Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-8871
  • E-ISSN: 1876-1038

Abstract

The use of antibodies to neutralize cytotoxic soluble amyloid-β aggregates rather than remove plaque has raised cautious hope since the monoclonal antibody BAN2401 seems to halt the course of prodromal Alzheimer's Disease (AD). By immobilizing cytotoxic amyloid-β, rather than the causative factor, plaques can help prevent Alzheimer's disease. A preventive immunity against Alzheimer's disease is shown by natural antibodies against cytotoxic amyloid-β. Vaccines should include adjuvants that promote anti-inflammatory Th2 immunity and immunogens that guard against different cytotoxic amyloid-β conformers to prevent or delay the onsetof Alzheimer's disease. The lack of long-term protection with monoclonal antibodies that neutralize single conformers, such as aducanumab, may be due to amyloid-β pleomorphism. In this scenario, novel cytotoxic conformers might evade neutralization by monoclonal antibodies that were previously successful. A vaccine's ability to elicit a polarized Th2 immunity would depend on both priming and the simultaneous delivery of immunogen to dendritic cells. In addition to neutralizing antibodies against neurotoxic amyloid-β oligomers, an immune response may also release anti-inflammatory cytokines, which can help prevent inflammation that exacerbates Alzheimer's disease. Vaccines would be significantly more successful in preventing Alzheimer's disease than treating it because of age-related immunological decrease. Since both amyloid-β and tau contribute to pathological hyperphosphorylation and work in tandem to cause Alzheimer's disease, preventive vaccinations against both should be taken into consideration. Given their affordability and simplicity, vaccines may be the only way to stop the looming Alzheimer's pandemic in many nations.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/0115748871357356250325071712
2025-04-14
2025-12-15
Loading full text...

Full text loading...

References

  1. SternerR.M. TakahashiP.Y. AimeeC. Active vaccines for Alzheimer disease treatment.J. Am. Med. Dir. Assoc.201617986210.1016/j.jamda.2016.06.009
    [Google Scholar]
  2. SelkoeD.J. Light at the end of the amyloid tunnel.Biochemistry201857415921592210.1021/acs.biochem.8b00985 30272957
    [Google Scholar]
  3. AbbasiJ. Promising results in 18-month analysis of Alzheimer drug candidate.JAMA201832010965510.1001/jama.2018.13027 30208438
    [Google Scholar]
  4. PanzaF. LozuponeM. DibelloV. Are antibodies directed against amyloid-β (Aβ) oligomers the last call for the Aβ hypothesis of Alzheimer’s disease?Immunotherapy20191113610.2217/imt‑2018‑0119 30702009
    [Google Scholar]
  5. Topline results: 18 months of BAN2401 might work.2018Available from: https://www.alzforum.org/news/research-news/topline-results-18-months-ban2401-might-work
  6. Budd HaeberleinS. O’GormanJ. ChiaoP. Clinical development of Aducanumab, an Anti-Aβ human monoclonal antibody being investigated for the treatment of early Alzheimer’s disease.J. Prev. Alzheimers Dis.201744255263 29181491
    [Google Scholar]
  7. van DyckC.H. Anti-amyloid-β monoclonal antibodies for Alzheimer’s disease: Pitfalls and promise.Biol. Psychiatry201883431131910.1016/j.biopsych.2017.08.010 28967385
    [Google Scholar]
  8. MarcianiD.J. Promising results from Alzheimer’s disease passive immunotherapy support the development of a preventive vaccine.Research20192019534137510.34133/2019/5341375
    [Google Scholar]
  9. LambertM.P. BarlowA.K. ChromyB.A. Diffusible, nonfibrillar ligands derived from Aβ 1–42 are potent central nervous system neurotoxins.Proc. Natl. Acad. Sci. USA199895116448645310.1073/pnas.95.11.6448 9600986
    [Google Scholar]
  10. ClineE.N. BiccaM.A. ViolaK.L. KleinW.L. The amyloid-β oligomer hypothesis: Beginning of the third decade.J. Alzheimers Dis.201864s1S567S61010.3233/JAD‑179941 29843241
    [Google Scholar]
  11. LambertM.P. ViolaK.L. ChromyB.A. Vaccination with soluble Aβ oligomers generates toxicity‐neutralizing antibodies.J. Neurochem.200179359560510.1046/j.1471‑4159.2001.00592.x 11701763
    [Google Scholar]
  12. LiuY.H. BuX.L. LiangC.R. An N-terminal antibody promotes the transformation of amyloid fibrils into oligomers and enhances the neurotoxicity of amyloid-beta: The dust-raising effect.J. Neuroinflammation201512115310.1186/s12974‑015‑0379‑4 26311039
    [Google Scholar]
  13. MarcianiD.J. Rejecting the Alzheimer’s disease vaccine development for the wrong reasons.Drug Discov. Today201722460961410.1016/j.drudis.2016.10.012 27989721
    [Google Scholar]
  14. VasilevkoV. XuF. PrevitiM.L. Van NostrandW.E. CribbsD.H. Experimental investigation of antibody-mediated clearance mechanisms of amyloid-β in CNS of Tg-SwDI transgenic mice.J. Neurosci.20072749133761338310.1523/JNEUROSCI.2788‑07.2007 18057195
    [Google Scholar]
  15. JimenezS. NavarroV. MoyanoJ. Disruption of amyloid plaques integrity affects the soluble oligomers content from Alzheimer disease brains.PLoS One2014912e11404110.1371/journal.pone.0114041 25485545
    [Google Scholar]
  16. LeeH.G. CasadesusG. ZhuX. TakedaA. PerryG. SmithM.A. Challenging the amyloid cascade hypothesis: Senile plaques and amyloid-β as protective adaptations to Alzheimer disease.Ann. N. Y. Acad. Sci.2004101911410.1196/annals.1297.001 15246983
    [Google Scholar]
  17. TreuschS. CyrD.M. LindquistS. Amyloid deposits: Protection against toxic protein species?Cell Cycle20098111668167410.4161/cc.8.11.8503 19411847
    [Google Scholar]
  18. AizensteinH.J. NebesR.D. SaxtonJ.A. Frequent amyloid deposition without significant cognitive impairment among the elderly.Arch. Neurol.200865111509151710.1001/archneur.65.11.1509 19001171
    [Google Scholar]
  19. BuscheMA KonnerthA Impairments of neural circuit function in Alzheimer’s disease.Philos Trans R Soc Lond B Biol Sci201637117002015042910.1098/rstb.2015.042927377723
    [Google Scholar]
  20. BuscheM.A. GrienbergerC. KeskinA.D. Decreased amyloid-β and increased neuronal hyperactivity by immunotherapy in Alzheimer’s models.Nat. Neurosci.201518121725172710.1038/nn.4163 26551546
    [Google Scholar]
  21. BaiY. LiM. ZhouY. Abnormal dendritic calcium activity and synaptic depotentiation occur early in a mouse model of Alzheimer’s disease.Mol. Neurodegener.20171218610.1186/s13024‑017‑0228‑2 29137651
    [Google Scholar]
  22. ShankarG.M. LiS. MehtaT.H. Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory.Nat. Med.200814883784210.1038/nm1782 18568035
    [Google Scholar]
  23. SevignyJ. ChiaoP. BussièreT. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease.Nature20165377618505610.1038/nature19323 27582220
    [Google Scholar]
  24. DodelR. BalakrishnanK. KeyvaniK. Naturally occurring autoantibodies against β-amyloid: Investigating their role in transgenic animal and in vitro models of Alzheimer’s disease.J. Neurosci.201131155847585410.1523/JNEUROSCI.4401‑10.2011 21490226
    [Google Scholar]
  25. SelkoeD.J. HardyJ. The amyloid hypothesis of Alzheimer’s disease at 25 years.EMBO Mol. Med.20168659560810.15252/emmm.201606210 27025652
    [Google Scholar]
  26. SehlinD. EnglundH. SimuB. Large aggregates are the major soluble Aβ species in AD brain fractionated with density gradient ultracentrifugation.PLoS One201272e3201410.1371/journal.pone.0032014 22355408
    [Google Scholar]
  27. LeeM. BardF. Johnson-WoodK. Aβ42 immunization in Alzheimer’s disease generates Aβ N-terminal antibodies.Ann. Neurol.200558343043510.1002/ana.20592 16130106
    [Google Scholar]
  28. BarghornS. NimmrichV. StriebingerA. Globular amyloid β‐peptide 1−42 oligomer: A homogenous and stable neuropathological protein in Alzheimer’s disease.J. Neurochem.200595383484710.1111/j.1471‑4159.2005.03407.x 16135089
    [Google Scholar]
  29. von BernhardiR. Immunotherapy in Alzheimer’s disease: Where do we stand? Where should we go?J. Alzheimers Dis.201019240542110.3233/JAD‑2010‑1248 20110590
    [Google Scholar]
  30. HenekaM.T. CarsonM.J. KhouryJ.E. Neuroinflammation in Alzheimer’s disease.Lancet Neurol.201514438840510.1016/S1474‑4422(15)70016‑5 25792098
    [Google Scholar]
  31. DelrieuJ. OussetP.J. CaillaudC. VellasB. Retracted: ‘Clinical trials in Alzheimer’s disease’: Immunotherapy approaches.J. Neurochem.2012120s1Suppl. 118619310.1111/j.1471‑4159.2011.07458.x 21883222
    [Google Scholar]
  32. BrineyB. SokD. JardineJ.G. Tailored immunogens direct affinity maturation toward HIV neutralizing antibodies.Cell20161666145910.1016/j.cell.2016.08.005
    [Google Scholar]
  33. Zolla-PaznerS. deCampA. GilbertP.B. Vaccine-induced IgG antibodies to V1V2 regions of multiple HIV-1 subtypes correlate with decreased risk of HIV-1 infection.PLoS One201492e8757210.1371/journal.pone.0087572 24504509
    [Google Scholar]
  34. WisniewskiT. DrummondE. Developing therapeutic vaccines against Alzheimer’s disease.Expert Rev. Vaccines201615340141510.1586/14760584.2016.1121815 26577574
    [Google Scholar]
  35. MarcianiD.J. Alzheimer’s disease: Toward the rational design of an effective vaccine.Rev. Neuropsiquiatr.2015783140010.20453/rnp.v78i3.2572
    [Google Scholar]
  36. YuY.Z. XuQ. Prophylactic immunotherapy of Alzheimer’s disease using recombinant amyloid-β B-cell epitope chimeric protein as subunit vaccine.Hum. Vaccin. Immunother.201612112801280410.1080/21645515.2016.1197456 27379885
    [Google Scholar]
  37. WangC.Y. WangP.N. ChiuM.J. UB‐311, a novel UBITh ® amyloid β peptide vaccine for mild Alzheimer’s disease.Alzheimers Dement. (N. Y.)20173226227210.1016/j.trci.2017.03.005 29067332
    [Google Scholar]
  38. MarcianiD.J. Alzheimer’s disease vaccine development: A new strategy focusing on immune modulation.J. Neuroimmunol.2015287546310.1016/j.jneuroim.2015.08.008 26439962
    [Google Scholar]
  39. WangS. LiuD. ZhangL. A vaccine with Aβ oligomer-specific mimotope attenuates cognitive deficits and brain pathologies in transgenic mice with Alzheimer’s disease.Alzheimers Res. Ther.2017914110.1186/s13195‑017‑0267‑5 28592267
    [Google Scholar]
  40. ZhangY. WangS. LuS. A mimotope of Aβ oligomers may also behave as a β‐sheet inhibitor.FEBS Lett.2017591213615362410.1002/1873‑3468.12871 28976547
    [Google Scholar]
  41. DeshpandeA. MinaE. GlabeC. BusciglioJ. Different conformations of amyloid β induce neurotoxicity by distinct mechanisms in human cortical neurons.J. Neurosci.200626226011601810.1523/JNEUROSCI.1189‑06.2006 16738244
    [Google Scholar]
  42. Di FedeG. CataniaM. MadernaE. Molecular subtypes of Alzheimer’s disease.Sci. Rep.201881326910.1038/s41598‑018‑21641‑1 29459625
    [Google Scholar]
  43. SenguptaU. NilsonA.N. KayedR. The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy.EBioMedicine20166424910.1016/j.ebiom.2016.03.035 27211547
    [Google Scholar]
  44. BurkiT. Alzheimer’s disease research: The future of BACE inhibitors.Lancet201839110139248610.1016/S0140‑6736(18)31425‑9 29976459
    [Google Scholar]
  45. CoimbraJ.R.M. MarquesD.F.F. BaptistaS.J. Highlights in BACE1 inhibitors for Alzheimer’s disease treatment.Front Chem.2018617810.3389/fchem.2018.00178 29881722
    [Google Scholar]
  46. TripathiS. SharmaY. RaneR. KumarD. CRISPR/Cas9 gene editing: A novel approach towards Alzheimer’s disease treatment.CNS Neurol. Disord. Drug Targets202423121405142410.2174/0118715273283786240408034408 38716549
    [Google Scholar]
  47. PenkeB. BogárF. FülöpL. β-Amyloid and the pathomechanisms of Alzheimer’s disease: A comprehensive view.Molecules20172210169210.3390/molecules22101692 28994715
    [Google Scholar]
  48. MinterM.R. TaylorJ.M. CrackP.J. The contribution of neuroinflammation to amyloid toxicity in Alzheimer’s disease.J. Neurochem.2016136345747410.1111/jnc.13411 26509334
    [Google Scholar]
  49. DiociaiutiM. BonanniR. CariatiI. FrankC. D’ArcangeloG. Amyloid prefibrillar oligomers: The surprising commonalities in their structure and activity.Int. J. Mol. Sci.20212212643510.3390/ijms22126435 34208561
    [Google Scholar]
  50. Gonzalez-GarciaM. FuscoG. De SimoneA. Membrane interactions and toxicity by misfolded protein oligomers.Front. Cell Dev. Biol.2021964262310.3389/fcell.2021.642623 33791300
    [Google Scholar]
  51. Trejo-LopezJ.A. YachnisA.T. ProkopS. Neuropathology of Alzheimer’s disease.Neurotherapeutics202219117318510.1007/s13311‑021‑01146‑y 34729690
    [Google Scholar]
  52. ChenT. DaiY. HuC. Cellular and molecular mechanisms of the blood–brain barrier dysfunction in neurodegenerative diseases.Fluids Barriers CNS20242116010.1186/s12987‑024‑00557‑1 39030617
    [Google Scholar]
  53. EspayA.J. SturchioA. SchneiderL.S. EzzatK. Soluble amyloid-β consumption in Alzheimer’s disease.J. Alzheimers Dis.20218241403141510.3233/JAD‑210415 34151810
    [Google Scholar]
  54. SubediS. SasidharanS. NagN. SaudagarP. TripathiT. Amyloid cross-seeding: Mechanism, implication, and inhibition.Molecules2022276177610.3390/molecules27061776 35335141
    [Google Scholar]
  55. LimorenkoG. LashuelH.A. Revisiting the grammar of Tau aggregation and pathology formation: how new insights from brain pathology are shaping how we study and target Tauopathies.Chem. Soc. Rev.202251251356510.1039/D1CS00127B 34889934
    [Google Scholar]
  56. DuY. WeiX. DodelR. Human anti‐β‐amyloid antibodies block β‐amyloid fibril formation and prevent β‐amyloid‐induced neurotoxicity.Brain200312691935193910.1093/brain/awg191 12821522
    [Google Scholar]
  57. MengelD. RöskamS. NeffF. Naturally occurring autoantibodies interfere with β-amyloid metabolism and improve cognition in a transgenic mouse model of Alzheimer’s disease 24 h after single treatment.Transl. Psychiatry201333e236e610.1038/tp.2012.151 23462987
    [Google Scholar]
  58. WangT. XieX. JiM. Naturally occurring autoantibodies against Aβ oligomers exhibited more beneficial effects in the treatment of mouse model of Alzheimer’s disease than intravenous immunoglobulin.Neuropharmacology201610556157610.1016/j.neuropharm.2016.02.015 26907803
    [Google Scholar]
  59. BritschgiM. OlinC.E. JohnsH.T. Neuroprotective natural antibodies to assemblies of amyloidogenic peptides decrease with normal aging and advancing Alzheimer’s disease.Proc. Natl. Acad. Sci. USA200910629121451215010.1073/pnas.0904866106 19581601
    [Google Scholar]
  60. O’NuallainB. WilliamsA.D. McWilliams-KoeppenH.P. Anti-amyloidogenic activity of IgGs contained in normal plasma.J. Clin. Immunol.201030S1Suppl. 1374210.1007/s10875‑010‑9413‑6 20405179
    [Google Scholar]
  61. LiuY.H. GiuntaB. ZhouH.D. TanJ. WangY.J. Immunotherapy for Alzheimer disease-The challenge of adverse effects.Nat. Rev. Neurol.20128846546910.1038/nrneurol.2012.118 22751529
    [Google Scholar]
  62. MarcianiD.J. A retrospective analysis of the Alzheimer’s disease vaccine progress: The critical need for new development strategies.J. Neurochem.2016137568770010.1111/jnc.13608 26990863
    [Google Scholar]
  63. CollinsT.R. For your patients-Alzheimer’s Disease.Neurol. Today201818171, 18-2410.1097/01.NT.0000546216.12865.01
    [Google Scholar]
  64. GuptaS. Use of Bayesian statistics in drug development: Advantages and challenges.Int. J. Appl. Basic Med. Res.2012213610.4103/2229‑516X.96789 23776799
    [Google Scholar]
  65. SatlinA. WangJ. LogovinskyV. Design of a Bayesian adaptive phase 2 proof‐of‐concept trial for BAN2401, a putative disease‐modifying monoclonal antibody for the treatment of Alzheimer’s disease.Alzheimers Dement. (N. Y.)20162111210.1016/j.trci.2016.01.001 29067290
    [Google Scholar]
  66. WangJ. LogovinskyV. HendrixS.B. ADCOMS: A composite clinical outcome for prodromal Alzheimer’s disease trials.J. Neurol. Neurosurg. Psychiatry201687999399910.1136/jnnp‑2015‑312383 27010616
    [Google Scholar]
  67. KastanenkaK.V. BussiereT. ShakerdgeN. Immunotherapy with aducanumab restores calcium homeostasis in Tg2576 mice.J. Neurosci.20163650125491255810.1523/JNEUROSCI.2080‑16.2016 27810931
    [Google Scholar]
  68. Tarasoff-ConwayJ.M. CarareR.O. OsorioR.S. Clearance systems in the brain-Implications for Alzheimer disease.Nat. Rev. Neurol.201511845747010.1038/nrneurol.2015.119 26195256
    [Google Scholar]
  69. RiesM. SastreM. Mechanisms of Aβ clearance and degradation by glial cells.Front. Aging Neurosci.2016816010.3389/fnagi.2016.00160 27458370
    [Google Scholar]
  70. SwansonC KaplowJ M MastroeniD P4–286: Pharmacology of BAN2401: A monoclonal antibody selective for beta‐amyloid protofibrils.Alzheimers Dement201394S_Part_20809P80910.1016/j.jalz.2013.05.1679
    [Google Scholar]
  71. SiddhantT. YashikaS. DileepK. Unraveling the mysteries of Alzheimer’s disease using artificial intelligence.Rev. Recent Clin. Trials202520118
    [Google Scholar]
  72. TangY. LeW. Differential roles of M1 and M2 microglia in neurodegenerative diseases.Mol. Neurobiol.20165321181119410.1007/s12035‑014‑9070‑5 25598354
    [Google Scholar]
  73. BruhnsP. Properties of mouse and human IgG receptors and their contribution to disease models.Blood2012119245640564910.1182/blood‑2012‑01‑380121 22535666
    [Google Scholar]
  74. KamT.I. SongS. GwonY. FcγRIIb mediates amyloid-β neurotoxicity and memory impairment in Alzheimer’s disease.J. Clin. Invest.201312372791280210.1172/JCI66827 23921129
    [Google Scholar]
  75. DodelR. RomingerA. BartensteinP. Intravenous immunoglobulin for treatment of mild-to-moderate Alzheimer’s disease: A phase 2, randomised, double-blind, placebo-controlled, dose-finding trial.Lancet Neurol.201312323324310.1016/S1474‑4422(13)70014‑0 23375965
    [Google Scholar]
  76. CappellanoG. CarecchioM. FleetwoodT. Immunity and inflammation in neurodegenerative diseases.Am. J. Neurodegener. Dis.20132289107 23844334
    [Google Scholar]
  77. Meraz-RíosM.A. Toral-RiosD. Franco-BocanegraD. Villeda-HernándezJ. Campos-PeñaV. Inflammatory process in Alzheimer’s disease.Front. Integr. Nuerosci.201375910.3389/fnint.2013.00059 23964211
    [Google Scholar]
  78. BettersR.K. Rethinking the relationship between tau and alzheimer’s disease with insights from the developing brain.PhD Thesis The University of Iowa2023
    [Google Scholar]
  79. ZhangH. WeiW. ZhaoM. Interaction between Aβ and tau in the pathogenesis of Alzheimer’s disease.Int. J. Biol. Sci.20211792181219210.7150/ijbs.57078 34239348
    [Google Scholar]
  80. SiddhantT. YashikaS. DileepK. Exploring new structures of kinase inhibitors and multitarget strategies in Alzheimer’s disease treatment.Protein Pept. Lett.202532116
    [Google Scholar]
  81. MandlikD.S. MandlikS.K. S A. Therapeutic implications of glycogen synthase kinase-3β in Alzheimer’s disease: A novel therapeutic target.Int. J. Neurosci.2024134660361910.1080/00207454.2022.2130297 36178363
    [Google Scholar]
  82. BuscheM.A. HymanB.T. Synergy between amyloid-β and tau in Alzheimer’s disease.Nat. Neurosci.202023101183119310.1038/s41593‑020‑0687‑6 32778792
    [Google Scholar]
  83. MooreK.B.E. HungT.J. FortinJ.S. Hyperphosphorylated tau (p-tau) and drug discovery in the context of Alzheimer’s disease and related tauopathies.Drug Discov. Today202328310348710.1016/j.drudis.2023.103487 36634842
    [Google Scholar]
  84. GuoY LiS ZengL-H TanJ Tau-targeting therapy in Alzheimer’s disease: Critical advances and future opportunities.Ageing Neurodegener Dis202221110.20517/and.2022.16
    [Google Scholar]
  85. ParrochaC.M.T. NowickJ.S. Current peptide vaccine and immunotherapy approaches against Alzheimer’s disease.Pept. Sci. (Hoboken)20231151e2428910.1002/pep2.24289 36778914
    [Google Scholar]
  86. ChangC.W. ShaoE. MuckeL. Tau: Enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies.Science20213716532eabb825510.1126/science.abb8255 33632820
    [Google Scholar]
  87. DavidsonR. KriderR.I. BorsellinoP. NoordaK. AlhwayekG. VidaT.A. Untangling Tau: Molecular insights into neuroinflammation, pathophysiology, and emerging immunotherapies.Curr. Issues Mol. Biol.202345118816883910.3390/cimb45110553 37998730
    [Google Scholar]
  88. 15th Conference Clinical Trials Alzheimer’s Disease.November 29-December 2, 2022; San Francisco, CA,USA. 2022
    [Google Scholar]
  89. VandeVredeL. BoxerA.L. PolydoroM. Targeting tau: Clinical trials and novel therapeutic approaches.Neurosci. Lett.202073113491910.1016/j.neulet.2020.134919 32380145
    [Google Scholar]
  90. KnightE.M. KimS.H. KottwitzJ.C. Effective anti-Alzheimer Aβ therapy involves depletion of specific Aβ oligomer subtypes.Neurol. Neuroimmunol. Neuroinflamm.201633e23710.1212/NXI.0000000000000237 27218118
    [Google Scholar]
  91. VellasB. BlackR. ThalL. Long-term follow-up of patients immunized with AN1792: reduced functional decline in antibody responders.Curr. Alzheimer Res.20096214415110.2174/156720509787602852 19355849
    [Google Scholar]
  92. HeidariA.R. Boroumand-NoughabiS. NosratabadiR. Acylated and deacylated quillaja saponin-21 adjuvants have opposite roles when utilized for immunization of C57BL/6 mice model with MOG35-55 peptide.Mult. Scler. Relat. Disord.201929688210.1016/j.msard.2019.01.025 30685444
    [Google Scholar]
  93. HockC. KonietzkoU. StrefferJ.R. Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease.Neuron200338454755410.1016/S0896‑6273(03)00294‑0 12765607
    [Google Scholar]
  94. MarcianiD.J. New Th2 adjuvants for preventive and active immunotherapy of neurodegenerative proteinopathies.Drug Discov. Today201419791292010.1016/j.drudis.2014.02.015 24607730
    [Google Scholar]
  95. HeP. ZouY. HuZ. Advances in aluminum hydroxide-based adjuvant research and its mechanism.Hum. Vaccin. Immunother.201511247748810.1080/21645515.2014.1004026 25692535
    [Google Scholar]
  96. KooijmanS. BrummelmanJ. van ElsC.A.C.M. Novel identified aluminum hydroxide-induced pathways prove monocyte activation and pro-inflammatory preparedness.J. Proteomics201817514415510.1016/j.jprot.2017.12.021 29317357
    [Google Scholar]
  97. LemereC. A. Developing novel immunogens for a safe and effective Alzheimer’s disease vaccine.Prog. Brain Res.2009175839310.1016/S0079‑6123(09)17506‑4
    [Google Scholar]
  98. MandlerM. SanticR. GruberP. Tailoring the antibody response to aggregated Aß using novel Alzheimer-vaccines.PLoS One2015101e011523710.1371/journal.pone.0115237 25611858
    [Google Scholar]
  99. BoecklerC. FrischB. MullerS. SchuberF. Immunogenicity of new heterobifunctional cross-linking reagents used in the conjugation of synthetic peptides to liposomes.J. Immunol. Methods1996191111010.1016/0022‑1759(95)00284‑7 8642195
    [Google Scholar]
  100. HullM. SadowskyC. AraiH. Long-term extensions of randomized vaccination trials of ACC-001 and QS-21 in mild to moderate Alzheimer’s disease.Curr. Alzheimer Res.2017147696708 28124589
    [Google Scholar]
  101. VandenbergheR. RiviereM.E. CaputoA. Active Aβ immunotherapy CAD106 in Alzheimer’s disease: A phase 2b study.Alzheimers Dement. (N. Y.)201731102210.1016/j.trci.2016.12.003 29067316
    [Google Scholar]
  102. WangC.Y. FinstadC.L. WalfieldA.M. Site-specific UBITh® amyloid-β vaccine for immunotherapy of Alzheimer’s disease.Vaccine200725163041305210.1016/j.vaccine.2007.01.031 17287052
    [Google Scholar]
  103. BodeC. ZhaoG. SteinhagenF. KinjoT. KlinmanD.M. CpG DNA as a vaccine adjuvant.Expert Rev. Vaccines201110449951110.1586/erv.10.174 21506647
    [Google Scholar]
  104. DavtyanH. ZagorskiK. RajapakshaH. Alzheimer’s disease AdvaxCpG- adjuvanted MultiTEP-based dual and single vaccines induce high-titer antibodies against various forms of tau and Aβ pathological molecules.Sci. Rep.2016612891210.1038/srep28912 27363809
    [Google Scholar]
  105. GringhuisS.I. KapteinT.M. WeversB.A. MesmanA.W. GeijtenbeekT.B.H. Fucose-specific DC-SIGN signalling directs T helper cell type-2 responses via IKKε- and CYLD-dependent Bcl3 activation.Nat. Commun.201451389810.1038/ncomms4898 24867235
    [Google Scholar]
  106. EngeringA. GeijtenbeekT.B.H. van VlietS.J. The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells.J. Immunol.200216852118212610.4049/jimmunol.168.5.2118 11859097
    [Google Scholar]
  107. ChatzileontiadouD.S.M. SloaneH. NguyenA.T. GrasS. GrantE.J. The many faces of CD4+ T cells: Immunological and structural characteristics.Int. J. Mol. Sci.20202217310.3390/ijms22010073 33374787
    [Google Scholar]
  108. PelletE.M. Systematic inference of regulatory networks that drive cytokine-stimulus integration by T cells.Thesis Humboldt Universitat Zuberlin2020
    [Google Scholar]
  109. KosticM ZivkovicN CvetanovicA BasicJ StojanovicI Dissecting the immune response of CD4+ T cells in Alzheimer's disease.Rev Neurosci2024Epub ahead of print10.1515/revneuro‑2024‑0090
    [Google Scholar]
  110. HassanM.T. TayaraH. ChongK.T. Meta-IL4: An ensemble learning approach for IL-4-inducing peptide prediction.Methods2023217495610.1016/j.ymeth.2023.07.002 37454743
    [Google Scholar]
  111. SmithC.T. WangZ. LewisJ.S. Engineering antigen-presenting cells for immunotherapy of autoimmunity.Adv. Drug Deliv. Rev.202421011532910.1016/j.addr.2024.115329 38729265
    [Google Scholar]
  112. UraT. TakeuchiM. KawagoeT. MizukiN. OkudaK. ShimadaM. Current vaccine platforms in enhancing T-cell response.Vaccines2022108136710.3390/vaccines10081367 36016254
    [Google Scholar]
  113. LuY. LiuX. YouJ. Mechanisms and measures to modulate T cell trafficking for amplified and tolerogenic immunity.Nano Today20245410212910.1016/j.nantod.2023.102129
    [Google Scholar]
  114. CacabelosR. How plausible is an Alzheimer’s disease vaccine?Expert Opin. Drug Discov.20201511610.1080/17460441.2019.1667329 31526140
    [Google Scholar]
  115. HouY. ChenM. BianY. ZhengX. TongR. SunX. Advanced subunit vaccine delivery technologies: From vaccine cascade obstacles to design strategies.Acta Pharm. Sin. B20231383321333810.1016/j.apsb.2023.01.006 37655334
    [Google Scholar]
  116. MullaneK. WilliamsM. Alzheimer’s disease (AD) therapeutics – 1: Repeated clinical failures continue to question the amyloid hypothesis of AD and the current understanding of AD causality.Biochem. Pharmacol.201815835937510.1016/j.bcp.2018.09.026 30273553
    [Google Scholar]
  117. ClineE.N. DasA. BiccaM.A. A novel crosslinking protocol stabilizes amyloid β oligomers capable of inducing Alzheimer’s‐associated pathologies.J. Neurochem.2019148682283610.1111/jnc.14647 30565253
    [Google Scholar]
  118. BittarA. SenguptaU. KayedR. Prospects for strain-specific immunotherapy in Alzheimer’s disease and tauopathies. npj.Vaccines2018319 29385680
    [Google Scholar]
  119. SakonoM. ZakoT. Amyloid oligomers: Formation and toxicity of Aβ oligomers.FEBS J.201027761348135810.1111/j.1742‑4658.2010.07568.x 20148964
    [Google Scholar]
  120. AleksisR. OleskovsF. JaudzemsK. PahnkeJ. BiverstålH. Structural studies of amyloid-β peptides: Unlocking the mechanism of aggregation and the associated toxicity.Biochimie201714017619210.1016/j.biochi.2017.07.011 28751216
    [Google Scholar]
  121. SuvorinaM.Y. SelivanovaO.M. GrigorashviliE.I. Studies of polymorphism of amyloid-β 42 peptide from different suppliers.J. Alzheimers Dis.201547358359310.3233/JAD‑150147 26401694
    [Google Scholar]
  122. TyckoR. Amyloid polymorphism: Structural basis and neurobiological relevance.Neuron201586363264510.1016/j.neuron.2015.03.017 25950632
    [Google Scholar]
  123. MarcianiD.J. Effects of immunomodulators on the response induced by vaccines against autoimmune diseases.Autoimmunity201750739340210.1080/08916934.2017.1373766 28906131
    [Google Scholar]
  124. RosenbergR.N. FuM. Lambracht-WashingtonD. Active full-length DNA Aβ42 immunization in 3xTg-AD mice reduces not only amyloid deposition but also tau pathology.Alzheimers Res. Ther.201810111510.1186/s13195‑018‑0441‑4 30454039
    [Google Scholar]
  125. MalettoB. RópoloA. MorónV. Pistoresi-PalenciaM.C. CpG-DNA stimulates cellular and humoral immunity and promotes Th1 differentiation in aged BALB/c mice.J. Leukoc. Biol.200272344745410.1189/jlb.72.3.447 12223511
    [Google Scholar]
  126. CaoC. LinX. ZhangC. Mutant Amyloid-beta-sensitized dendritic cells as Alzheimer’s disease vaccine.J. Neuroimmunol.20082001-211010.1016/j.jneuroim.2008.05.017 18649951
    [Google Scholar]
  127. LuoZ. LiJ. NabarN.R. Efficacy of a therapeutic vaccine using mutated β-amyloid sensitized dendritic cells in Alzheimer’s mice.J. Neuroimmune Pharmacol.20127364065510.1007/s11481‑012‑9371‑2 22684353
    [Google Scholar]
  128. BrezovakovaV. ValachovaB. HanesJ. NovakM. JadhavS. Dendritic cells as an alternate approach for treatment of neurodegenerative disorders.Cell. Mol. Neurobiol.20183861207121410.1007/s10571‑018‑0598‑1 29948552
    [Google Scholar]
  129. OkanoM. SatoskarA.R. NishizakiK. HarnD.A.Jr Lacto-N-fucopentaose III found on Schistosoma mansoni egg antigens functions as adjuvant for proteins by inducing Th2-type response.J. Immunol.2001167144245010.4049/jimmunol.167.1.442 11418681
    [Google Scholar]
  130. BoscardinS.B. HafallaJ.C.R. MasilamaniR.F. Antigen targeting to dendritic cells elicits long-lived T cell help for antibody responses.J. Exp. Med.2006203359960610.1084/jem.20051639 16505139
    [Google Scholar]
  131. Van EldikL.J. CarrilloM.C. ColeP.E. The roles of inflammation and immune mechanisms in Alzheimer’s disease.Alzheimers Dement. (N. Y.)2016229910910.1016/j.trci.2016.05.001 29067297
    [Google Scholar]
  132. UmarT.P. JainN. StevannyB. Protective role of Bacillus Calmette–Guérin vaccine in Alzheimer’s disease progression: A systematic review and meta-analysis.Heliyon2024105e2742510.1016/j.heliyon.2024.e27425 38495158
    [Google Scholar]
  133. UkraintsevaS. YashkinA.P. AkushevichI. Associations of infections and vaccines with Alzheimer’s disease point to a role of compromised immunity rather than specific pathogen in AD.Exp. Gerontol.202419011241110.1016/j.exger.2024.112411 38548241
    [Google Scholar]
  134. TripathiS. SharmaY. KumarD. Exploring the therapeutic potential of noncoding RNAs in Alzheimer’s disease.Protein Pept. Lett.2024311186288310.2174/0109298665335550241011080252 39558496
    [Google Scholar]
  135. HovakimyanA. ChilingaryanG. KingO. mRNA vaccine for Alzheimer’s disease: Pilot study.Vaccines202412665910.3390/vaccines12060659 38932388
    [Google Scholar]
  136. TripathiS. SharmaY. KumarD. Biological cargo: Exosomes and their role in cancer progression and metastasis.Curr. Top. Med. Chem.202525326328510.2174/0115680266304636240626055711
    [Google Scholar]
  137. TripathiS. SharmaY. GautamM.K. KumarD. CRISPR–Cas against antimicrobial-resistant pathogens.Emerging Paradigms for Antibiotic-Resistant Infections: Beyond the Pill. GangwarM. NathG. SingaporeSpringer Nature Singapore202432410.1007/978‑981‑97‑5272‑0_1
    [Google Scholar]
  138. WuR. SunF. ZhangW. RenJ. LiuG-H. Targeting aging and age-related diseases with vaccines.Nat. Aging2024446448210.1038/s43587‑024‑00597‑0
    [Google Scholar]
  139. OxfordA.E. StewartE.S. RohnT.T. Clinical trials in Alzheimer’s disease: A hurdle in the path of remedy.Int. J. Alzheimers Dis.20202020111310.1155/2020/5380346 32308993
    [Google Scholar]
  140. RickenbachC. GerickeC. Specificity of adaptive immune responses in central nervous system health, aging and diseases.Front. Neurosci.20221580626010.3389/fnins.2021.806260 35126045
    [Google Scholar]
  141. Taghizadeh MortezaeiN. HabibzadehA. RahimianZ. Crossing the Blood-Brain Barrier: Advancing Immunotherapy for Pediatric Brain Tumors.Springer202410.1007/16833_2024_400
    [Google Scholar]
  142. MenonI. BagweP. GomesK.B. Microneedles: A new generation vaccine delivery system.Micromachines202112443510.3390/mi12040435 33919925
    [Google Scholar]
  143. HaiderF. BatoolF. RiazA. Vaccine development and design: From bench to beside.In: Complementary and Alternative Medicine: Immunization/Vaccinology.Unique Scientific Publishers2024324010.47278/book.CAM/2024.288
    [Google Scholar]
  144. JørgensenI.F. HaueA.D. PlacidoD. HjaltelinJ.X. BrunakS. Disease Trajectories from healthcare data: Methodologies, key results, and future perspectives.Annu. Rev. Biomed. Data Sci.20247125127610.1146/annurev‑biodatasci‑110123‑041001 39178424
    [Google Scholar]
  145. IslamM. R. RabbiM. A. HossainT. SultanaS. UddinS. Mechanistic approach to immunity and immunotherapy of Alzheimer’s disease: A review.ACS Chem. Neurosci.20241520acschemneuro.4c0036010.1021/acschemneuro.4c0036039173186
    [Google Scholar]
  146. AljassabiA. ZieneldienT. KimJ. RegmiD. CaoC. Alzheimer’s disease immunotherapy: Current strategies and future prospects.J. Alzheimer’s Dis.202498375577210.3233/JAD‑231163
    [Google Scholar]
  147. JiC. SigurdssonE.M. Current status of clinical trials on tau immunotherapies.Drugs202181101135115210.1007/s40265‑021‑01546‑6 34101156
    [Google Scholar]
  148. MantileF. PriscoA. Vaccination against β-Amyloid as a strategy for the prevention of Alzheimer’s disease.Biology202091242510.3390/biology9120425 33260956
    [Google Scholar]
  149. XuD. SongX.J. ChenX. WangJ.W. CuiY.L. Advances and future perspectives of intranasal drug delivery: A scientometric review.J. Control. Release202436736638410.1016/j.jconrel.2024.01.053 38286336
    [Google Scholar]
  150. BanuZ. RaniR. MehdiyaR. ZeenathB. Unravelling Alzheimer’s disease: Insights into pathophysiology, etiology, diagnostic approaches, and the promise of aducanumab, lecanemab, and donanemab.J Phytonanotechnology Pharm Sci20244311010.54085/jpps.2024.4.3.1
    [Google Scholar]
  151. NeubergerM.S. EhrensteinM.R. RadaC. Memory in the B-cell compartment: Antibody affinity maturation.Philos. Trans. R. Soc. Lond. B Biol. Sci.2000355139535736010.1098/rstb.2000.0573 10794054
    [Google Scholar]
  152. LicastroF. CandoreG. LioD. Innate immunity and inflammation in ageing: A key for understanding age-related diseases.Immun. Ageing200521810.1186/1742‑4933‑2‑8 15904534
    [Google Scholar]
  153. AspinallR. Del GiudiceG. EffrosR.B. Grubeck-LoebensteinB. SambharaS. Challenges for vaccination in the elderly.Immun. Ageing200741910.1186/1742‑4933‑4‑9 18072962
    [Google Scholar]
  154. KalariaR.N. MaestreG.E. ArizagaR. Alzheimer’s disease and vascular dementia in developing countries: Prevalence, management, and risk factors.Lancet Neurol.20087981282610.1016/S1474‑4422(08)70169‑8 18667359
    [Google Scholar]
  155. SiddhantT. YashikaS. DileepK. Unraveling APOE4's role in Alzheimer’s disease: Pathologies and therapeutic strategies.Curr. Protein Pept. Sci.202526124
    [Google Scholar]
  156. MarcianiD.J. Elucidating the mechanisms of action of saponin-derived adjuvants.Trends Pharmacol. Sci.201839657358510.1016/j.tips.2018.03.005 29655658
    [Google Scholar]
  157. MillerY. MaB. NussinovR. Synergistic interactions between repeats in tau protein and Aβ amyloids may be responsible for accelerated aggregation via polymorphic states.Biochemistry201150235172518110.1021/bi200400u 21506544
    [Google Scholar]
  158. TenreiroS. EckermannK. OuteiroT.F. Protein phosphorylation in neurodegeneration: Friend or foe?Front. Mol. Neurosci.201474210.3389/fnmol.2014.00042 24860424
    [Google Scholar]
  159. ManasseroG. GuglielmottoM. ZamfirR. Beta‐amyloid 1‐42 monomers, but not oligomers, produce PHF ‐like conformation of Tau protein.Aging Cell201615591492310.1111/acel.12500 27406053
    [Google Scholar]
  160. HuberC.M. YeeC. MayT. DhanalaA. MitchellC.S. Cognitive decline in preclinical Alzheimer’s disease: Amyloid-beta versus tauopathy.J. Alzheimers Dis.201761126528110.3233/JAD‑170490 29154274
    [Google Scholar]
  161. HooperC. KillickR. LovestoneS. The GSK3 hypothesis of Alzheimer’s disease.J. Neurochem.200810461433143910.1111/j.1471‑4159.2007.05194.x 18088381
    [Google Scholar]
  162. KontsekovaE. ZilkaN. KovacechB. NovakP. NovakM. First-in-man tau vaccine targeting structural determinants essential for pathological tau–tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer’s disease model.Alzheimers Res. Ther.2014644410.1186/alzrt278 25478017
    [Google Scholar]
  163. SnyderH.M. Cardenas-AguayoM.C. AlonsoA. BainL. IqbalK. CarrilloM.C. Alzheimer’s disease research in Ibero America.Alzheimers Dement.201612674975410.1016/j.jalz.2016.04.007 27288539
    [Google Scholar]
  164. MarcianiD.J. Facing Alzheimer’s disease in the developing countries.Rev. Neuropsiquiatr.201780210511010.20453/rnp.v80i2.3091
    [Google Scholar]
/content/journals/rrct/10.2174/0115748871357356250325071712
Loading
/content/journals/rrct/10.2174/0115748871357356250325071712
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Adjuvant; amyloid-β; immunogens; monoclonal antibody; pleomorphism; vaccine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test