Skip to content
2000
Volume 15, Issue 1
  • ISSN: 2210-3279
  • E-ISSN: 2210-3287

Abstract

Introduction

A recent boom in the development of IoT-enabled products has accelerated data transmission from end clients to cloud services and . Being resource-constrained, IoT devices have lower computational support, especially at IoT end nodes; hence, the probability of data breach has also increased to a greater extent.

Methods

A lightweight security algorithm for the Internet of Things (IoT) is a matter of concern for data security and integrity. IoT nodes transmit the data into small chunks and are vulnerable to attacks, such as probing attacks. In this study, a new approach of algorithm hopping using dynamic switching of encryption algorithm has been proposed.

Results

Dynamic Encryption Decryption Algorithm (DEnDecA) proves to be a lightweight choice of encryption by providing high-security shielding over less secure algorithms by their dynamic selection without any human interaction or interface. The hopping has been implemented using MATLAB along with AES-32, AES-64, and AES-128.

Conclusion

The results show only 8-bit data overhead and 2ms to 8ms additional time for encryption/decryption for data ranging from 1KB to 1MB for AES-128, AES-64, and AES-32 algorithms.

Loading

Article metrics loading...

/content/journals/swcc/10.2174/0122103279320313240805055515
2024-08-21
2025-10-30
Loading full text...

Full text loading...

References

  1. AhangerT.A. Abdullah AljumahA. AtiquzzamanM. State-of-the-art survey of artificial intelligent techniques for IoT security.Computer Networks202220610877110.1016/j.comnet.2022.108771
    [Google Scholar]
  2. FarooqU. AslamM.F. Comparative analysis of different AES implementation techniques for efficient resource usage and better performance of an FPGA.J. King Saud Univ.201629329530210.1016/j.jksuci.2016.01.004
    [Google Scholar]
  3. MitchellC.J. On the security of 2-key triple DES.IEEE Trans. Inf. Theory201662116260626710.1109/TIT.2016.2611003
    [Google Scholar]
  4. Transitions: Recommendations for Transitioning the Use of Cryptographic Algorithms and Key LengthsNational Institute of Standards and TechnologiesUSA2015
    [Google Scholar]
  5. TsaiW.C. TsaiT.H. WangT.J. ChiangM.L. Automatic key update mechanism for lightweight m2m communication and enhancement of iot security: A case study of CoAP using libcoap library.Sensors202222134010.3390/s2201034035009882
    [Google Scholar]
  6. AdeelA. AhmadJ. LarijaniH. HussainA. A novel real-time, lightweight chaotic-encryption scheme for next-generation audio-visual hearing aids.Cognit. Comput.202012358960110.1007/s12559‑019‑09653‑z
    [Google Scholar]
  7. Recommendation for Key ManagementNational Institute of Standards and TechnologiesUSA201610.6028/NIST.SP.800‑57pt1r4
    [Google Scholar]
  8. EstrelladoM.E.L. SisonA.M. TanguiligB.T. Test bank management system applying rasch model and data encryption standard (DES) algorithm.IJMECS20168101810.5815/ijmecs.2016.10.01
    [Google Scholar]
  9. BuiD.H. PuschiniD. MinS.B. BeigneE. TranX.T. AES datapath optimization strategies for low-power low-energy multisecurity-level internet-of-things applications.IEEE Trans. Very Large Scale Integr. (VLSI) Syst.201725123281329010.1109/TVLSI.2017.2716386
    [Google Scholar]
  10. QiuP. LyuY. ZhangJ. WangX. ZhaiD. WangD. QuG. Physical unclonable functions-based linear encryption against code reuse attacks.Proceedings of 53rd Annual Design Automation Conference (DAC)Austin, Texas, 2016, pp. 75.10.1145/2897937.2898061
    [Google Scholar]
  11. QiuP. LyuY. ZhangJ. WangD. QuG. Control flow integrity based on lightweight encryption architecture.IEEE Trans. Comput. Aided Des. Integrated Circ. Syst.201711410.1109/TCAD.2017.2748000
    [Google Scholar]
  12. DhandaS. S. SinghB. JindalP. Lightweight cryptography: A solution to secure IoT.In: Wireless Personal CommunicationsSpringer202010.1007/s11277‑020‑07134‑3
    [Google Scholar]
  13. El-hajjM. FadlallahA. ChamounM. SerhrouchniA. A survey of internet of things (IoT) authentication schemes.Sensors2019195114110.3390/s1905114130845760
    [Google Scholar]
  14. RayesA. SalamS. Internet of things security and privacy.In: Internet of Things From Hype to Reality. Springer.Cham.201710.1007/978‑3‑319‑44860‑2_8
    [Google Scholar]
  15. MasriA. KalyanamE. BattsK. KimJ. SinghJ. VoS. Investigating messaging protocols for the internet of things (IoT).IEEE Access20208948809491110.1109/ACCESS.2020.2993363
    [Google Scholar]
  16. BatraI. LuhachA.K. PathakN. Research and analysis of lightweight cryptographic solutions for internet of things.Proceedings of the second international conference on information and communication technology for competitive strategies, 2016, pp. 1-5.10.1145/2905055.2905229
    [Google Scholar]
  17. AzimA.W. BazziA. ShubairR. ChafiiM. Dual-mode chirp spread spectrum modulation.IEEE Wirel. Commun. Lett.20221191995199910.1109/LWC.2022.3190564
    [Google Scholar]
  18. GórskiT. UML profile for messaging patterns in service-oriented architecture, microservices, and internet of things.Appl. Sci.20221224127901279010.3390/app122412790
    [Google Scholar]
  19. AzimA.W. BazziA. FatimaM. ShubairR. ChafiiM. Dual-mode time domain multiplexed chirp spread spectrum.IEEE Trans. Vehicular Technol.20237212160861609710.1109/TVT.2023.3295270
    [Google Scholar]
  20. ThakorV.A. RazzaqueM.A. KhandakerM.R.A. Lightweight cryptography for IoT: A state-of-the-art.IEEE Access2020
    [Google Scholar]
  21. SyalR. A Comparative Analysis of Lightweight Cryptographic Protocols for Smart Home.Energy Transfer and Dissipation in Plasma Turbulence201966366910.1007/978‑981‑13‑5953‑8_54
    [Google Scholar]
  22. BiryukovA. PerrinL. State of the art in lightweight symmetric cryptography.IACR Cryptol.2017155
    [Google Scholar]
  23. SunL. DuQ. A review of physical layer security techniques for internet of things: Challenges and solutions.Entropy2018201073010.3390/e20100730
    [Google Scholar]
  24. MukherjeeA. Physical-layer security in the internet of things: sensing and communication confidentiality under resource constraints.Proc. IEEE2015103101747176110.1109/JPROC.2015.2466548
    [Google Scholar]
  25. TomanZ.H. HamelL. TomanS.H. GraietM. ValadaresD.C.G. Formal verification for security and attacks in IoT physical layer.J. Reliab. Intell. Environ.2024101739110.1007/s40860‑023‑00202‑y
    [Google Scholar]
  26. ZahraF.T. BostanciY.S. SoyturkM. LSTM-based jamming detection and forecasting model using transport and application layer parameters in wi-fi based iot systems.IEEE Access202412329443295810.1109/ACCESS.2024.3371673
    [Google Scholar]
  27. IlliE. QaraqeM. AlthunibatS. AlhasanatA. AlsafasfehM. de ReeM. MantasG. RodriguezJ. AmanW. Al-KuwariS. Physical layer security for authentication, confidentiality, and malicious node detection: A paradigm shift in securing iot networks.IEEE Commun. Surv. Tutor.202426134738810.1109/COMST.2023.3327327
    [Google Scholar]
  28. El-LatifA.A.A. Abd-El-AttyB. Venegas-AndracaS.E. ElwahshH. PiranM.J. BashirA.K. SongO.Y. MazurczykW. Providing end-to-end security using quantum walks in iot networks.IEEE Access20208926879269610.1109/ACCESS.2020.2992820
    [Google Scholar]
  29. RondonL.P. BabunL. ArisA. AkkayaK. UluagacA.S. Survey on enterprise internet-of-things systems (E-IoT): A security perspective.Ad Hoc Netw.202212510272810.1016/j.adhoc.2021.102728
    [Google Scholar]
  30. RayS. JinY. RaychowdhuryA. The changing computing paradigm with Internet of Things: A tutorial introduction.IEEE Des. Test2016332769610.1109/MDAT.2016.2526612
    [Google Scholar]
  31. YuW. KoseS. A lightweight masked AES implementation for securing IoT against CPA attacks.IEEE Trans. Circuits Syst. I Regul. Pap.201764112934294410.1109/TCSI.2017.2702098
    [Google Scholar]
  32. CrocettiL. BaldanziL. BertolucciM. SartiL. CarnevaleB. FanucciL. A simulated approach to evaluate side-channel attack countermeasures for the advanced encryption standard.Integration201968808610.1016/j.vlsi.2019.06.005
    [Google Scholar]
  33. FahdS. AfzalM. AbbassH. IqbalW. WaheedS. Correlation power analysis of modes of encryption in AES and its countermeasures.Future Generation Computer SystemsElsevier201710.1016/j.future.2017.06.004
    [Google Scholar]
  34. YuW. ChenJ. Masked AES PUF: A new PUF against hybrid SCA/MLAs.Electron. Lett.2018541061862010.1049/el.2018.0735
    [Google Scholar]
  35. HuangY. Concatenated physical layer encryption scheme based on rateless codes.IET Commun.201812121491149710.1049/iet‑com.2017.1234
    [Google Scholar]
  36. WeiY. YaoF. PasalicE. WangA. New second‐order threshold implementation of AES.IET Inf. Secur.201913211712410.1049/iet‑ifs.2018.5244
    [Google Scholar]
  37. Specifications for the ADVANCED ENCRYPTION STANDARD (AES)Federal Information Processing Standards Publication2001
    [Google Scholar]
  38. Transitions: Recommendations for Transitioning the Use of Cryptographic Algorithms and Key LengthsNational Institute of Standards and TechnologiesUSA201510.6028/NIST.SP.800‑131a
    [Google Scholar]
  39. MadhavapandianS. MaruthuPandiP. FPGA implementation of highly scalable AES algorithm using modified mix column with gate replacement technique for security application in TCP/IP.Microprocess. Microsyst.20207310297210.1016/j.micpro.2019.102972
    [Google Scholar]
  40. NoorS.M. JohnE.B. Resource shared galois field computation for energy efficient AES/CRC in iot applications.IEEE Trans. Sustain. Comput.20194434034810.1109/TSUSC.2019.294387834307869
    [Google Scholar]
  41. PammuA.A. HoW-G. LwinN.K.Z. ChongK.S. GweeB.H. A high throughput and secure authentication-encryption aes-ccm algorithm on asynchronous multicore processor.IEEE Trans. Inf. Forensics Security20191441023103610.1109/TIFS.2018.2869344
    [Google Scholar]
  42. LiT. WangZ. ZouL. ChenB. YuL. A dynamic encryption–decryption scheme for replay attack detection in cyber–physical systems.Automatica202315111092610.1016/j.automatica.2023.110926
    [Google Scholar]
  43. BhagatV. KumarS. GuptaS.K. ChaubeM.K. Lightweight cryptographic algorithms based on different model architectures: A systematic review and futuristic applications.Concurr. Comput.2023351e742510.1002/cpe.7425
    [Google Scholar]
  44. Singh DhandaS. SinghB. JindalP. AES 32: An FPGA implementation of lightweight-AES for iot devices.IJCDS202415192593410.12785/ijcds/160167
    [Google Scholar]
  45. DhandaS.S. JindalP. SinghB. PanwarD. A compact and efficient AES-32GF for encryption in small IoT devices.MethodsX20231110249110.1016/j.mex.2023.10249138076709
    [Google Scholar]
  46. AbebeA.T. Lightweight and efficient architecture for aes algorithm based on FPGA.Acad. J. Electron. Telecommun. Comput.202281
    [Google Scholar]
  47. El-hajjM. MousawiH. FadlallahA. Analysis of lightweight cryptographic algorithms on iot hardware platform.Future Internet2023541510.3390/fi15020054
    [Google Scholar]
  48. MasoumiM. A highly efficient and secure hardware implementation of the advanced encryption standard.J. Inf. Secur. Appl.20194810237110.1016/j.jisa.2019.102371
    [Google Scholar]
  49. Lumbiarres-LopezR. Lopez-GarciaM. Canto-NavarroE. Hardware architecture implemented on FPGA for protecting cryptographic keys against side-channel attacks.IEEE Trans. Depend. Secure Comput.2016
    [Google Scholar]
/content/journals/swcc/10.2174/0122103279320313240805055515
Loading
/content/journals/swcc/10.2174/0122103279320313240805055515
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test