]
  35. YadavP. SharmaS.C. SinghO. RishiwalV. Optimized localization learning algorithm for indoor and outdoor localization system in WSNs.Wirel. Pers. Commun.2023130165167210.1007/s11277‑023‑10304‑8
    [Google Scholar]
  36. YangQ. A new localization method based on improved particle swarm optimization for wireless sensor networks.IET Softw.202216325125810.1049/sfw2.12027
    [Google Scholar]
  37. ZhangQ. WangJ. JinC. YeJ. MaC. ZhangW. Genetic algorithm based wireless sensor network localization.2008 Fourth International Conference on Natural Computation, Jinan, China, 18-20 October 2008, pp. 608-613.10.1109/ICNC.2008.206
    [Google Scholar]
  38. ManjarresD. Del SerJ. Gil-LopezS. VecchioM. Landa-TorresI. Lopez-ValcarceR. On the application of a hybrid harmony search algorithm to node localization in anchor-based wireless sensor networks.2011 11th International Conference on Intelligent Systems Design and Applications, Cordoba, Spain, 22-24 November 2011, pp. 1014-1019.10.1109/ISDA.2011.6121791
    [Google Scholar]
  39. NjimaW. ChafiiM. ChortiA. ShubairR.M. PoorH.V. Indoor localization using data augmentation via selective generative adversarial networks.IEEE Access20219983379834710.1109/ACCESS.2021.3095546
    [Google Scholar]
  40. NjimaW. ChafiiM. ShubairR.M. GAN based data augmentation for indoor localization using labeled and unlabeled data.2021 International Balkan Conference on Communications and Networking (BalkanCom), Novi Sad, Serbia, 20-22 September 2021, pp. 36-39.10.1109/BalkanCom53780.2021.9593240
    [Google Scholar]
  41. LuL. LuoQ. LiuJ. LongC. An improved probability particle swarm optimization algorithm.Advances in Swarm Intelligence. ICSI 2010, Springer, Berlin, Heidelberg, 2010, pp 102–109.10.1007/978‑3‑642‑13495‑1_13
    [Google Scholar]
  42. KulkarniR.V. VenayagamoorthyG.K. Particle swarm optimization in wireless-sensor networks: A brief survey.IEEE Trans. Syst. Man Cybern. C Appl. Rev.201141226226710.1109/TSMCC.2010.2054080
    [Google Scholar]
  43. ZhangF. Positioning research for wireless sensor networks based on PSO algorithm.EEE2013199710
    [Google Scholar]
  44. GopakumlarA. JacobL. Localization in wireless sensor networks using particle swarm optimization.2008 IET International Conference on Wireless, Mobile and Multimedia Networks, Beijing, 11-12 January 2008, pp. 227-230.
    [Google Scholar]
  45. RiniD.P. Particle swarm optimization : Technique.System and Challenges20111411927
    [Google Scholar]
  46. KaundalV. SharmaP. PrateekM. Wireless sensor node localization based on LNSM and hybrid TLBO: Unilateral technique for outdoor location.Int. J. Electron. Telecommun.201763438939710.1515/eletel‑2017‑0054
    [Google Scholar]
  47. SharmaG. KumarA. Improved DV-Hop localization algorithm using teaching learning based optimization for wireless sensor networks.Telecomm. Syst.201867216317810.1007/s11235‑017‑0328‑x
    [Google Scholar]
  48. MarksM. Niewiadomska-szynkiewiczE. Self-Adaptive Localization Using Signal Strength Measurements.SENSORCOMM 2011 Fifth Int. Conf. Sens. Technol. Appl.20117378
    [Google Scholar]
  49. XiaoF. WuM. HuangH. WangR. WangS. Novel node localization algorithm based on nonlinear weighting least square for wireless sensor networks.Int. J. Distrib. Sens. Netw.201281180384010.1155/2012/803840
    [Google Scholar]
  50. Al AlawiR. RSSI based location estimation in wireless sensors networks.2011 17th IEEE International Conference on Networks, Singapore, 14-16 December 2011, pp. 118-122.10.1109/ICON.2011.6168517
    [Google Scholar]
/content/journals/swcc/10.2174/0122103279335199240912100619
Loading
/content/journals/swcc/10.2174/0122103279335199240912100619
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test