Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2210-3279
  • E-ISSN: 2210-3287

Abstract

Aims and Background

Numerous sensor nodes spread out across the surveillance region form the Wireless-Sensor Network (WSN), a smart, self-organizing network. Since the lumps can typically only be motorized by batteries, creating a WSN while maintaining an optimal energy balance and extending the network's lifetime is the biggest issue.

Methods

A novel network architecture that integrates nanotechnology with sensor networks is known as a Wireless-NanoSensor-Network(WNSN). A new area of focus in research is intra-body-iWNSNs, which are WNSNs with promising potential applications in biomedicine, damage detection, and intra-body health monitoring. We suggest an energy-balance-clustering-routing protocol (EBCR) for iSN nodes that have limited energy storage, short communication range, and low computation and processing capabilities. The protocol uses a novel hierarchical clustering approach to lessen the communication burden on nano-nodes.

Results and Discussion

Cluster nano-nodes can use one-hop routing to send data directly to the Cluster-Head(CH) nodes, and the CH-nodes can utilize multi-hop routing to send data to the nano control node. In addition, selecting the next hop node to minimize energy usage while guaranteeing successful data packet delivery involves balancing distance and channel capacity. The protocol's strengths in energy efficiency, network-lifetime extension, and data-packet transmission success rate were highlighted by the simulation results.

Conclusion

It is clear that the EBCR protocol is a viable option for iWNSNs' routing system.

Loading

Article metrics loading...

/content/journals/swcc/10.2174/0122103279318474240705104252
2024-07-19
2026-01-01
Loading full text...

Full text loading...

References

  1. XuJ. ZhangY. JiangJ. KanJ. A multi-hop routing protocol based on link state prediction for intra-body Wireless Nanosensor Networks.Ad Hoc Netw.202111610247010.1016/j.adhoc.2021.102470
    [Google Scholar]
  2. Asorey-CachedaR. CorreiaL.M. Garcia-PardoC. WojcikK. TurbicK. KulakowskiP. Bridging nano and body area networks: A full architecture for cardiovascular health applications.IEEE Internet Things J.20231054307432310.1109/JIOT.2022.3215884
    [Google Scholar]
  3. XuJ. WangR. ZhangY. HuangH. An energy balance cluster network framework based on Simultaneous Wireless Information and Power Transfer.Nano Commun. Netw.20233610044110.1016/j.nancom.2023.100441
    [Google Scholar]
  4. ChillakuruP. MadiajaganM. PrashanthK.V. AmbalaS. Shaker ReddyP.C. PavanJ. Enhancing wind power monitoring through motion deblurring with modified GoogleNet algorithm.Soft Comput.2023202311110.1007/s00500‑023‑08358‑8
    [Google Scholar]
  5. BulasaraP.K. SahooS.R. A robust hybrid model with low energy consumption for biosensor nano-networks. J King Saud Univ - Comp.Inform. Sci.202436110189310.1016/j.jksuci.2023.101893
    [Google Scholar]
  6. YadalaS. PundruC.S.R. SolankiV.K. A Novel private encryption model in IoT under cloud computing domain. Intelligent Systems and Networks.Berlin/Heidelberg, GermanySpringer Link202326327010.1007/978‑981‑99‑4725‑6_33
    [Google Scholar]
  7. SujihelenL. BodduR. MurugaveniS. Node replication attack detection in distributed wireless sensor networks.Wirel. Commun. Mob. Comput.2022202211110.1155/2022/7252791
    [Google Scholar]
  8. Shaker ReddyP.C. SucharithaY. IoT-enabled energy-efficient multipath power control for underwater sensor networks.Int. J. Sensors Wirel. Commun. Control202212647849410.2174/2210327912666220615103257
    [Google Scholar]
  9. AsghariM. Integration of semi-permanent wired clusters into intrabody wireless perpetual nanonetworks.Telecomm. Syst.202384328530110.1007/s11235‑023‑01051‑z
    [Google Scholar]
  10. SabithaR. ShuklaA.P. MehbodniyaA. ShakkeeraL. ReddyP.C.S. A fuzzy trust evaluation of cloud collaboration outlier detection in wireless sensor networks.Ad Hoc Sens. Wirel. Netw.2022202253
    [Google Scholar]
  11. JavaheriD. LalbakhshP. GorginS. LeeJ.A. MasdariM. A new energy-efficient and temperature-aware routing protocol based on fuzzy logic for multi-WBANs.Ad Hoc Netw.202313910304210.1016/j.adhoc.2022.103042
    [Google Scholar]
  12. SinghalA. VarshneyS. MohanaprakashT.A. Minimization of latency using multitask scheduling in industrial autonomous systems.Wirel. Commun. Mob. Comput.2022202211010.1155/2022/1671829
    [Google Scholar]
  13. Al-TurjmanF. A cognitive routing protocol for bio-inspired networking in the Internet of nano-things (IoNT).Mob. Netw. Appl.20202551929194310.1007/s11036‑017‑0940‑8
    [Google Scholar]
  14. ShanmugarajaP. BhardwajM. MehbodniyaA. An efficient clustered M-path Sinkhole Attack Detection (MSAD) Algorithm for wireless sensor networks.Ad Hoc Sens. Wirel. Netw.2023202355
    [Google Scholar]
  15. UmaK. Ramesh KumarC. ShanmugamT. An Efficient Distributed Energy and Consumption Method for Ensuring Wireless Sensor Network (WSN) Coverage Using the Firefly Algorithm.Conference of Innovative Product Design and Intelligent Manufacturing System. Singapore: Springer.Nature. Singapore.20226778
    [Google Scholar]
  16. SucharithaY. ReddyP.C.S. SuryanarayanaG. Network intrusion detection of drones using recurrent neural networks. Drone Technology: Future Trends and Practical Applications.Hoboken, New JerseyWiley202310.1002/9781394168002.ch15
    [Google Scholar]
  17. DawodA.Y. HakimB.A. RadhiA.D. JabbarZ.S. TawfeqJ.F. A novel nomadic people optimizer-based energy-efficient routing for WBAN.Periodic Eng Nat Sci20231139710810.21533/pen.v11i3.3580
    [Google Scholar]
  18. BakarKBA ZuhraFT IsyakuB SulaimanSB A review on the immediate advancement of the Internet of Things in wireless telecommunications.IEEE Access202311210202104810.1109/ACCESS.2023.3250466
    [Google Scholar]
  19. ShakerR. SucharithaY. A design and challenges in energy optimizing CR-wireless sensor networks.Recent Adv Comp Sci Commun20231658292
    [Google Scholar]
  20. ZhumayevaM. DautovK. HashmiM. NauryzbayevG. Wireless energy and information transfer in WBAN: A comprehensive state-of-the-art review.Alex. Eng. J.20238526128510.1016/j.aej.2023.11.030
    [Google Scholar]
  21. AbediA.F.A. GohP. AlkhayyatA. Terahertz communication channel of healthcare applications: Performance analysis and improvement of internet of nano health things.Comput. Electr. Eng.202310810866910.1016/j.compeleceng.2023.108669
    [Google Scholar]
  22. SantagatiG.E. MelodiaT. Opto-ultrasonic communications for wireless intra-body nanonetworks.Nano Commun. Netw.201451-231410.1016/j.nancom.2014.03.001
    [Google Scholar]
  23. LuS. LiuF. LiY. Integrated sensing and communications: Recent advances and ten open challenges.IEEE Internet Things J.20241111190941912010.1109/JIOT.2024.3361173
    [Google Scholar]
  24. BazziA. ChafiiM. On integrated sensing and communication waveforms with tunable PAPR.IEEE Trans. Wirel. Commun.202322117345736010.1109/TWC.2023.3250263
    [Google Scholar]
  25. ChowdaryA. BazziA. ChafiiM. On hybrid radar fusion for integrated sensing and communication.IEEE Trans. Wirel. Commun.2024110.1109/TWC.2024.3357573
    [Google Scholar]
  26. NaoumiS. BazziA. BomfinR. ChafiiM. Complex neural network based joint AoA and AoD estimation for bistatic ISAC.IEEE J. Sel. Top. Signal Process.202411510.1109/JSTSP.2024.3387299
    [Google Scholar]
  27. BazziA. ChafiiM. Secure full duplex integrated sensing and communications.IEEE Trans. Inf. Forensics Security2023
    [Google Scholar]
  28. LiY. ZhaoJ. WeiJ. FengL. Equilibrium Theory based Power Sharing Allocation Algorithm for Wireless Capsule Endoscopy Relays.2023 WRC Symposium on Advanced Robotics and Automation (WRC SARA)19-19 August 2023; Beijing, China. 2023.10.1109/WRCSARA60131.2023.10261799
    [Google Scholar]
  29. CwalinaK.K. RajchowskiP. BlaszkiewiczO. OlejniczakA. SadowskiJ. Deep learning-based LOS and NLOS identification in wireless body area networks.Sensors20191919422910.3390/s19194229 31569456
    [Google Scholar]
  30. SudhakarB. SikrantP.A. PrasadM.L. Brain tumor image prediction from mr images using CNN based deep learning networks.J. Inf. Technol. Manage.20241614460
    [Google Scholar]
  31. CevallosY. GómezC.V. Tello-OquendoL. Molecular Communications: An Analysis from Networking Theories Perspective.Berlin, GermanySpringer Nature2023
    [Google Scholar]
  32. GalalA. HesselbachX. Nano-networks communication architecture: Modeling and functions.Nano Commun. Netw.201817456210.1016/j.nancom.2018.07.001
    [Google Scholar]
  33. StelznerM. DresslerF. FischerS. Function centric nano-networking: Addressing nano machines in a medical application scenario.Nano Commun. Netw.201714293910.1016/j.nancom.2017.09.001
    [Google Scholar]
  34. PrasadM.L. KiranA. Shaker ReddyP.C. Chronic kidney disease risk prediction using machine learning techniques.J. Inf. Technol. Manage.2024161118134
    [Google Scholar]
  35. MohammadHWM Controlling molecular interactions using terahertz electromagnetic waves2023
    [Google Scholar]
  36. RekhaM.N. PrasadM.L. MukherjeeS. NikamS.V. SharmaS. ReddyP.C.S. An automatic error recognition approach for machine translation results based on deep learning.2024 2nd International Conference on Computer, Communication and Control (IC4).08-10 February 2024; Indore, India. 2024.10.1109/IC457434.2024.10486776
    [Google Scholar]
  37. AkyildizI.F. HanC. HuZ. NieS. JornetJ.M. Terahertz band communication: An old problem revisited and research directions for the next decade.IEEE Trans. Commun.20227064250428510.1109/TCOMM.2022.3171800
    [Google Scholar]
  38. LiangX. QianY. Energy balance routing protocol for wireless sensor networks based on fuzzy control strategy.Wirel. Commun. Mob. Comput.2022202211210.1155/2022/4597992
    [Google Scholar]
  39. KaveripakamS. ChinthaginjalaR. Energy balanced reliable and effective clustering for underwater wireless sensor networks.Alex. Eng. J.202377416210.1016/j.aej.2023.06.083
    [Google Scholar]
  40. GadupudiA. PrasadM.L. NadgaundiS.K. ReddyP.C.S. SharmaS. SharmaN. A deep learning framework for human disease prediction using microbiome data.2024 International Conference on Integrated Circuits and Communication Systems (ICICACS)23-24 February 2024Raichur, India20241610.1109/ICICACS60521.2024.10498711
    [Google Scholar]
  41. ChaitraH.V. ManjulaG. ShabazM. Delay optimization and energy balancing algorithm for improving network lifetime in fixed wireless sensor networks.Phys. Commun.20235810203810.1016/j.phycom.2023.102038
    [Google Scholar]
  42. SuneelS. BalaramA. Amina BegumM. UmapathyK. ReddyP.C.S. TalasilaV. Quantum mesh neural network model in precise image diagnosing.Opt. Quantum Electron.202456455910.1007/s11082‑023‑06245‑y
    [Google Scholar]
  43. SamaraG. HassanM.A. Al-OkourM. Energy Balancing Algorithm for Wireless Sensor Network.arXiv:2203157332022
    [Google Scholar]
  44. ShaikM.K. VanaparthiK. SwarnalathaG. ReddyP.C.S. DalaiR.P. JayaramB. A deep learning framework for prognosis patients with COVID-19.2024 Third International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS)20241610.1109/INCOS59338.2024.10527475
    [Google Scholar]
  45. MansuraA. DriebergM. AzizA.A. BassooV. SarangS. An energy balanced and nodes aware routing protocol for energy harvesting wireless sensor networks.Peer-to-Peer Netw. Appl.20221521255128010.1007/s12083‑022‑01292‑w
    [Google Scholar]
  46. RaoK.R. KumariM.S. EklarkerR. ReddyP.C.S. MuleyK. BurugariV.K. An adaptive deep learning framework for prediction of agricultural yield.2024 International Conference on Integrated Circuits and Communication Systems (ICICACS)23-24 February 2024Raichur, India20241610.1109/ICICACS60521.2024.10498465
    [Google Scholar]
  47. KandrisD. EvangelakosE.A. RountosD. TselikisG. AnastasiadisE. LEACH-based hierarchical energy efficient routing in wireless sensor networks.AEU Int. J. Electron. Commun.202316915475810.1016/j.aeue.2023.154758
    [Google Scholar]
  48. ChatrapathyK. PrasadM.L. KiranA. ReddyP.C.S. BabuG.C. PartheebanN. Skin cancer classification using a hybrid convolutional neural network with SVM classifier.2023 Global Conference on Information Technologies and Communications (GCITC)01-03 December 2023Bangalore, India202316
    [Google Scholar]
  49. VermaC.P. Enhancing parameters of LEACH protocol for efficient routing in wireless sensor networks.J Comp Mech Manag2023212631
    [Google Scholar]
  50. SivajiU. ChatrapathyK. KiranA. ReddyP.C.S. RaoP.V. PartheebanN. An accurate blood pressure prediction based on clinical and physiological data using machine learning.2023 Global Conference on Information Technologies and Communications (GCITC)20231510.1109/GCITC60406.2023.10426526
    [Google Scholar]
  51. MajidM.A. Energy-efficient adaptive clustering and routing protocol for expanding the life cycle of the IoT-based wireless sensor network.2022 6th International Conference on Computing Methodologies and Communication (ICCMC)29-31 March 2022; Erode, India. 2022.
    [Google Scholar]
/content/journals/swcc/10.2174/0122103279318474240705104252
Loading
/content/journals/swcc/10.2174/0122103279318474240705104252
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Clustering; clustering; communication; EBCR; iWNSNs; routing protocol
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test