Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-8871
  • E-ISSN: 1876-1038

Abstract

Rapid healthcare digitization has created both previously unheard-of potential and serious data management weaknesses, especially in clinical trials. Artificial Intelligence (AI) offers innovative approaches to enhancing cybersecurity and ensuring legal compliance in healthcare systems. Protecting private information from internet threats is more crucial than ever because clinical trials are increasingly reliant on patient data, electronic health records, and real-time monitoring devices. This study reviews how AI might strengthen cybersecurity procedures in clinical trial setups. Data breaches and unauthorized access are significantly reduced when AI-driven technologies are used for real-time threat detection and response. These systems create a dynamic defense mechanism that traditional security measures lack by continuously adapting to changing cyber threats using machine learning algorithms. In addition to cybersecurity, AI improves adherence to healthcare laws like GDPR and HIPAA by automating data processing procedures. AI protects patient confidentiality and data integrity by ensuring that clinical trials follow stringent regulatory criteria through intelligent automation. Additionally, AI helps detect and control compliance issues, relieving human monitoring and boosting productivity. Additionally, the study addresses the difficulties in applying AI in clinical trials, including the requirement for transparent algorithms and the possibility of bias in AI judgment. However, AI has the capacity to completely transform safe healthcare administration with the correct legislation and ethical guidelines. In conclusion, artificial intelligence (AI) is a vital tool for guaranteeing the confidentiality and legal compliance of medical data in addition to using it to increase clinical trial efficiency. The use of it offers a path forward in terms of the complexities of modern clinical trial cybersecurity. AI's automation and intelligence will lower risk and increase trial speed and accuracy by assisting clinical trial administrators and sponsors in navigating the complicated world of cybersecurity and compliance.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/0115748871366467250413070850
2025-04-24
2025-12-26
Loading full text...

Full text loading...

References

  1. Gomis-PastorM. BerdúnJ. Borrás-SantosA. Clinical validation of digital healthcare solutions: State of the art, challenges and opportunities.Health Care20241211105710.3390/healthcare12111057 38891132
    [Google Scholar]
  2. InanO.T. TenaertsP. PrindivilleS.A. Digitizing clinical trials.NPJ Digit. Med.20203110110.1038/s41746‑020‑0302‑y 32821856
    [Google Scholar]
  3. RosaC CampbellAN MieleGM BrunnerM WinstanleyEL Using e-technologies in clinical trials.Contemp Clin Trials201545Pt A415410.1016/j.cct.2015.07.007
    [Google Scholar]
  4. RosaC. MarschL.A. WinstanleyE.L. BrunnerM. CampbellA.N.C. Using digital technologies in clinical trials: Current and future applications.Contemp. Clin. Trials202110010621910.1016/j.cct.2020.106219 33212293
    [Google Scholar]
  5. PeraltaG. Sánchez-SantiagoB. Navigating the challenges of clinical trial professionals in the healthcare sector.Front. Med.202411140058510.3389/fmed.2024.1400585 38887672
    [Google Scholar]
  6. JPC Rodrigues J, de la Torre I, Fernández G, López-Coronado M. Analysis of the security and privacy requirements of cloud-based electronic health records systems.J. Med. Internet Res.2013158e18610.2196/jmir.2494 23965254
    [Google Scholar]
  7. KasaharaA. MitchellJ. YangJ. CuomoR.E. McMannT.J. MackeyT.K. Digital technologies used in clinical trial recruitment and enrollment including application to trial diversity and inclusion: A systematic review.Digit. Health2024102055207624124239010.1177/20552076241242390 38559578
    [Google Scholar]
  8. ZangS. ZhangX. XingY. ChenJ. LinL. HouZ. Applications of social media and digital technologies in COVID-19 vaccination: Scoping review.J. Med. Internet Res.202325e4005710.2196/40057 36649235
    [Google Scholar]
  9. PeyserN.D. MarcusG.M. BeattyA.L. OlginJ.E. PletcherM.J. Digital platforms for clinical trials: The Eureka experience.Contemp. Clin. Trials202211510671010.1016/j.cct.2022.106710 35183763
    [Google Scholar]
  10. GarciaA. BalasubramanianV. LeeJ. Lessons learned in the Apple Heart Study and implications for the data management of future digital clinical trials.J. Biopharm. Stat.202232349651010.1080/10543406.2022.2080698 35695137
    [Google Scholar]
  11. MitsiG. GrinnellT. GiordanoS. Implementing digital technologies in clinical trials: Lessons learned.Innov. Clin. Neurosci.2022194-66569 35958972
    [Google Scholar]
  12. HusseinR. WurhoferD. StrumeggerE.M. General data protection regulation (GDPR) toolkit for digital health.Stud. Health Technol. Inform.202229022222610.3233/SHTI220066 35673005
    [Google Scholar]
  13. CarmiL. ZoharM. RivaG.M. The European General Data Protection Regulation (GDPR) in mHealth: Theoretical and practical aspects for practitioners’ use.Med. Sci. Law2023631616810.1177/00258024221118411 35950240
    [Google Scholar]
  14. RoseR.V. KumarA. KassJ.S. Protecting privacy: Health insurance portability and accountability act of 1996, twenty-first century cures act, and social media.Neurol. Clin.202341351352210.1016/j.ncl.2023.03.007 37407103
    [Google Scholar]
  15. PrinceL.H. Carroll-BarefieldA. Management implications of the health insurance portability and accountability act.Health Care Manag.2000191444910.1097/00126450‑200019010‑00008 11183652
    [Google Scholar]
  16. TovinoS.A. The HIPAA privacy rule and the EU GDPR: Illustrative comparisons.Seton Hall Law Rev.2017474973993 28820562
    [Google Scholar]
  17. KaurR. GabrijelčičD. KlobučarT. Artificial intelligence for cybersecurity: Literature review and future research directions.Inf. Fusion20239710180410.1016/j.inffus.2023.101804
    [Google Scholar]
  18. YadavS. SinghA. SinghalR. YadavJ.P. Revolutionizing drug discovery: The impact of artificial intelligence on advancements in pharmacology and the pharmaceutical industry.Intelligent Pharmacy20242336738010.1016/j.ipha.2024.02.009
    [Google Scholar]
  19. GargP.P. JayashreeJ. VijayashreeJ. Revolutionizing healthcare: The transformative role of artificial intelligence.Responsible and Explainable Artificial Intelligence in Healthcare. SinghA. SinghK.K. IzoninI. Cambridge, MassachusettsAcademic Press202512310.1016/B978‑0‑443‑24788‑0.00001‑7
    [Google Scholar]
  20. ChopraH Annu ShinDK Revolutionizing clinical trials: The role of AI in accelerating medical breakthroughs.Int. J. Surg.2023109124211422010.1097/JS9.0000000000000705 38259001
    [Google Scholar]
  21. GelisL. StoeckertI. PodhaiskyH.P. Digital tools—regulatory considerations for application in clinical trials.Ther. Innov. Regul. Sci.202357476978210.1007/s43441‑023‑00535‑z 37195515
    [Google Scholar]
  22. NouraniA. AyatollahiH. DodaranM.S. A review of clinical data management systems used in clinical trials.Rev. Recent Clin. Trials2019141102310.2174/1574887113666180924165230 30251611
    [Google Scholar]
  23. LuX. YangC. LiangL. HuG. ZhongZ. JiangZ. Artificial intelligence for optimizing recruitment and retention in clinical trials: A scoping review.J. Am. Med. Inform. Assoc.202431112749275910.1093/jamia/ocae243 39259922
    [Google Scholar]
  24. NegroukA. HorganD. GoriniA. Clinical trials, data protection and patient empowerment in the era of the new EU regulations.Public Health Genomics201518638639510.1159/000441561 26565798
    [Google Scholar]
  25. DanielC. KalraD. Clinical Research Informatics.Yearb. Med. Inform.202029120320710.1055/s‑0040‑1702007 32823317
    [Google Scholar]
  26. SehA.H. ZarourM. AleneziM. Healthcare data breaches: Insights and implications.Health Care20208213310.3390/healthcare8020133 32414183
    [Google Scholar]
  27. AlkhalilZ. HewageC. NawafL. KhanI. Phishing attacks: A recent comprehensive study and a new anatomy.Front. Comput. Sci.2021356306010.3389/fcomp.2021.563060
    [Google Scholar]
  28. HarveyH. CarrollH. MurphyV. The impact of a national cyberattack affecting clinical trials: The cancer trials ireland experience.JCO Clin. Cancer Inform.202377e220014910.1200/CCI.22.00149 37053539
    [Google Scholar]
  29. EdgarT.W. ManzD.O. Science and cyber security.Research methods for cyber security. EdgarT.W. ManzD.O. Syngress2017336210.1016/B978‑0‑12‑805349‑2.00002‑9
    [Google Scholar]
  30. InayatU. FarzanM. MahmoodS. ZiaM.F. HussainS. PallonettoF. Insider threat mitigation: Systematic literature review.Ain Shams Eng. J.2024151210306810.1016/j.asej.2024.103068
    [Google Scholar]
  31. CollierR. NHS ransomware attack spreads worldwide.CMAJ201718922E786E78710.1503/cmaj.1095434 28584047
    [Google Scholar]
  32. CornockM. General Data Protection Regulation (GDPR) and implications for research.Maturitas2018111A1A210.1016/j.maturitas.2018.01.017 29395455
    [Google Scholar]
  33. PowellS.K. HIPAA.Lippincotts Case Manag.2003811210.1097/00129234‑200301000‑00001 12555037
    [Google Scholar]
  34. ClaytorR.B. EpsteinM.D. CoxG. Cybersecurity: Prevent, detect, respond.Aesthet. Surg. J.202343338939110.1093/asj/sjac323 36514920
    [Google Scholar]
  35. CoventryL. BranleyD. Cybersecurity in healthcare: A narrative review of trends, threats and ways forward.Maturitas2018113485210.1016/j.maturitas.2018.04.008 29903648
    [Google Scholar]
  36. FrancisB. General Data Protection Regulation (GDPR) and Data Protection Act 2018: What does this mean for clinicians?Arch. Dis. Child. Educ. Pract. Ed.2020105529829910.1136/archdischild‑2018‑316057 31959667
    [Google Scholar]
  37. BlechnerB. ButeraA. Health Insurance Portability and Accountability Act of 1996 (HIPAA): A provider’s overview of new privacy regulations.Conn. Med.20026629195 11908191
    [Google Scholar]
  38. CooneyW.P.III The federal food and drug administration.J. Am. Acad. Orthop. Surg.200816524124210.5435/00124635‑200805000‑00001 18460683
    [Google Scholar]
  39. TominagaT. The ICH, the GHTF, and the future of harmonization initiatives.Ther. Innov. Regul. Sci.201347557258010.1177/2168479013494393 30235582
    [Google Scholar]
  40. MolzonJ.A. GiaquintoA. LindstromL. The value and benefits of the International Conference on Harmonisation to drug regulatory authorities: Advancing harmonization for better public health.Clin. Pharmacol. Ther.201189450351210.1038/clpt.2011.10 21326288
    [Google Scholar]
  41. PorterG. Regulating clinical trials in India: The economics of ethics.Developing World Bioeth.201818436537410.1111/dewb.12156 28691185
    [Google Scholar]
  42. AsadS. KananenK. MuellerK.R. Challenges and gaps in clinical trial genomic data management.JCO Clin. Cancer Inform.202266e210019310.1200/CCI.21.00193 35404674
    [Google Scholar]
  43. Raber-JohnsonM.L. GallwitzW.E. SullivanE.J. StorerP. Innovation in clinical trial design and product promotion: Evolving the patient perspective with regulatory and technological advances.Ther. Innov. Regul. Sci.202054351952710.1007/s43441‑019‑00083‑5 33301144
    [Google Scholar]
  44. LeiterA. DiefenbachM.A. DoucetteJ. OhW.K. GalskyM.D. Clinical trial awareness: Changes over time and sociodemographic disparities.Clin. Trials201512321522310.1177/1740774515571917 25673636
    [Google Scholar]
  45. ZodpeyS. NegandhiH. Training in clinical research in India: Potential and challenges.Indian J. Community Med.200934317317410.4103/0970‑0218.55267 20049290
    [Google Scholar]
  46. DukaewN. Na TakuathungM. SakuludomkanW. Regulatory compliance and readability of informed consent forms in industry-sponsored drug development clinical trials.Clin. Trials202320551752710.1177/17407745231174528 37194292
    [Google Scholar]
  47. OakleyJ. WorleyC. YuL. Scrybe: A secure audit trail for clinical trial data fusion.Digit. Threats20234212010.1145/3491258 37937206
    [Google Scholar]
  48. CoatesS. TäubelJ. LorchU. Practical risk management in early phase clinical trials.Eur. J. Clin. Pharmacol.201975448349610.1007/s00228‑018‑02607‑8 30569285
    [Google Scholar]
  49. ShenL. HuangQ. ZhaiY. Construction of data remote monitoring and auditing system for clinical trials.Zhejiang Da Xue Xue Bao Yi Xue Ban202049453153610.3785/j.issn.1008‑9292.2020.07.01
    [Google Scholar]
  50. ChalakL. PilonB. ByrneR. MaitreN. Stakeholder engagement in neonatal clinical trials: An opportunity for mild neonatal encephalopathy research.Pediatr. Res.20239314610.1038/s41390‑022‑02067‑y 35477747
    [Google Scholar]
  51. NaeemM.R. AminR. FarhanM. Harnessing AI and analytics to enhance cybersecurity and privacy for collective intelligence systems.PeerJ Comput. Sci.202410e226410.7717/peerj‑cs.2264 39314701
    [Google Scholar]
  52. ShehabM. AbualigahL. ShambourQ. Machine learning in medical applications: A review of state-of-the-art methods.Comput. Biol. Med.202214510545810.1016/j.compbiomed.2022.105458 35364311
    [Google Scholar]
  53. HaoT. HuangZ. LiangL. WengH. TangB. Health natural language processing: Methodology development and applications.JMIR Med. Inform.2021910e2389810.2196/23898 34673533
    [Google Scholar]
  54. DixonD. SattarH. MorosN. Unveiling the influence of AI predictive analytics on patient outcomes: A comprehensive narrative review.Cureus2024165e5995410.7759/cureus.59954 38854327
    [Google Scholar]
  55. AliH. AhmadJ. JarouchehZ. Trusted threat intelligence sharing in practice and performance benchmarking through the hyperledger fabric platform.Entropy20222410137910.3390/e24101379 37420400
    [Google Scholar]
  56. KocyigitE. KorkmazM. SahingozO.K. DiriB. Real-time content-based cyber threat detection with machine learning.20th International Conference on Intelligent Systems Design and Applications (ISDA 2020)Springer, Cham, vol. 1351, December 12-15, 2020, pp. 1394-1403.10.1007/978‑3‑030‑71187‑0_129.
    [Google Scholar]
  57. KabudiT. PappasI. OlsenD.H. AI-enabled adaptive learning systems: A systematic mapping of the literature.Computers and Education: Artificial Intelligence2021210001710.1016/j.caeai.2021.100017
    [Google Scholar]
  58. PattersonC.M. NurseJ.R.C. FranqueiraV.N.L. Learning from cyber security incidents: A systematic review and future research agenda.Comput. Secur.202313210330910.1016/j.cose.2023.103309
    [Google Scholar]
  59. Akshay KumaarM. SamiayyaD. VincentP.M.D.R. SrinivasanK. ChangC.Y. GaneshH. A hybrid framework for intrusion detection in healthcare systems using deep learning.Front. Public Health2022982489810.3389/fpubh.2021.824898 35096763
    [Google Scholar]
  60. KimH. ShonT. Industrial network-based behavioral anomaly detection in AI-enabled smart manufacturing.J. Supercomput.20227811135541356310.1007/s11227‑022‑04408‑4 35340686
    [Google Scholar]
  61. HabeebM.S. Predictive analytics and cybersecurity.In: Intelligent techniques for predictive data analytics.IEEE202415116910.1002/9781394227990.ch8
    [Google Scholar]
  62. ArulmuruganL ThakurS DayanaR ThenappanS NageshB SriRK Advancing security: Exploring AI-driven data encryption solutions for wireless sensor networks.2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI) 1-610.1109/ACCAI61061.2024.10602020
    [Google Scholar]
  63. JohnsonJ.M. KhoshgoftaarT.M. Data-centric AI for healthcare fraud detection.SN Comput. Sci.20234438910.1007/s42979‑023‑01809‑x 37200563
    [Google Scholar]
  64. KaliaevA.O. MalikovaM.A. Risk-based quality and compliance management in clinical trials with combination products in changing global regulatory environment.Ther. Innov. Regul. Sci.202054480381310.1007/s43441‑019‑00012‑6 32557305
    [Google Scholar]
  65. ZaiA.H. FaroJ.M. AllisonJ. Unveiling readability challenges: An extensive analysis of consent document accessibility in clinical trials.J. Clin. Transl. Sci.202481e12510.1017/cts.2024.595 39345692
    [Google Scholar]
  66. Al KuwaitiA. NazerK. Al-ReedyA. A review of the role of Artificial Intelligence in healthcare.J. Pers. Med.202313695110.3390/jpm13060951 37373940
    [Google Scholar]
  67. WhiteheadJ. Monitoring and evaluating clinical trials data.Intensive Care Med.2000260Suppl. 1S084S08810.1007/s001340051123 10786963
    [Google Scholar]
  68. PethaniF. DunnA.G. Natural language processing for clinical notes in dentistry: A systematic review.J. Biomed. Inform.202313810428210.1016/j.jbi.2023.104282 36623780
    [Google Scholar]
  69. KolluriS. LinJ. LiuR. ZhangY. ZhangW. Machine Learning and Artificial Intelligence in pharmaceutical research and development: A review.AAPS J.20222411910.1208/s12248‑021‑00644‑3 34984579
    [Google Scholar]
  70. SuriyaampornP. PamornpathomkulB. PatrojanasophonP. NgawhirunpatT. RojanarataT. OpanasopitP. The Artificial Intelligence-powered new era in pharmaceutical research and development: A review.AAPS PharmSciTech202425618810.1208/s12249‑024‑02901‑y 39147952
    [Google Scholar]
  71. SameeraV. BindraA. RathG.P. Human errors and their prevention in healthcare.J. Anaesthesiol. Clin. Pharmacol.202137332833510.4103/joacp.JOACP_364_19 34759539
    [Google Scholar]
  72. VoraL.K. GholapA.D. JethaK. ThakurR.R.S. SolankiH.K. ChavdaV.P. Artificial Intelligence in pharmaceutical technology and drug delivery design.Pharmaceutics2023157191610.3390/pharmaceutics15071916 37514102
    [Google Scholar]
  73. AskinS. BurkhalterD. CaladoG. El DakrouniS. Artificial Intelligence applied to clinical trials: Opportunities and challenges.Health Technol.202313220321310.1007/s12553‑023‑00738‑2 36923325
    [Google Scholar]
  74. Pfizer's multicultural health equity collective marks 10 years of progress.2025Available from: https://www.pfizer.com/news/articles/pfizers_multicultural_health_equity_collective_marks_10_years_of_progress
  75. Novartis' commitment to the ethical and responsible use of Artificial Intelligence (AI) systems.2025Available from: https://www.novartis.com/sites/novartiscom/files/novartis-responsible-use-of-ai-systems.pdf
  76. FehrJ. CitroB. MalpaniR. LippertC. MadaiV.I. A trustworthy AI reality-check: The lack of transparency of artificial intelligence products in healthcare.Front. Digit. Health20246126729010.3389/fdgth.2024.1267290 38455991
    [Google Scholar]
  77. XuH. ShuttleworthK.M.J. Medical artificial intelligence and the black box problem: A view based on the ethical principle of “do no harm”.Intell. Med.202441525710.1016/j.imed.2023.08.001
    [Google Scholar]
  78. FerraraE. Fairness and bias in Artificial Intelligence: A brief survey of sources, impacts, and mitigation strategies.Sci202361310.3390/sci6010003
    [Google Scholar]
  79. YadavN. PandeyS. GuptaA. DudaniP. GuptaS. RangarajanK. Data privacy in healthcare: In the era of Artificial Intelligence.Indian Dermatol. Online J.202314678879210.4103/idoj.idoj_543_23 38099022
    [Google Scholar]
  80. MacIntyreM.R. CockerillR.G. MirzaO.F. AppelJ.M. Ethical considerations for the use of artificial intelligence in medical decision-making capacity assessments.Psychiatry Res.202332811546610.1016/j.psychres.2023.115466 37717548
    [Google Scholar]
  81. KiselevaA. KotzinosD. De HertP. Transparency of AI in healthcare as a multilayered system of accountabilities: Between legal requirements and technical limitations.Front. Artif. Intell.2022587960310.3389/frai.2022.879603 35707765
    [Google Scholar]
  82. NazerL.H. ZatarahR. WaldripS. Bias in artificial intelligence algorithms and recommendations for mitigation.PLOS Digit. Health202326e000027810.1371/journal.pdig.0000278 37347721
    [Google Scholar]
  83. AbujaberA.A. NashwanA.J. Ethical framework for artificial intelligence in healthcare research: A path to integrity.World J. Methodol.20241439407110.5662/wjm.v14.i3.94071 39310239
    [Google Scholar]
  84. Harishbhai TilalaM. Kumar ChenchalaP. ChoppadandiA. Ethical considerations in the use of Artificial Intelligence and Machine Learning in health care: A comprehensive review.Cureus2024166e6244310.7759/cureus.62443 39011215
    [Google Scholar]
  85. MennellaC. ManiscalcoU. De PietroG. EspositoM. Ethical and regulatory challenges of AI technologies in healthcare: A narrative review.Heliyon2024104e2629710.1016/j.heliyon.2024.e26297 38384518
    [Google Scholar]
  86. KhalidN. QayyumA. BilalM. Al-FuqahaA. QadirJ. Privacy-preserving artificial intelligence in healthcare: Techniques and applications.Comput. Biol. Med.202315810684810.1016/j.compbiomed.2023.106848 37044052
    [Google Scholar]
  87. AlowaisS.A. AlghamdiS.S. AlsuhebanyN. Revolutionizing healthcare: The role of Artificial Intelligence in clinical practice.BMC Med. Educ.202323168910.1186/s12909‑023‑04698‑z 37740191
    [Google Scholar]
  88. ChoudhuryA. AsanO. Role of Artificial Intelligence in patient safety outcomes: Systematic literature review.JMIR Med. Inform.202087e1859910.2196/18599 32706688
    [Google Scholar]
  89. Díaz-RodríguezN. Del SerJ. CoeckelberghM. López de PradoM. Herrera-ViedmaE. HerreraF. Connecting the dots in trustworthy Artificial Intelligence: From AI principles, ethics, and key requirements to responsible AI systems and regulation.Inf. Fusion20239910189610.1016/j.inffus.2023.101896
    [Google Scholar]
  90. CorrêaN.K. GalvãoC. SantosJ.W. Worldwide AI ethics: A review of 200 guidelines and recommendations for AI governance.Patterns202341010085710.1016/j.patter.2023.100857 37876898
    [Google Scholar]
  91. HoggH.D.J. Al-ZubaidyM. TalksJ. Stakeholder perspectives of clinical Artificial Intelligence implementation: Systematic review of qualitative evidence.J. Med. Internet Res.202325e3974210.2196/39742 36626192
    [Google Scholar]
  92. De SilvaD. AlahakoonD. An artificial intelligence life cycle: From conception to production.Patterns20223610048910.1016/j.patter.2022.100489 35755876
    [Google Scholar]
  93. KhalifaM. AlbadawyM. Artificial Intelligence for clinical prediction: Exploring key domains and essential functions.Comput. Methods Programs Biomed. Update2024510014810.1016/j.cmpbup.2024.100148
    [Google Scholar]
  94. BajwaJ. MunirU. NoriA. WilliamsB. Artificial intelligence in healthcare: Transforming the practice of medicine.Future Healthc. J.202182e188e19410.7861/fhj.2021‑0095 34286183
    [Google Scholar]
  95. ClarkeM. MartinK. Managing cybersecurity risk in healthcare settings.Healthc. Manage. Forum2024371172010.1177/08404704231195804 37625818
    [Google Scholar]
  96. MakK.K. PichikaM.R. Artificial intelligence in drug development: Present status and future prospects.Drug Discov. Today201924377378010.1016/j.drudis.2018.11.014 30472429
    [Google Scholar]
  97. OfusoriL. BokabaT. MhlongoS. Artificial Intelligence in cybersecurity: A comprehensive review and future direction.Appl. Artif. Intell.2024381243960910.1080/08839514.2024.2439609
    [Google Scholar]
  98. MeszarosJ. MinariJ. HuysI. The future regulation of artificial intelligence systems in healthcare services and medical research in the European Union.Front. Genet.20221392772110.3389/fgene.2022.927721 36267404
    [Google Scholar]
  99. NaikN. HameedB.M.Z. ShettyD.K. Legal and ethical consideration in Artificial Intelligence in healthcare: Who takes responsibility?Front. Surg.2022986232210.3389/fsurg.2022.862322 35360424
    [Google Scholar]
  100. ConcannonT.W. GrantS. WelchV. Practical guidance for involving stakeholders in health research.J. Gen. Intern. Med.201934345846310.1007/s11606‑018‑4738‑6 30565151
    [Google Scholar]
/content/journals/rrct/10.2174/0115748871366467250413070850
Loading
/content/journals/rrct/10.2174/0115748871366467250413070850
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test