Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-8871
  • E-ISSN: 1876-1038

Abstract

Background

Millions of people worldwide suffer from dry eye disease. Dry eye, a multifunctional condition of the ocular surface, typically occurs in conjunction with an unbalanced tear film. With increasing age, the dry eye problem becomes worse. Aqueous-deficit dry eye and evaporative dry eye are the two traditional classifications for dry eye. Various examination tools are used to diagnose dry eye. Clinical trials are conducted in four phases to check the safety and efficacy of drugs. The quick clearance from the precorneal space is ensured by the eye's advanced defense mechanism. It restricts the integrated medicine's entry into the eyes, resulting in a usually low bioavailability for topical eyedrops. In this study, we focus on recently developed formulations for curing dry eye.

Objective

This review's goal was to outline the etiology, clinical discovery and development, patents, and recent advancements for dry eye disease.

Results

The current study has described the widespread incidence of dry eye, which was found to be more common as people aged and recently developed formulations are treating dry eyes. According to research, novel formulations are enhancing ocular drug delivery.

Conclusion

In this review, etiology, clinical data, dry eye formulation patents, and recent advancements are all included.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/0115748871310261240929163138
2024-10-09
2025-12-27
Loading full text...

Full text loading...

References

  1. PrataA.I. CoimbraP. PinaM.E. Preparation of dexamethasone ophthalmic implants: A comparative study of in vitro release profiles.Pharm. Dev. Technol.201823321822410.1080/10837450.2017.1306560
    [Google Scholar]
  2. Mohammad GargV. NirmalJ. WarsiM.H. PanditaD. KesharwaniP. JainG.K. Topical tacrolimus progylcosomes nano-vesicles as a potential therapy for experimental dry eye syndrome.J. Pharm. Sci.2022111247948410.1016/j.xphs.2021.09.038
    [Google Scholar]
  3. NassiriN. Rodriguez TorresY. MeyerZ. BeyerM.A. VellaichamyG. DhaliwalA.S. ChungfatN. HwangF.S. Current and emerging therapy of dry eye disease. Part A: Pharmacological modalities.Expert Rev. Ophthalmol.201712426929710.1080/17469899.2017.1327350
    [Google Scholar]
  4. NebbiosoM. FameliV. GharbiyaM. SacchettiM. ZicariA.M. LambiaseA. Investigational drugs in dry eye disease.Expert Opin. Investig. Drugs201625121437144610.1080/13543784.2016.1249564
    [Google Scholar]
  5. Jurišić DukovskiB. JuretićM. BračkoD. RandjelovićD. SavićS. Crespo MoralM. DieboldY. Filipović-GrčićJ. PepićI. LovrićJ. Functional ibuprofen-loaded cationic nanoemulsion: Development and optimization for dry eye disease treatment.Int. J. Pharm.202057611897910.1016/j.ijpharm.2019.118979
    [Google Scholar]
  6. StapletonF. AlvesM. BunyaV.Y. JalbertI. LekhanontK. MaletF. NaK.S. SchaumbergD. UchinoM. VehofJ. VisoE. VitaleS. JonesL. Tfos dews ii epidemiology report.Ocul. Surf.201715333436510.1016/j.jtos.2017.05.003
    [Google Scholar]
  7. Al-MohtasebZ. SchachterS. Shen LeeB. GarlichJ. TrattlerW. The relationship between dry eye disease and digital screen use.Clin. Ophthalmol.2021153811382010.2147/OPTH.S321591
    [Google Scholar]
  8. NagaiN. OtakeH. Novel drug delivery systems for the management of dry eye.Adv. Drug Deliv. Rev.202219111458210.1016/j.addr.2022.114582
    [Google Scholar]
  9. CetinkayaS. MestanE. AcirN.O. CetinkayaY.F. DadaciZ. YenerH.I. The course of dry eye after phacoemulsification surgery.BMC Ophthalmol.20151516810.1186/s12886‑015‑0058‑3
    [Google Scholar]
  10. ZeevM.S. MillerD.D. LatkanyR. Diagnosis of dry eye disease and emerging technologies.Clin. Ophthalmol.201458159010.2147/OPTH.S45444.
    [Google Scholar]
  11. LeBlancA.G. GunnellK.E. PrinceS.A. SaundersT.J. BarnesJ.D. ChaputJ.P. The ubiquity of the screen: an overview of the risks and benefits of screen time in our modern world.Transl. J. Am. Coll. Sports Med.201721710411310.1249/TJX.0000000000000039
    [Google Scholar]
  12. CourtinR. PereiraB. NaughtonG. ChamouxA. ChiambarettaF. LanhersC. DutheilF. Prevalence of dry eye disease in visual display terminal workers: A systematic review and meta-analysis.BMJ Open201661e00967510.1136/bmjopen‑2015‑009675
    [Google Scholar]
  13. SheppardA.L. WolffsohnJ.S. Digital eye strain: Prevalence, measurement and amelioration.BMJ Open Ophthalmol.201831e00014610.1136/bmjophth‑2018‑000146
    [Google Scholar]
  14. VanderlooL.M. CarsleyS. AglipayM. CostK.T. MaguireJ. BirkenC.S. Applying harm reduction principles to address screen time in young children amidst the COVID-19 pandemic.J. Dev. Behav. Pediatr.202041533533610.1097/DBP.0000000000000825
    [Google Scholar]
  15. PhadatareSP. MominM. NighojkarP. AskarkarS. SinghKK. A comprehensive review on dry eye disease: Diagnosis, medical management, recent developments, and future challenges.Adv Pharm201511210.1155/2015/704946
    [Google Scholar]
  16. BarabinoS. Is dry eye disease the same in young and old patients? A narrative review of the literature.BMC Ophthalmol.20222218510.1186/s12886‑022‑02269‑2
    [Google Scholar]
  17. SharmaA. HindmanH.B. Aging: A predisposition to dry eyes.J. Ophthalmol.20142014
    [Google Scholar]
  18. LollettI.V. GalorA. Dry eye syndrome: Developments and lifitegrast in perspective.Clin. Ophthalmol.20181212513910.2147/OPTH.S126668
    [Google Scholar]
  19. LinH. YiuS.C. Dry eye disease: A review of diagnostic approaches and treatments.Saudi J. Ophthalmol.201428317318110.1016/j.sjopt.2014.06.002
    [Google Scholar]
  20. HwangH.S. MikulaE. XieY. BrownD.J. JesterJ.V. A novel transillumination meibography device for in vivo imaging of mouse meibomian glands.Ocul. Surf.20211920120910.1016/j.jtos.2020.08.012
    [Google Scholar]
  21. ShoariA. KanaviM.R. RasaeeM.J. Inhibition of matrix metalloproteinase-9 for the treatment of dry eye syndrome; A review study.Exp. Eye Res.202120510852310.1016/j.exer.2021.108523
    [Google Scholar]
  22. de OliveiraI.F. BarbosaE.J. PetersM.C.C. HenostrozaM.A.B. YukuyamaM.N. dos Santos NetoE. LöbenbergR. Bou-ChacraN. Cutting-edge advances in therapy for the posterior segment of the eye: Solid lipid nanoparticles and nanostructured lipid carriers.Int. J. Pharm.202058911983110.1016/j.ijpharm.2020.119831
    [Google Scholar]
  23. MohamedH.B. Abd El-HamidB.N. FathallaD. FouadE.A. Current trends in pharmaceutical treatment of dry eye disease: A review.Eur. J. Pharm. Sci.202217510620610.1016/j.ejps.2022.106206
    [Google Scholar]
  24. DengY. WangQ. LuoZ. LiS. WangB. ZhongJ. PengL. XiaoP. YuanJ. Quantitative analysis of morphological and functional features in meibography for meibomian gland dysfunction: Diagnosis and grading.EClinicalMedicine20214010113210.1016/j.eclinm.2021.101132
    [Google Scholar]
  25. LiN. DengX.G. HeM.F. Comparison of the Schirmer I test with and without topical anesthesia for diagnosing dry eye.Int. J. Ophthalmol.201254478
    [Google Scholar]
  26. LimónD. VásquezC. CzaplewskiR. Measurement of tear production using Schirmer tear test and standardized endodontic absorbent paper points in ferrets (Mustela putorius furo).J. Exot. Pet Med.201929101410.1053/j.jepm.2018.09.015
    [Google Scholar]
  27. WuY. WangC. WangX. MouY. YuanK. HuangX. JinX. Advances in dry eye disease examination techniques.Front. Med. (Lausanne)2022882653010.3389/fmed.2021.826530
    [Google Scholar]
  28. KaracaE.E. ÖzekD. Evren KemerÖ. Comparison study of two different topical lubricants on tear meniscus and tear osmolarity in dry eye.Cont. Lens Anterior Eye202043437337710.1016/j.clae.2019.10.001
    [Google Scholar]
  29. ConnorC.G. HaineC.L. Treatment for dry eye.US 2021/00080792021
  30. VicneshJ. OhS.L. WeiJ.K.E. CiaccioE.J. ChuaK.C. TongL. Rajendra AcharyaU. Thoughts concerning the application of thermogram images for automated diagnosis of dry eye – A review.Infrared Phys. Technol.202010610327110.1016/j.infrared.2020.103271
    [Google Scholar]
  31. PondelisN. DieckmannG.M. JamaliA. KataguiriP. SenchynaM. HamrahP. Infrared meibography allows detection of dimensional changes in meibomian glands following intranasal neurostimulation.Ocul. Surf.202018351151610.1016/j.jtos.2020.03.003
    [Google Scholar]
  32. ShirakawaR. AritaR. AmanoS. Meibomian gland morphology in Japanese infants, children, and adults observed using a mobile pen-shaped infrared meibography device.Am. J. Ophthalmol.2013155610991103.e110.1016/j.ajo.2013.01.017
    [Google Scholar]
  33. BanY. Shimazaki-DenS. TsubotaK. ShimazakiJ. Morphological evaluation of meibomian glands using noncontact infrared Meibography.Ocul. Surf.2013111475310.1016/j.jtos.2012.09.005
    [Google Scholar]
  34. HamrahP. AlipourF. JiangS. SohnJ-H. FoulksG.N. Optimizing evaluation of Lissamine Green parameters for ocular surface staining.Eye (Lond.)201125111429143410.1038/eye.2011.184
    [Google Scholar]
  35. EomY. LeeJ.S. Keun LeeH. Myung KimH. Suk SongJ. Comparison of conjunctival staining between lissamine green and yellow filtered fluorescein sodium.Cancer J. Ophthalmol.201550427327710.1016/j.jcjo.2015.05.007
    [Google Scholar]
  36. DoughtyM.J. Rose bengal staining as an assessment of ocular surface damage and recovery in dry eye disease—A review.Cont. Lens Anterior Eye201336627228010.1016/j.clae.2013.07.008
    [Google Scholar]
  37. HamrahP. QaziY. Meibomian gland dysfunction.US 9,931,0312018
  38. AggarwalS. KheirkhahA. CavalcantiB.M. CruzatA. JamaliA. HamrahP. Correlation of corneal immune cell changes with clinical severity in dry eye disease: An in vivo confocal microscopy study.Ocul. Surf.20211918318910.1016/j.jtos.2020.05.012
    [Google Scholar]
  39. GoffinJ. Clinical Trials Handbook.Wiley2009122
    [Google Scholar]
  40. Phase 3 study of OTX-101 in the treatment of Keratoconjunctivitis sicca (Emerald).NCT026885562022
  41. Dry eye disease study with brimonidine.NCT034187272022
  42. Study of SY-201 ophthalmic solution in subjects with dry eye disease.NCT053704952024
  43. Intense regulated pulse light therapy in dry eye disease.NCT055535612023
  44. Effect of traditional chinese medicine on basic tear secretion and tear cytokines in patients with dry eye disease.NCT047852612021
  45. Study of brimonidine tartrate nanoemulsion eye drop solution in the treatment of dry eye disease (DED).NCT037853402022
  46. Effect of cequa treatment on accuracy of pre-operative biometry & higher order aberrations in dry eye patients undergoing cataract surgery.NCT043429882021
  47. Ocular tolerability of voclosporin ophthalmic solution versus restasis® in subjects with dry eye disease.NCT035971392021
  48. Effect of Cequa™ in subjects with dry eye disease.NCT043577952019
  49. Evaluating HA 0.15% compared with cyclosporine 0.05%, and efficacy of combination therapy in dry eye disease patients.NCT041278512022
  50. Liposomal sirolimus in dry eye disease.NCT041158002019
  51. Effect of UMSCs derived exosomes on dry eye in patients with cGVHD.NCT042132482022
  52. Study of VVN001 ophthalmic solution in dry eye disease.NCT045568382023
  53. Phase II study of SHJ002 sterile ophthalmic solution compared with vehicle in participants with dry eye disease.NCT054867282023
  54. A study evaluating the efficacy of SAR 1118 (0.1%, 1.0%, 5.0%) Ophthalmic solution in subjects with dry eye conducted in a controlled adverse environment (CAE).NCT009261852021
  55. Safety and efficacy study of SAR 1118 to treat dry eye conducted in a controlled adverse environment (CAE) (OPUS-1) (OPUS-1).NCT01421498
  56. A phase 3 study to evaluate the efficacy of Lifitegrast in subjects with dry eye.NCT017437292021
  57. A study to evaluate efficacy and safety of lifitegrast in subjects with dry eye (OPUS-3) (OPUS-3).NCT022845162015
  58. Effect of lifitegrast on dry eye disease signs and symptoms (Lifitegrast).NCT034513962018
  59. OTX-DED for the short-term treatment of the symptoms of dry eye disease (DED).NCT058147572024
  60. A study of TL-925 as a treatment for dry eye disease.NCT05745064
  61. Clinical trial to evaluate the efficacy and safety of OC-01 (Varenicline) nasal spray on signs and symptoms of dry eye disease.NCT053789452023
  62. MalhotraR. DevriesD.K. LuchsJ. KabatA. SchechterB.A. Shen LeeB. ShettleL. Smyth-MedinaR. OgundeleA. DarbyC. BacharachJ. KarpeckiP. Effect of OTX-101, a novel nanomicellar formulation of cyclosporine A, on corneal staining in patients with keratoconjunctivitis sicca: A pooled analysis of phase 2b/3 and phase 3 studies.Cornea201938101259126510.1097/ICO.0000000000001989
    [Google Scholar]
  63. MandalA. GoteV. PalD. OgundeleA. MitraA.K. Ocular pharmacokinetics of a topical ophthalmic nanomicellar solution of cyclosporine (Cequa®) for dry eye disease.Pharm. Res.20193623610.1007/s11095‑018‑2556‑5
    [Google Scholar]
  64. Di MarinoM. ConigliaroP. AielloF. ValeriC. GianniniC. MancinoR. ModicaS. NucciC. PerriconeR. CesareoM. Combined low-level light therapy and intense pulsed light therapy for the treatment of dry eye in patients with Sjögren’s Syndrome.J. Ophthalmol.2021202111610.1155/2021/2023246
    [Google Scholar]
  65. KumarG. VirmaniT. PathankK. Non-aqueous-nanoemulsions-an-innovative-lipid-based-drug-carrierIGI Global publisher202210.4018/978‑1‑7998‑8908‑3.ch006.
    [Google Scholar]
  66. MarshallL.L. HayslettR.L. Dry eye disease: Focus on prescription therapy.Sr. Care Pharm.202338623925110.4140/TCP.n.2023.239
    [Google Scholar]
  67. ColligrisB. AlkoziH.A. PintorJ. Recent developments on dry eye disease treatment compounds.Saudi J. Ophthalmol.2014281193010.1016/j.sjopt.2013.12.003
    [Google Scholar]
  68. AlamJ. de SouzaR.G. YuZ. SternM.E. de PaivaC.S. PflugfelderS.C. Calcineurin inhibitor voclosporin preserves corneal barrier and conjunctival goblet cells in experimental dry eye.J. Ocul. Pharmacol. Ther.202036967968510.1089/jop.2020.0005
    [Google Scholar]
  69. LeeJ.E. KimS. LeeH.K. ChungT.Y. KimJ.Y. ChoiC.Y. ChungS.H. KimD.H. KimK.W. ChungJ.K. HwangK.Y. HwangH.S. KimJ.H. HyonJ.Y. A randomized multicenter evaluation of the efficacy of 0.15% hyaluronic acid versus 0.05% cyclosporine A in dry eye syndrome.Sci. Rep.20221211873710.1038/s41598‑022‑21330‑0
    [Google Scholar]
  70. NavasA. CórdobaA. BarrónN.C. Graue-HernandezE.O. MoralesN. GarfiasY. García-SánchezG.A. Linares-AlbaM.A. García-SantistebanR. Subconjunctival sirolimus-loaded liposomes for the treatment of moderate to severe dry eye disease.Invest. Ophthalmol. Vis. Sci.20216281330Available from: https://produccion.siia.unam.mx/Publicaciones/ProdCientif/PublicacionFrw.aspx?scopus=0&id=599683
    [Google Scholar]
  71. Salcedo-LedesmaA. CórdobaA. Zatarain-BarrónN.C. Graue-HernándezE.O. GarfiasY. Morales FloresN. García-SánchezG.A. García-SantistebanD. Linares-AlbaM.A. García-SantistebanR. NavasA. Subconjunctival sirolimus-loaded liposomes for the treatment of moderate-to-severe dry eye disease.Clin. Ophthalmol.2023171295130510.2147/OPTH.S405841
    [Google Scholar]
  72. TauberJ. EvansD. SegalB. LiX.Y. ShenW. LuC. NovackG.D. TauberJ. AbramsM. Smyth-MedinaR. MajmudarP. HollandE. AlpernL. MartelJ. ClayE. KorenfeldM. SegalB. GooseyJ. EvansD. GoldbergD. El-HaraziS. A phase 2a, double-masked, randomized, vehicle-controlled trial of VVN001 in subjects with dry eye disease.Ocul. Surf.202328182410.1016/j.jtos.2022.12.007
    [Google Scholar]
  73. HollandE.J. WhitleyW.O. SallK. LaneS.S. RaychaudhuriA. ZhangS.Y. ShojaeiA. Lifitegrast clinical efficacy for treatment of signs and symptoms of dry eye disease across three randomized controlled trials.Curr. Med. Res. Opin.201632101759176510.1080/03007995.2016.1210107
    [Google Scholar]
  74. DonnenfeldE.D. PerryH.D. NattisA.S. RosenbergE.D. Lifitegrast for the treatment of dry eye disease in adults.Expert Opin. Pharmacother.201718141517152410.1080/14656566.2017.1372748
    [Google Scholar]
  75. TauberJ. KarpeckiP. LatkanyR. LuchsJ. MartelJ. SallK. RaychaudhuriA. SmithV. SembaC.P. OPUS-2 Investigators. Lifitegrast ophthalmic solution 5.0% versus placebo for treatment of dry eye disease: results of the randomized phase III OPUS-2 study.Ophthalmology2015122122423243110.1016/j.ophtha.2015.08.001
    [Google Scholar]
  76. HollandE.J. LuchsJ. KarpeckiP.M. NicholsK.K. JacksonM.A. SallK. TauberJ. RoyM. RaychaudhuriA. ShojaeiA. Lifitegrast for the treatment of dry eye disease: Results of a phase III, randomized, double-masked, placebo-controlled trial (OPUS-3).Ophthalmology20171241536010.1016/j.ophtha.2016.09.025
    [Google Scholar]
  77. ChangJ.N. OlejnikO. FirestoneB.A. Cyclosporin compositions.US Patent 2013/00597962013
  78. HouH. WangJ. Timolol maleate (TM) eye gel and preparation method thereof.CN1021786442013
  79. ChangJ.N. OlejnikO. FirestoneB.A. Cyclosporin compositions.US Patent 8,969,3062015
  80. GoreA.V. JordanR.S. KrockK. PujaraC. Artificial tears and therapeutic uses.AU 20202566522015
  81. LoudinJ.D. FrankeM. HamiltonD.N. DoraiswamyA. AckermannD.M. Contact lens for increasing tear production.CA 2,965,5142016
  82. GrahamRS. TienWL. AttarM. Cyclosporin compositions.US Patent 9,561,1782017
  83. GuntherB. SchererD. XuH. Compositions comprising Tacrolimus for the treatment of intraocular inflammatory eye diseases.WO 2018/1145572018
  84. RigasB. WallsT.H. Compositions and methods for treating ophthalmic conditions.WO 2018/0643542018
  85. KimM.J. Pharmaceutical composition for preventing and treating dry eye diseases, containing Imatinib as active ingredient.US 10,231,9712019
  86. WuC. LiY. LiY. PanX. HuangY. LhenH.P. Timolol maleate cubic liquid crystal nano eye drop and preparation method thereof.CN 1066195732019
  87. LikitlersuangS. ParasharA. PujaraC.P. KellyW.F. Preservative free brimonidine and timolol solutions.US 10,792,2882020
  88. LiangB. PengH. ZhuJ. YuanX. In-situ gel containing cyclosporin micelles as sustained ophthalmic drug delivery system.WO 2021/0320732021
  89. HollanderD.A. VillanuevaL. FarnesE.Q. AttarM. SchiffmanR.M. ChangC.M. GrahamR.S. WeltyD.F. Ketorolac compositions for corneal wound healing.US 2021/03158052021
  90. LeoC.S. KrösserS. SchlüterT. MeidesA. Ophthalmic composition for treatment of dry eye disease.US 11,413,3232022
  91. JóhannsdóttirS. KristinssonJ.K. FülöpZ. ÁsgrímsdóttirG. StefánssonE. LoftssonT. Formulations and toxicologic in vivo studies of aqueous cyclosporin A eye drops with cyclodextrin nanoparticles.Int. J. Pharm.20175291-248649010.1016/j.ijpharm.2017.07.044
    [Google Scholar]
  92. Di TommasoC. TorrigliaA. FurrerP. Behar-CohenF. GurnyR. MöllerM. Ocular biocompatibility of novel Cyclosporin A formulations based on methoxy poly(ethylene glycol)-hexylsubstituted poly(lactide) micelle carriers.Int. J. Pharm.2011416251552410.1016/j.ijpharm.2011.01.004
    [Google Scholar]
  93. Rodriguez-AllerM. KaufmannB. GuillarmeD. StellaC. FurrerP. RudazS. El ZaouiI. ValamaneshF. Di TommasoC. Behar-CohenF. VeutheyJ.L. GurnyR. In vivo characterisation of a novel water-soluble Cyclosporine A prodrug for the treatment of dry eye disease.Eur. J. Pharm. Biopharm.201280354455210.1016/j.ejpb.2011.11.017
    [Google Scholar]
  94. LiJ.X. TsaiY.Y. LaiC.T. LiY.L. WuY.H. ChiangC.C. Lifitegrast ophthalmic solution 5% Is a safe and efficient eyedrop for dry eye disease: A systematic review and meta-analysis.J. Clin. Med.20221117501410.3390/jcm11175014
    [Google Scholar]
  95. TrasiN.S. PurohitH.S. WenH. SunD.D. TaylorL.S. Non-sink dissolution behavior and solubility limit of commercial tacrolimus amorphous formulations.J. Pharm. Sci.2017106126427210.1016/j.xphs.2016.09.016
    [Google Scholar]
  96. YamanakaM. YokotaS. IwaoY. NoguchiS. ItaiS. Development and evaluation of a tacrolimus cream formulation using a binary solvent system.Int. J. Pharm.20144641-2192610.1016/j.ijpharm.2014.01.017
    [Google Scholar]
  97. SipkovaZ. XueK. MudharH.S. WagnerB. HildebrandG.D. Early and late histological and ultrastructural findings in resected infantile capillary hemangiomas following treatment with topical beta-blocker timolol maleate 0.5%.Ocul. Oncol. Pathol.20184210010610.1159/000477411
    [Google Scholar]
  98. ShokryM. HathoutR.M. MansourS. Exploring gelatin nanoparticles as novel nanocarriers for timolol maleate: Augmented in-vivo efficacy and safe histological profile.Int. J. Pharm.20185451-222923910.1016/j.ijpharm.2018.04.059
    [Google Scholar]
  99. HuangW.C. ChengF. WangY.J. ChenC.C. HuT.L. YinS.C. LiuC.P. YuN.C. HuangK.K. LinM.N. A corneal-penetrating eye drop formulation for enhanced therapeutic efficacy of soft corticosteroids against anterior uveitis.J. Drug Deliv. Sci. Technol.20195410134110.1016/j.jddst.2019.101341
    [Google Scholar]
  100. BaekY.Y. SungB. ChoiJ.S. GoH.K. KimD.H. HyonJ.Y. YouJ.C. In vivo efficacy of imatinib mesylate, a tyrosine kinase inhibitor, in the treatment of chemically induced dry eye in animal models.Transl. Vis. Sci. Technol.202110111410.1167/tvst.10.11.14
    [Google Scholar]
  101. NaJ.Y. HuhK.Y. YuK.S. HyonJ.Y. KooH.C. LeeJ.H. YouJ.C. ChungJ.Y. Safety, tolerability, and pharmacokinetics of single and multiple topical ophthalmic administration of imatinib mesylate in healthy subjects.Clin. Transl. Sci.20221551123113010.1111/cts.13226
    [Google Scholar]
  102. LaddhaU.D. KshirsagarS.J. Formulation of nanoparticles loaded in situ gel for treatment of dry eye disease: In vitro, ex vivo and in vivo evidences.J. Drug Deliv. Sci. Technol.20216110211210.1016/j.jddst.2020.102112
    [Google Scholar]
  103. LuoL.J. NguyenD.D. LaiJ.Y. Long-acting mucoadhesive thermogels for improving topical treatments of dry eye disease.Mater. Sci. Eng. C202011511109510.1016/j.msec.2020.111095
    [Google Scholar]
  104. HuL. HuZ. YuY. DingX. LiK. GongQ. LinD. DaiM. LuF. LiX. Preparation and characterization of a pterostilbene-peptide prodrug nanomedicine for the management of dry eye.Int. J. Pharm.202058811968310.1016/j.ijpharm.2020.119683
    [Google Scholar]
  105. ChenX. WuJ. LinX. WuX. YuX. WangB. XuW. Tacrolimus loaded cationic liposomes for dry eye treatment.Front. Pharmacol.20221383816810.3389/fphar.2022.838168
    [Google Scholar]
  106. EldesoukyL.M. El-MoslemanyR.M. RamadanA.A. MorsiM.H. KhalafallahN.M. Cyclosporine lipid nanocapsules as thermoresponsive gel for dry eye management: Promising corneal mucoadhesion, biodistribution and preclinical efficacy in rabbits.Pharmaceutics202113336010.3390/pharmaceutics13030360
    [Google Scholar]
  107. KumariS. DandamudiM. RaniS. BehaeghelE. BehlG. KentD. O’ReillyN.J. O’DonovanO. McLoughlinP. FitzhenryL. Dexamethasone-loaded nanostructured lipid carriers for the treatment of dry eye disease.Pharmaceutics202113690510.3390/pharmaceutics13060905
    [Google Scholar]
  108. ChenY.Z. ChenZ.Y. TangY.J. TsaiC.H. ChuangY.L. HsiehE.H. TuckerL. LinI.C. TsengC.L. Development of lutein-containing eye drops for the treatment of dry eye syndrome.Pharmaceutics20211311180110.3390/pharmaceutics13111801
    [Google Scholar]
/content/journals/rrct/10.2174/0115748871310261240929163138
Loading
/content/journals/rrct/10.2174/0115748871310261240929163138
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test