Skip to content
2000
image of New Research on Biomarkers in Alzheimer’s Continuum

Abstract

Alzheimer’s disease (AD) is a multifactorial pathology, responsible for neurodegenerative disorders which in more than 60% of patients evolve into dementia. Comprehension of the molecular mechanisms underlying the pathology and the development of reliable diagnostic methods have made new and more effective therapies possible. In recent years, in addition to the classic anticholinesterases (AChEs), which can control the clinical symptoms of the disease, compounds able to reduce deposits of amyloid-β (Aβ) and/or tau (τ) protein aggregates, which are disease-modifying therapeutics (DMTs), have been studied. The results have shown that symptomatic therapy works best when administered in the disease's mild to moderate clinical phase. On the other hand, treatment with DMTs has been found to be more effective in the preclinical stage of AD, when Aβ and τ protein neurofibrillary tangles have not yet been compromised and patients still have a normal quality of life. This innovative approach requires the identification of specific biomarkers predictive of the disease, detectable many years before clinical signs are evident. Biomarkers allow early diagnosis, give indications of the possible development of dementia in the future, and make it possible to study the evolution of the disease. New scenarios, involving different pathways and approaches, could emerge and provide effective therapies to treat the very early stages of the disease and hamper its progression. The specific biomarkers studied so far have been reported here.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/0115748871331138250114052615
2025-01-24
2025-09-15
Loading full text...

Full text loading...

References

  1. Lloret A. Esteve D. Lloret M.A. Ferri C.A. Lopez B. Nepomuceno M. Monllor P. When does Alzheimer′s disease really start? The role of biomarkers. Int. J. Mol. Sci. 2019 20 22 5536 10.3390/ijms20225536 31698826
    [Google Scholar]
  2. Tierney M.C. Fisher R.H. Lewis A.J. Zorzitto M.L. Snow W.G. Reid D.W. Nieuwstraten P. The NINCDS‐ADRDA Work Group criteria for the clinical diagnosis of probable Alzheimer’s disease. Neurology 1988 38 3 359 364 10.1212/WNL.38.3.359 3347338
    [Google Scholar]
  3. Diagnostic and Statistical Manual of Mental Disorders Book. 4th Ed. Washington, DC American Psychiatric Association (APA) 1994
    [Google Scholar]
  4. Dubois B. Feldman H.H. Jacova C. DeKosky S.T. Gateau B.P. Cummings J. Delacourte A. Galasko D. Gauthier S. Jicha G. Meguro K. O’Brien J. Pasquier F. Robert P. Rossor M. Salloway S. Stern Y. Visser P.J. Scheltens P. Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS–ADRDA criteria. Lancet Neurol. 2007 6 8 734 746 10.1016/S1474‑4422(07)70178‑3 17616482
    [Google Scholar]
  5. Sperling R.A. Aisen P.S. Beckett L.A. Bennett D.A. Craft S. Fagan A.M. Iwatsubo T. Jack C.R. Jr Kaye J. Montine T.J. Park D.C. Reiman E.M. Rowe C.C. Siemers E. Stern Y. Yaffe K. Carrillo M.C. Thies B. Bogorad M.M. Wagster M.V. Phelps C.H. Toward defining the preclinical stages of alzheimer’s disease: Recommendations from the national institute on aging‐alzheimer’s association workgroups on diagnostic guidelines for alzheimer’s disease. Alzheimers Dement. 2011 7 3 280 292 10.1016/j.jalz.2011.03.003 21514248
    [Google Scholar]
  6. Jack C.R. Jr Bennett D.A. Blennow K. Carrillo M.C. Dunn B. Haeberlein S.B. Holtzman D.M. Jagust W. Jessen F. Karlawish J. Liu E. Molinuevo J.L. Montine T. Phelps C. Rankin K.P. Rowe C.C. Scheltens P. Siemers E. Snyder H.M. Sperling R. Elliott C. Masliah E. Ryan L. Silverberg N. Contributors NIA‐AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018 14 4 535 562 10.1016/j.jalz.2018.02.018 29653606
    [Google Scholar]
  7. Chen Z.R. Huang J.B. Yang S.L. Hong F.F. Role of cholinergic signaling in alzheimer’s disease. Molecules 2022 27 6 1816 10.3390/molecules27061816 35335180
    [Google Scholar]
  8. Vecchio I. Sorrentino L. Paoletti A. Marra R. Arbitrio M. The state of the art on acetylcholinesterase inhibitors in the treatment of alzheimer’s disease. J. Cent. Nerv. Syst. Dis. 2021 13 11795735211029113 10.1177/11795735211029113 34285627
    [Google Scholar]
  9. Cummings J. Lee G. Ritter A. Sabbagh M. Zhong K. Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement. 2019 5 1 272 293 10.1016/j.trci.2019.05.008 31334330
    [Google Scholar]
  10. Cummings J. Lee G. Ritter A. Sabbagh M. Zhong K. Alzheimer’s disease drug development pipeline: 2020. Alzheimers Dement. 2020 6 1 e12050 10.1002/trc2.12050 32695874
    [Google Scholar]
  11. Scarpini E Galimberti D Ghezzi L. Disease-modifying drugs in Alzheimer's disease. Drug Des. Devel. Ther. 2011 4 4 203 216 10.2147/DDDT.S41431
    [Google Scholar]
  12. Yiannopoulou K.G. Papageorgiou S.G. Current and Future Treatments in Alzheimer Disease: An Update. J. Cent. Nerv. Syst. Dis. 2020 12 117957352090739 10.1177/1179573520907397 32165850
    [Google Scholar]
  13. Richard A. Current and evolving treatment strategies for the alzheimer disease continuum. Am. J. Manag. Care. 2020 26 8 Suppl S167 S176
    [Google Scholar]
  14. Hung A Schneider M. Preclinical alzheimer disease drug development J. Manag. Care Spec. Pharm. 2020 26 7
    [Google Scholar]
  15. Wang J. Logovinsky V. Hendrix S.B. Stanworth S.H. Perdomo C. Xu L. Dhadda S. Do I. Rabe M. Luthman J. Cummings J. Satlin A. ADCOMS: A composite clinical outcome for prodromal Alzheimer’s disease trials. J. Neurol. Neurosurg. Psychiatry 2016 87 9 993 999 10.1136/jnnp‑2015‑312383 27010616
    [Google Scholar]
  16. Kovacs G.G. Milenkovic I. Wöhrer A. Höftberger R. Gelpi E. Haberler C. Hönigschnabl S. Concin R.A. Heinzl H. Jungwirth S. Krampla W. Fischer P. Budka H. Non-Alzheimer neurodegenerative pathologies and their combinations are more frequent than commonly believed in the elderly brain: A community-based autopsy series. Acta Neuropathol. 2013 126 3 365 384 10.1007/s00401‑013‑1157‑y 23900711
    [Google Scholar]
  17. Jack C.R. Jr Bennett D.A. Blennow K. Carrillo M.C. Feldman H.H. Frisoni G.B. Hampel H. Jagust W.J. Johnson K.A. Knopman D.S. Petersen R.C. Scheltens P. Sperling R.A. Dubois B. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 2016 87 5 539 547 10.1212/WNL.0000000000002923 27371494
    [Google Scholar]
  18. Fagan A.M. Roe C.M. Xiong C. Mintun M.A. Morris J.C. Holtzman D.M. Cerebrospinal fluid tau/β-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch. Neurol. 2007 64 3 343 349 10.1001/archneur.64.3.noc60123 17210801
    [Google Scholar]
  19. Visser P.J. Verhey F. Knol D.L. Scheltens P. Wahlund L.O. Levi F.Y. Tsolaki M. Minthon L. Wallin Å.K. Hampel H. Bürger K. Pirttila T. Soininen H. Rikkert M.O. Verbeek M.M. Spiru L. Blennow K. Prevalence and prognostic value of CSF markers of Alzheimer’s disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: A prospective cohort study. Lancet Neurol. 2009 8 7 619 627 10.1016/S1474‑4422(09)70139‑5 19523877
    [Google Scholar]
  20. Klunk W.E. Engler H. Nordberg A. Wang Y. Blomqvist G. Holt D.P. Bergström M. Savitcheva I. Huang G.F. Estrada S. Ausén B. Debnath M.L. Barletta J. Price J.C. Sandell J. Lopresti B.J. Wall A. Koivisto P. Antoni G. Mathis C.A. Långström B. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound‐B. Ann. Neurol. 2004 55 3 306 319 10.1002/ana.20009 14991808
    [Google Scholar]
  21. Villain N. Chételat G. Grassiot B. Bourgeat P. Jones G. Ellis K.A. Ames D. Martins R.N. Eustache F. Salvado O. Masters C.L. Rowe C.C. Villemagne V.L. Regional dynamics of amyloid-β deposition in healthy elderly, mild cognitive impairment and Alzheimer’s disease: A voxelwise PiB–PET longitudinal study. Brain 2012 135 7 2126 2139 10.1093/brain/aws125 22628162
    [Google Scholar]
  22. Mattsson N. Zetterberg H. Hansson O. Andreasen N. Parnetti L. Jonsson M. Herukka S.K. Flier d.v.W.M. Blankenstein M.A. Ewers M. Rich K. Kaiser E. Verbeek M. Tsolaki M. Mulugeta E. Rosén E. Aarsland D. Visser P.J. Schröder J. Marcusson J. Leon d.M. Hampel H. Scheltens P. Pirttilä T. Wallin A. Jönhagen M.E. Minthon L. Winblad B. Blennow K. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 2009 302 4 385 393 10.1001/jama.2009.1064 19622817
    [Google Scholar]
  23. Buerger K. Ewers M. Pirttilä T. Zinkowski R. Alafuzoff I. Teipel S.J. DeBernardis J. Kerkman D. McCulloch C. Soininen H. Hampel H. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain 2006 129 11 3035 3041 10.1093/brain/awl269 17012293
    [Google Scholar]
  24. Brier M.R. Gordon B. Friedrichsen K. McCarthy J. Stern A. Christensen J. Owen C. Aldea P. Su Y. Hassenstab J. Cairns N.J. Holtzman D.M. Fagan A.M. Morris J.C. Benzinger T.L.S. Ances B.M. Tau and Aβ imaging, CSF measures, and cognition in Alzheimer’s disease. Sci. Transl. Med. 2016 8 338 338ra66 10.1126/scitranslmed.aaf2362 27169802
    [Google Scholar]
  25. Chhatwal J.P. Schultz A.P. Marshall G.A. Boot B. Isla G.T. Dumurgier J. LaPoint M. Scherzer C. Roe A.D. Hyman B.T. Sperling R.A. Johnson K.A. Temporal T807 binding correlates with CSF tau and phospho-tau in normal elderly. Neurology 2016 87 9 920 926 10.1212/WNL.0000000000003050 27473132
    [Google Scholar]
  26. Alawode D.O.T. Heslegrave A.J. Ashton N.J. Karikari T.K. Simrén J. Gaya M.L. Pannee J. O´Connor A. Weston P.S.J. Rodriguez L.J. Keshavan A. Snellman A. Gobom J. Paterson R.W. Schott J.M. Blennow K. Fox N.C. Zetterberg H. Transitioning from cerebrospinal fluid to blood tests to facilitate diagnosis and disease monitoring in Alzheimer’s disease. J. Intern. Med. 2021 290 3 583 601 10.1111/joim.13332 34021943
    [Google Scholar]
  27. Blennow K. Hampel H. Weiner M. Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol. 2010 6 3 131 144 10.1038/nrneurol.2010.4 20157306
    [Google Scholar]
  28. Montagne A. Zhao Z. Zlokovic B.V. Alzheimer’s disease: A matter of blood–brain barrier dysfunction? J. Exp. Med. 2017 214 11 3151 3169 10.1084/jem.20171406 29061693
    [Google Scholar]
  29. Seab J.P. Jagust W.J. Wong S.T.S. Roos M.S. Reed B.R. Budinger T.F. Quantitative NMR measurements of hippocampal atrophy in Alzheimer’s disease. Magn. Reson. Med. 1988 8 2 200 208 10.1002/mrm.1910080210 3210957
    [Google Scholar]
  30. Fox N.C. Crum W.R. Scahill R.I. Stevens J.M. Janssen J.C. Rossor M.N. Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet 2001 358 9277 201 205 10.1016/S0140‑6736(01)05408‑3 11476837
    [Google Scholar]
  31. Minoshima S. Giordani B. Berent S. Frey K.A. Foster N.L. Kuhl D.E. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann. Neurol. 1997 42 1 85 94 10.1002/ana.410420114 9225689
    [Google Scholar]
  32. Besson F.L. Joie L.R. Doeuvre L. Gaubert M. Mézenge F. Egret S. Landeau B. Barré L. Abbas A. Ibazizene M. Sayette L.d.V. Desgranges B. Eustache F. Chételat G. Cognitive and brain profiles associated with current neuroimaging biomarkers of preclinical alzheimer’s disease. J. Neurosci. 2015 35 29 10402 10411 10.1523/JNEUROSCI.0150‑15.2015 26203136
    [Google Scholar]
  33. Dickerson B.C. Bakkour A. Salat D.H. Feczko E. Pacheco J. Greve D.N. Grodstein F. Wright C.I. Blacker D. Rosas H.D. Sperling R.A. Atri A. Growdon J.H. Hyman B.T. Morris J.C. Fischl B. Buckner R.L. The cortical signature of Alzheimer’s disease: Regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb. Cortex 2009 19 3 497 510 10.1093/cercor/bhn113 18632739
    [Google Scholar]
  34. Knopman D.S. Jack C.R. Jr Wiste H.J. Weigand S.D. Vemuri P. Lowe V.J. Kantarci K. Gunter J.L. Senjem M.L. Mielke M.M. Roberts R.O. Boeve B.F. Petersen R.C. Selective worsening of brain injury biomarker abnormalities in cognitively normal elderly persons with β-amyloidosis. JAMA Neurol. 2013 70 8 1030 1038 10.1001/jamaneurol.2013.182 23797806
    [Google Scholar]
  35. Landau S.M. Harvey D. Madison C.M. Koeppe R.A. Reiman E.M. Foster N.L. Weiner M.W. Jagust W.J. Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol. Aging 2011 32 7 1207 1218 10.1016/j.neurobiolaging.2009.07.002 19660834
    [Google Scholar]
  36. Perkovic N.M. Pivac N. Genetic Markers of Alzheimer’s Disease. Adv. Exp. Med. Biol. 2019 1192 27 52 10.1007/978‑981‑32‑9721‑0_3
    [Google Scholar]
  37. Cacace R. Sleegers K. Broeckhoven V.C. Molecular genetics of early‐onset Alzheimer’s disease revisited. Alzheimers Dement. 2016 12 6 733 748 10.1016/j.jalz.2016.01.012 27016693
    [Google Scholar]
  38. Arber C. Lovejoy C. Harris L. Willumsen N. Alatza A. Casey J.M. Lines G. Kerins C. Mueller A.K. Zetterberg H. Hardy J. Ryan N.S. Fox N.C. Lashley T. Wray S. Familial alzheimer’s disease mutations in PSEN1 lead to premature human stem cell neurogenesis. Cell Rep. 2021 34 2 108615 10.1016/j.celrep.2020.108615 33440141
    [Google Scholar]
  39. Canevelli M. Piscopo P. Talarico G. Vanacore N. Blasimme A. Crestini A. Tosto G. Troili F. Lenzi G.L. Confaloni A. Bruno G. Familial Alzheimer’s disease sustained by presenilin 2 mutations: Systematic review of literature and genotype–phenotype correlation. Neurosci. Biobehav. Rev. 2014 42 170 179 10.1016/j.neubiorev.2014.02.010 24594196
    [Google Scholar]
  40. Blennow K. Wallin A. Clinical heterogeneity of probable Alzheimer’s disease. J. Geriatr. Psychiatry Neurol. 1992 5 2 106 113 10.1177/002383099200500208 1590911
    [Google Scholar]
  41. Zecca C. Brescia V. Piccininni M. Capozzo R. Barone R. Barulli M.R. Logroscino G. Comparative evaluation of two immunoassays for cerebrospinal fluid β-Amyloid1–42 measurement. Clin. Chim. Acta 2019 493 107 111 10.1016/j.cca.2019.02.033 30844363
    [Google Scholar]
  42. Seino Y. Nakamura T. Harada T. Nakahata N. Kawarabayashi T. Ueda T. Takatama M. Shoji M. Quantitative measurement of cerebrospinal fluid amyloid-β species by mass spectrometry. J. Alzheimers Dis. 2021 79 2 573 584 10.3233/JAD‑200987 33337370
    [Google Scholar]
  43. Olsson B. Lautner R. Andreasson U. Öhrfelt A. Portelius E. Bjerke M. Hölttä M. Rosén C. Olsson C. Strobel G. Wu E. Dakin K. Petzold M. Blennow K. Zetterberg H. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Lancet Neurol. 2016 15 7 673 684 10.1016/S1474‑4422(16)00070‑3 27068280
    [Google Scholar]
  44. Bjerke M. Engelborghs S. Cerebrospinal fluid biomarkers for early and differential Alzheimer’s disease diagnosis. J. Alzheimers Dis. 2018 62 3 1199 1209 10.3233/JAD‑170680
    [Google Scholar]
  45. Mattsson N. Zetterberg H. Blennow Lessons from multicenter studies on CSF biomarkers for Alzheimer’s disease. Int. J. Alzheimers Dis. 2010 2010 1 5 10.4061/2010/610613 20721354
    [Google Scholar]
  46. Leuzy A. Carlgren M.N. Palmqvist S. Janelidze S. Dage J.L. Hansson O. Blood‐based biomarkers for Alzheimer’s disease. EMBO Mol. Med. 2022 14 1 e14408 10.15252/emmm.202114408 34859598
    [Google Scholar]
  47. Ashton N.J. Pascoal T.A. Karikari T.K. Benedet A.L. Rodriguez L.J. Brinkmalm G. Snellman A. Schöll M. Troakes C. Hye A. Gauthier S. Vanmechelen E. Zetterberg H. Neto R.P. Blennow K. Plasma p-tau231: A new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol. 2021 141 5 709 724 10.1007/s00401‑021‑02275‑6 33585983
    [Google Scholar]
  48. Janelidze S. Mattsson N. Palmqvist S. Smith R. Beach T.G. Serrano G.E. Chai X. Proctor N.K. Eichenlaub U. Zetterberg H. Blennow K. Reiman E.M. Stomrud E. Dage J.L. Hansson O. Plasma P-tau181 in Alzheimer’s disease: Relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat. Med. 2020 26 3 379 386 10.1038/s41591‑020‑0755‑1 32123385
    [Google Scholar]
  49. Masters C.L. Simms G. Weinman N.A. Multhaup G. McDonald B.L. Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA 1985 82 12 4245 4249 10.1073/pnas.82.12.4245 3159021
    [Google Scholar]
  50. Masters C.L. Bateman R. Blennow K. Rowe C.C. Sperling R.A. Cummings J.L. Alzheimer’s disease. Nat. Rev. Dis. Primers 2015 1 1 15056 10.1038/nrdp.2015.56 27188934
    [Google Scholar]
  51. Serneels L. Narlawar R. Benito P.L. Municoy M. Guallar V. T’Syen D. Dewilde M. Bischoff F. Fraiponts E. Tresadern G. Roevens P.W.M. Gijsen H.J.M. Strooper D.B. Selective inhibitors of the PSEN1–gamma-secretase complex. J. Biol. Chem. 2023 299 6 104794 10.1016/j.jbc.2023.104794 37164155
    [Google Scholar]
  52. Kang J. Lemaire H.G. Unterbeck A. Salbaum J.M. Masters C.L. Grzeschik K.H. Multhaup G. Beyreuther K. Hill M.B. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987 325 6106 733 736 10.1038/325733a0 2881207
    [Google Scholar]
  53. Nakamura T. Shoji M. Harigaya Y. Watanabe M. Hosoda K. Cheung T.T. Shaffer L.M. Golde T.E. Younkin L.H. Younkin S.G. Hirai S. Amyloid β protein levels in cerebrospinal fluid are elevated in early‐onset Alzheimer’s disease. Ann. Neurol. 1994 36 6 903 911 10.1002/ana.410360616 7998778
    [Google Scholar]
  54. Iwatsubo T. Odaka A. Suzuki N. Mizusawa H. Nukina N. Ihara Y. Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: Evidence that an initially deposited species is Aβ42(43). Neuron 1994 13 1 45 53 10.1016/0896‑6273(94)90458‑8 8043280
    [Google Scholar]
  55. Tamaoka A. Sawamura N. Odaka A. Suzuki N. Mizusawa H. Shoji S. Mori H. Amyloid β protein 1–42/43 (Aβ 1–42/43) in cerebellar diffuse plaques: Enzyme-linked immunosorbent assay and immunocytochemical study. Brain Res. 1995 679 1 151 156 10.1016/0006‑8993(95)00162‑J 7648258
    [Google Scholar]
  56. Motter R. Pelfrey V.C. Kholodenko D. Barbour R. Wood J.K. Galasko D. Chang L. Miller B. Clark C. Green R. Olson D. Southwick P. Wolfert R. Munroe B. Lieberburg I. Seubert P. Schenk D. Reduction of β‐amyloid peptide 42 in the cerebrospinal fluid of patients with Alzheimer’s disease. Ann. Neurol. 1995 38 4 643 648 10.1002/ana.410380413 7574461
    [Google Scholar]
  57. Kuhlmann J. Andreasson U. Pannee J. Bjerke M. Portelius E. Leinenbach A. Bittner T. Korecka M. Jenkins R.G. Vanderstichele H. Stoops E. Lewczuk P. Shaw L.M. Zegers I. Schimmel H. Zetterberg H. Blennow K. CSF Aβ1–42 – an excellent but complicated Alzheimer’s biomarker – a route to standardisation. Clin. Chim. Acta 2017 467 27 33 10.1016/j.cca.2016.05.014 27216941
    [Google Scholar]
  58. Tapiola T. Alafuzoff I. Herukka S.K. Parkkinen L. Hartikainen P. Soininen H. Pirttilä T. Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch. Neurol. 2009 66 3 382 389 10.1001/archneurol.2008.596 19273758
    [Google Scholar]
  59. Fagan A.M. Mintun M.A. Mach R.H. Lee S.Y. Dence C.S. Shah A.R. LaRossa G.N. Spinner M.L. Klunk W.E. Mathis C.A. DeKosky S.T. Morris J.C. Holtzman D.M. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ 42 in humans. Ann. Neurol. 2006 59 3 512 519 10.1002/ana.20730 16372280
    [Google Scholar]
  60. Bateman R.J. Xiong C. Benzinger T.L.S. Fagan A.M. Goate A. Fox N.C. Marcus D.S. Cairns N.J. Xie X. Blazey T.M. Holtzman D.M. Santacruz A. Buckles V. Oliver A. Moulder K. Aisen P.S. Ghetti B. Klunk W.E. McDade E. Martins R.N. Masters C.L. Mayeux R. Ringman J.M. Rossor M.N. Schofield P.R. Sperling R.A. Salloway S. Morris J.C. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med. 2012 367 9 795 804 10.1056/NEJMoa1202753 22784036
    [Google Scholar]
  61. Abdelnour C. Steenoven v.I. Londos E. Blanc F. Auestad B. Kramberger M.G. Zetterberg H. Mollenhauer B. Boada M. Aarsland D. Alzheimer’s disease cerebrospinal fluid biomarkers predict cognitive decline in lewy body dementia. Mov. Disord. 2016 31 8 1203 1208 10.1002/mds.26668 27296778
    [Google Scholar]
  62. Dubois B. Hampel H. Feldman H.H. Scheltens P. Aisen P. Andrieu S. Bakardjian H. Benali H. Bertram L. Blennow K. Broich K. Cavedo E. Crutch S. Dartigues J.F. Duyckaerts C. Epelbaum S. Frisoni G.B. Gauthier S. Genthon R. Gouw A.A. Habert M.O. Holtzman D.M. Kivipelto M. Lista S. Molinuevo J.L. O’Bryant S.E. Rabinovici G.D. Rowe C. Salloway S. Schneider L.S. Sperling R. Teichmann M. Carrillo M.C. Cummings J. Jack C.R. Jr Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016 12 3 292 323 10.1016/j.jalz.2016.02.002 27012484
    [Google Scholar]
  63. Buchhave P. Minthon L. Zetterberg H. Wallin A.K. Blennow K. Hansson O. Cerebrospinal fluid levels of β-amyloid 1-42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Arch. Gen. Psychiatry 2012 69 1 98 106 10.1001/archgenpsychiatry.2011.155 22213792
    [Google Scholar]
  64. Bendlin B.B. Carlsson C.M. Johnson S.C. CSF T-Tau/Aβ42 predicts white matter microstructure in healthy adults at risk for alzheimer’s disease. PLoS One. 2012 7 6 e37720 10.1371/journal.pone.0037720
    [Google Scholar]
  65. Ringman J.M. Younkin S.G. Pratico D. Seltzer W. Cole G.M. Geschwind D.H. Agudelo R.Y. Schaffer B. Fein J. Sokolow S. Rosario E.R. Gylys K.H. Varpetian A. Medina L.D. Cummings J.L. Biochemical markers in persons with preclinical familial Alzheimer disease. Neurology 2008 71 2 85 92 10.1212/01.wnl.0000303973.71803.81 18509095
    [Google Scholar]
  66. Schindler S.E. Bollinger J.G. Ovod V. Mawuenyega K.G. Li Y. Gordon B.A. Holtzman D.M. Morris J.C. Benzinger T.L.S. Xiong C. Fagan A.M. Bateman R.J. High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology 2019 93 17 e1647 e1659 10.1212/WNL.0000000000008081 31371569
    [Google Scholar]
  67. Nakamura A. Kaneko N. Villemagne V.L. Kato T. Doecke J. Doré V. Fowler C. Li Q.X. Martins R. Rowe C. Tomita T. Matsuzaki K. Ishii K. Ishii K. Arahata Y. Iwamoto S. Ito K. Tanaka K. Masters C.L. Yanagisawa K. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 2018 554 7691 249 254 10.1038/nature25456 29420472
    [Google Scholar]
  68. Hansson O. Mikulskis A. Fagan A.M. Teunissen C. Zetterberg H. Vanderstichele H. Molinuevo J.L. Shaw L.M. Vandijck M. Verbeek M.M. Savage M. Mattsson N. Lewczuk P. Batrla R. Rutz S. Dean R.A. Blennow K. The impact of preanalytical variables on measuring cerebrospinal fluid biomarkers for Alzheimer’s disease diagnosis: A review. Alzheimers Dement. 2018 14 10 1313 1333 10.1016/j.jalz.2018.05.008 29940161
    [Google Scholar]
  69. Baiardi S Abu‐Rumeileh S Rossi M Antemortem csf a β 42/a β 40 ratio predicts alzheimer's disease pathology better than a β 42 in rapidly progressive dementias. Ann. Clin. Transl. Neurol. 2018 6 2 263 273 10.1002/acn3.697
    [Google Scholar]
  70. Sulik A. Toczylowski K. Przybik K.A. Mroczko B. Amyloid and tau protein concentrations in children with meningitis and encephalitis. Viruses 2022 14 4 725 10.3390/v14040725 35458457
    [Google Scholar]
  71. Lewczuk P. Matzen A. Blennow K. Cerebrospinal Fluid Aβ42/40 Corresponds Better than Aβ42 to Amyloid PET in Alzheimer’s Disease. J Alzheimer’s Dis. 2016 55 2 813 822 10.3233/JAD‑160722
    [Google Scholar]
  72. Cummings J. The role of biomarkers in alzheimer’s disease drug development. Adv. Exp. Med. Biol. 2019 29 61 10.1007/978‑3‑030‑05542‑4_2
    [Google Scholar]
  73. Sperling R.A. Donohue M.C. Raman R. Sun C.K. Yaari R. Holdridge K. Siemers E. Johnson K.A. Aisen P.S. A4 Study Team Association of factors with elevated amyloid burden in clinically normal older individuals. JAMA Neurol. 2020 77 6 735 745 10.1001/jamaneurol.2020.0387 32250387
    [Google Scholar]
  74. Song F. Poljak A. Valenzuela M. Mayeux R. Smythe G.A. Sachdev P.S. Meta-analysis of plasma amyloid-β levels in Alzheimer’s disease. J. Alzheimers Dis. 2011 26 2 365 375 10.3233/JAD‑2011‑101977 21709378
    [Google Scholar]
  75. Toledo J.B. Shaw L.M. Trojanowski J.Q. Plasma amyloid beta measurements - a desired but elusive Alzheimer’s disease biomarker. Alzheimers Res. Ther. 2013 5 2 8 10.1186/alzrt162 23470128
    [Google Scholar]
  76. Janelidze S. Stomrud E. Palmqvist S. Zetterberg H. Westen v.D. Jeromin A. Song L. Hanlon D. Hehir T.C.A. Baker D. Blennow K. Hansson O. Plasma β-amyloid in Alzheimer’s disease and vascular disease. Sci. Rep. 2016 6 1 26801 10.1038/srep26801 27241045
    [Google Scholar]
  77. Verberk I.M.W. Slot R.E. Verfaillie S.C.J. Heijst H. Prins N.D. Berckel v.B.N.M. Scheltens P. Teunissen C.E. Flier d.v.W.M. Plasma amyloid as prescreener for the earliest Alzheimer pathological changes. Ann. Neurol. 2018 84 5 648 658 10.1002/ana.25334 30196548
    [Google Scholar]
  78. Palmqvist S. Janelidze S. Stomrud E. Zetterberg H. Karl J. Zink K. Bittner T. Mattsson N. Eichenlaub U. Blennow K. Hansson O. Performance of fully automated plasma assays as screening tests for alzheimer disease–related β-amyloid status. JAMA Neurol. 2019 76 9 1060 1069 10.1001/jamaneurol.2019.1632 31233127
    [Google Scholar]
  79. Janelidze S. Teunissen C.E. Zetterberg H. Allué J.A. Sarasa L. Eichenlaub U. Bittner T. Ovod V. Verberk I.M.W. Toba K. Nakamura A. Bateman R.J. Blennow K. Hansson O. Head-to-head comparison of 8 plasma amyloid-β 42/40 assays in alzheimer disease. JAMA Neurol. 2021 78 11 1375 1382 10.1001/jamaneurol.2021.3180 34542571
    [Google Scholar]
  80. Kuo Y.M. Emmerling M.R. Lampert H.C. Hempelman S.R. Kokjohn T.A. Woods A.S. Cotter R.J. Roher A.E. High levels of circulating Abeta42 are sequestered by plasma proteins in Alzheimer’s disease. Biochem. Biophys. Res. Commun. 1999 257 3 787 791 10.1006/bbrc.1999.0552 10208861
    [Google Scholar]
  81. Rózga M. Bittner T. Batrla R. Karl J. Preanalytical sample handling recommendations for Alzheimer’s disease plasma biomarkers. Alzheimers Dement. 2019 11 291 300 10.1016/j.dadm.2019.02.002
    [Google Scholar]
  82. Park J.C. Han S.H. Lee H. Jeong H. Byun M.S. Bae J. Kim H. Lee D.Y. Yi D. Shin S.A. Kim Y.K. Hwang D. Lee S.W. Jung M.I. Prognostic plasma protein panel for Aβ deposition in the brain in Alzheimer’s disease. Prog. Neurobiol. 2019 183 101690 10.1016/j.pneurobio.2019.101690 31605717
    [Google Scholar]
  83. Jang H. Kim J.S. Lee H.J. Kim C.H. Na D.L. Kim H.J. Allué J.A. Sarasa L. Castillo S. Pesini P. Gallacher J. Seo S.W. DPUK Performance of the plasma Aβ42/Aβ40 ratio, measured with a novel HPLC-MS/MS method, as a biomarker of amyloid PET status in a DPUK-KOREAN cohort. Alzheimers Res. Ther. 2021 13 1 179 10.1186/s13195‑021‑00911‑7 34686209
    [Google Scholar]
  84. Ovod V. Ramsey K.N. Mawuenyega K.G. Bollinger J.G. Hicks T. Schneider T. Sullivan M. Paumier K. Holtzman D.M. Morris J.C. Benzinger T. Fagan A.M. Patterson B.W. Bateman R.J. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement. 2017 13 8 841 849 10.1016/j.jalz.2017.06.2266 28734653
    [Google Scholar]
  85. West T. Kirmess K.M. Meyer M.R. Holubasch M.S. Knapik S.S. Hu Y. Contois J.H. Jackson E.N. Harpstrite S.E. Bateman R.J. Holtzman D.M. Verghese P.B. Fogelman I. Braunstein J.B. Yarasheski K.E. A blood-based diagnostic test incorporating plasma Aβ42/40 ratio, ApoE proteotype, and age accurately identifies brain amyloid status: Findings from a multi cohort validity analysis. Mol. Neurodegener. 2021 16 1 30 10.1186/s13024‑021‑00451‑6 33933117
    [Google Scholar]
  86. Palmqvist S. Insel P.S. Zetterberg H. Blennow K. Brix B. Stomrud E. Mattsson N. Hansson O. Accurate risk estimation of β‐amyloid positivity to identify prodromal Alzheimer’s disease: Cross‐validation study of practical algorithms. Alzheimers Dement. 2019 15 2 194 204 10.1016/j.jalz.2018.08.014 30365928
    [Google Scholar]
  87. Ebbesen S.U. Høgh P. Zibrandtsen I. Plasma Aβ biomarker for early diagnosis and prognosis of Alzheimer’s disease - a systematic review. Dan. Med. J. 2023 70 6 A07220446 37341353
    [Google Scholar]
  88. Zhang K. Mizuma H. Zhang X. Takahashi K. Jin C. Song F. Gao Y. Kanayama Y. Wu Y. Li Y. Ma L. Tian M. Zhang H. Watanabe Y. PET imaging of neural activity, β-amyloid, and tau in normal brain aging. Eur. J. Nucl. Med. Mol. Imaging 2021 48 12 3859 3871 10.1007/s00259‑021‑05230‑5 33674892
    [Google Scholar]
  89. Wilde d.A. Reimand J. Teunissen C.E. Zwan M. Windhorst A.D. Boellaard R. Flier d.v.W.M. Scheltens P. Berckel v.B.N.M. Bouwman F. Ossenkoppele R. Discordant amyloid-β PET and CSF biomarkers and its clinical consequences. Alzheimers Res. Ther. 2019 11 1 78 10.1186/s13195‑019‑0532‑x 31511058
    [Google Scholar]
  90. Reimand J. Boon B.D.C. Collij L.E. Teunissen C.E. Rozemuller A.J.M. Berckel v.B.N.M. Scheltens P. Ossenkoppele R. Bouwman F. Amyloid‐ β PET and CSF in an autopsy‐confirmed cohort. Ann. Clin. Transl. Neurol. 2020 7 11 2150 2160 10.1002/acn3.51195 33080124
    [Google Scholar]
  91. Palmqvist S. Schöll M. Strandberg O. Mattsson N. Stomrud E. Zetterberg H. Blennow K. Landau S. Jagust W. Hansson O. Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat. Commun. 2017 8 1 1214 10.1038/s41467‑017‑01150‑x 29089479
    [Google Scholar]
  92. Vlassenko A.G. McCue L. Jasielec M.S. Su Y. Gordon B.A. Xiong C. Holtzman D.M. Benzinger T.L.S. Morris J.C. Fagan A.M. Imaging and cerebrospinal fluid biomarkers in early preclinical alzheimer disease. Ann. Neurol. 2016 80 3 379 387 10.1002/ana.24719 27398953
    [Google Scholar]
  93. Hansson O. Seibyl J. Stomrud E. Zetterberg H. Trojanowski J.Q. Bittner T. Lifke V. Corradini V. Eichenlaub U. Batrla R. Buck K. Zink K. Rabe C. Blennow K. Shaw L.M. CSF biomarkers of Alzheimer’s disease concord with amyloid‐β PET and predict clinical progression: A study of fully automated immunoassays in BioFINDER and ADNI cohorts. Alzheimers Dement. 2018 14 11 1470 1481 10.1016/j.jalz.2018.01.010 29499171
    [Google Scholar]
  94. Bouter C. Vogelgsang J. Wiltfang J. Comparison between amyloid-PET and CSF amyloid-β biomarkers in a clinical cohort with memory deficits. Clin. Chim. Acta 2019 492 62 68 10.1016/j.cca.2019.02.005 30735665
    [Google Scholar]
  95. Chiasseu M. Martinez A.L. Belforte N. Quintero H. Dotigny F. Destroismaisons L. Velde V.C. Panayi F. Louis C. Polo D.A. Tau accumulation in the retina promotes early neuronal dysfunction and precedes brain pathology in a mouse model of Alzheimer’s disease. Mol. Neurodegener. 2017 12 1 58 10.1186/s13024‑017‑0199‑3 28774322
    [Google Scholar]
  96. Grimaldi A. Brighi C. Peruzzi G. Ragozzino D. Bonanni V. Limatola C. Ruocco G. Angelantonio D.S. Inflammation, neurodegeneration and protein aggregation in the retina as ocular biomarkers for Alzheimer’s disease in the 3xTg-AD mouse model. Cell Death Dis. 2018 9 6 685 10.1038/s41419‑018‑0740‑5 29880901
    [Google Scholar]
  97. Wijngaarden v.P. Hadoux X. Alwan M. Keel S. Dirani M. Emerging ocular biomarkers of Alzheimer disease. Clin. Exp. Ophthalmol. 2017 45 1 54 61 10.1111/ceo.12872 28147442
    [Google Scholar]
  98. Singh A. Verma S. Use of ocular biomarkers as a potential tool for early diagnosis of Alzheimer’s disease. Indian J. Ophthalmol. 2020 68 4 555 561 10.4103/ijo.IJO_999_19 32174567
    [Google Scholar]
  99. Koronyo Y. Salumbides B.C. Black K.L. Hamaoui K.M. Alzheimer’s disease in the retina: Imaging retinal aβ plaques for early diagnosis and therapy assessment. Neurodegener. Dis. 2012 10 1-4 285 293 10.1159/000335154 22343730
    [Google Scholar]
  100. More S.S. Vince R. Hyperspectral imaging signatures detect amyloidopathy in Alzheimer’s mouse retina well before onset of cognitive decline. ACS Chem. Neurosci. 2015 6 2 306 315 10.1021/cn500242z 25354367
    [Google Scholar]
  101. Shi H. Koronyo Y. Fuchs D.T. Sheyn J. Jallow O. Mandalia K. Graham S.L. Gupta V.K. Mirzaei M. Kramerov A.A. Ljubimov A.V. Hawes D. Miller C.A. Black K.L. Carare R.O. Hamaoui K.M. Retinal arterial Aβ 40 deposition is linked with tight junction loss and cerebral amyloid angiopathy in MCI and AD patients. Alzheimers Dement. 2023 19 11 5185 5197 10.1002/alz.13086 37166032
    [Google Scholar]
  102. Choi S. Lee B. Woo J.H. Jeong J.B. Jun I. Kim E.K. APP processing and metabolism in corneal fibroblasts and epithelium as a potential biomarker for Alzheimer’s disease. Exp. Eye Res. 2019 182 167 174 10.1016/j.exer.2019.03.012 30930125
    [Google Scholar]
  103. Roda M. Ciavarella C. Giannaccare G. Versura P. Biomarkers in Tears and Ocular Surface: A Window for Neurodegenerative Diseases. Eye Contact Lens 2020 46 2 Suppl. 2 S129 S134 10.1097/ICL.0000000000000663 31658175
    [Google Scholar]
  104. Prete D.S. Marasco D. Sabetta R. Prete D.A. Marino F.Z. Franco R. Troisi S. Troisi M. Cennamo G. Tear liquid for predictive diagnosis of alzheimer’s disease. Reports 2021 4 3 26 10.3390/reports4030026
    [Google Scholar]
  105. Gijs M. Ramakers I.H.G.B. Visser P.J. Verhey F.R.J. Waarenburg d.v.M.P.H. Schalkwijk C.G. Nuijts R.M.M.A. Webers C.A.B. Association of tear fluid amyloid and tau levels with disease severity and neurodegeneration. Sci. Rep. 2021 11 1 22675 10.1038/s41598‑021‑01993‑x 34811435
    [Google Scholar]
  106. Gharbiya M. Visioli G. Trebbastoni A. Albanese G.M. Colardo M. D’Antonio F. Segatto M. Lambiase A. Beta-amyloid peptide in tears: An early diagnostic marker of alzheimer’s disease correlated with choroidal thickness. Int. J. Mol. Sci. 2023 24 3 2590 10.3390/ijms24032590 36768913
    [Google Scholar]
  107. Ship J.A. Puckett S.A. Longitudinal study on oral health in subjects with Alzheimer’s disease. J. Am. Geriatr. Soc. 1994 42 1 57 63 10.1111/j.1532‑5415.1994.tb06074.x 8277117
    [Google Scholar]
  108. Ship J.A. Decarli C. Friedland R.P. Baum B.J. Diminished submandibular salivary flow in dementia of the Alzheimer type. J. Gerontol. 1990 45 2 M61 M66 10.1093/geronj/45.2.M61 2313044
    [Google Scholar]
  109. Sabbagh M.N. Shi J. Lee M. Arnold L. Hasan A.Y. Heim J. McGeer P. Salivary beta amyloid protein levels are detectable and differentiate patients with Alzheimer’s disease dementia from normal controls: Preliminary findings. BMC Neurol. 2018 18 1 155 10.1186/s12883‑018‑1160‑y 30257642
    [Google Scholar]
  110. Lee M. Guo J.P. Kennedy K. McGeer E.G. McGeer P.L. A method for diagnosing alzheimer’s disease based on salivary amyloid-β protein 42 levels. J. Alzheimers Dis. 2016 55 3 1175 1182 10.3233/JAD‑160748 27792013
    [Google Scholar]
  111. Iqbal G.I. Iqbal K. Tung Y.C. Quinlan M. Wisniewski H.M. Binder L.I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA 1986 83 13 4913 4917 10.1073/pnas.83.13.4913 3088567
    [Google Scholar]
  112. Meredith J.E. Jr Sankaranarayanan S. Guss V. Characterization of novel csf tau and ptau biomarkers for alzheimer’s disease. PLoS One. 2013 8 10 e76523 10.1371/journal.pone.0076523
    [Google Scholar]
  113. Russell C.L. Mitra V. Hansson K. Comprehensive Quantitative Profiling of Tau and Phosphorylated Tau Peptides in Cerebrospinal Fluid by Mass Spectrometry Provides New Biomarker Candidates. J. Alzheimers Dis. 2016 55 1 303 313 10.3233/JAD‑160633
    [Google Scholar]
  114. Calvet S.M. Karikari T.K. Ashton N.J. Rodríguez L.J. Alomà M.M. Gispert J.D. Salvadó G. Minguillon C. Fauria K. Shekari M. Rivera G.O. Urquijo A.E.M. Vila S.A. Benavides S.G. González-de-Echávarri J.M. Kollmorgen G. Stoops E. Vanmechelen E. Zetterberg H. Blennow K. Molinuevo J.L. Beteta A. Cacciaglia R. Cañas A. Deulofeu C. Cumplido I. Dominguez R. Emilio M. Falcon C. Fuentes S. Hernandez L. Huesa G. Huguet J. Marne P. Menchón T. Operto G. Polo A. Pradas S. Soteras A. Vilanova M. Tejedor V.N. ALFA Study Novel tau biomarkers phosphorylated at T181, T217 or T231 rise in the initial stages of the preclinical Alzheimer’s continuum when only subtle changes in Aβ pathology are detected. EMBO Mol. Med. 2020 12 12 e12921 10.15252/emmm.202012921 33169916
    [Google Scholar]
  115. Blennow K. Wallin A. Ågren H. Spenger C. Siegfried J. Vanmechelen E. tau protein in cerebrospinal fluid. Mol. Chem. Neuropathol. 1995 26 3 231 245 10.1007/BF02815140 8748926
    [Google Scholar]
  116. Zetterberg H. Review: Tau in biofluids – relation to pathology, imaging and clinical features. Neuropathol. Appl. Neurobiol. 2017 43 3 194 199 10.1111/nan.12378 28054371
    [Google Scholar]
  117. Seppälä T.T. Nerg O. Koivisto A.M. Rummukainen J. Puli L. Zetterberg H. Pyykkö O.T. Helisalmi S. Alafuzoff I. Hiltunen M. Jääskeläinen J.E. Rinne J. Soininen H. Leinonen V. Herukka S.K. CSF biomarkers for Alzheimer disease correlate with cortical brain biopsy findings. Neurology 2012 78 20 1568 1575 10.1212/WNL.0b013e3182563bd0 22517093
    [Google Scholar]
  118. Fagan A.M. Mintun M.A. Shah A.R. Aldea P. Roe C.M. Mach R.H. Marcus D. Morris J.C. Holtzman D.M. Cerebrospinal fluid tau and ptau 181 increase with cortical amyloid deposition in cognitively normal individuals: Implications for future clinical trials of alzheimer’s disease. EMBO Mol. Med. 2009 1 8-9 371 380 10.1002/emmm.200900048 20049742
    [Google Scholar]
  119. Janelidze S. Stomrud E. Smith R. Palmqvist S. Mattsson N. Airey D.C. Proctor N.K. Chai X. Shcherbinin S. Sims J.R. Baltzer G. Theunis C. Slemmon R. Mercken M. Kolb H. Dage J.L. Hansson O. Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer’s disease. Nat. Commun. 2020 11 1 1683 10.1038/s41467‑020‑15436‑0 32246036
    [Google Scholar]
  120. Barthélemy N.R. Bateman R.J. Hirtz C. Marin P. Becher F. Sato C. Gabelle A. Lehmann S. Cerebrospinal fluid phospho-tau T217 outperforms T181 as a biomarker for the differential diagnosis of Alzheimer’s disease and PET amyloid-positive patient identification. Alzheimers Res. Ther. 2020 12 1 26 10.1186/s13195‑020‑00596‑4 32183883
    [Google Scholar]
  121. Karikari T.K. Emeršič A. Vrillon A. Rodriguez LJ. Ashton N.J. Kramberger M.G. Dumurgier J. Hourregue C. Čučnik S. Brinkmalm G. Rot U. Zetterberg H. Paquet C. Blennow K. Head‐to‐head comparison of clinical performance of CSF phospho‐tau T181 and T217 biomarkers for Alzheimer’s disease diagnosis. Alzheimers Dement. 2021 17 5 755 767 10.1002/alz.12236 33252199
    [Google Scholar]
  122. Johansson M. Stomrud E. Insel P.S. Leuzy A. Johansson P.M. Smith R. Ismail Z. Janelidze S. Palmqvist S. Westen v.D. Carlgren M.N. Hansson O. Mild behavioral impairment and its relation to tau pathology in preclinical Alzheimer’s disease. Transl. Psychiatry 2021 11 1 76 10.1038/s41398‑021‑01206‑z 33500386
    [Google Scholar]
  123. Buckley R.F. Mormino E.C. Rabin J.S. Hohman T.J. Landau S. Hanseeuw B.J. Jacobs H.I.L. Papp K.V. Amariglio R.E. Properzi M.J. Schultz A.P. Kirn D. Scott M.R. Hedden T. Farrell M. Price J. Chhatwal J. Rentz D.M. Villemagne V.L. Johnson K.A. Sperling R.A. Sex differences in the association of global amyloid and regional tau deposition measured by positron emission tomography in clinically normal older adults. JAMA Neurol. 2019 76 5 542 551 10.1001/jamaneurol.2018.4693 30715078
    [Google Scholar]
  124. Filon J.R. Intorcia A.J. Sue L.I. Arreola V.E. Wilson J. Davis K.J. Sabbagh M.N. Belden C.M. Caselli R.J. Adler C.H. Woodruff B.K. Rapscak S.Z. Ahern G.L. Burke A.D. Jacobson S. Shill H.A. Dunckley D.E. Chen K. Reiman E.M. Beach T.G. Serrano G.E. Gender differences in alzheimer disease: Brain atrophy, histopathology burden, and cognition. J. Neuropathol. Exp. Neurol. 2016 75 8 748 754 10.1093/jnen/nlw047 27297671
    [Google Scholar]
  125. Blennow K Vanmechelen E Hampel H. CSF total tau, aβ42 and phosphorylated tau protein as biomarkers for alzheimer’s disease. Mol. Neurobiol. 2001 24 1-3 87 97 10.1385/MN:24:1‑3:087
    [Google Scholar]
  126. Augustinack J.C. Schneider A. Mandelkow E.M. Hyman B.T. Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol. 2002 103 1 26 35 10.1007/s004010100423 11837744
    [Google Scholar]
  127. Muñoz L.J. Sierra G.F. Falcón V. Menéndez I. Macías C.L. Mena R. Regional conformational change involving phosphorylation of tau protein at the Thr231, precedes the structural change detected by Alz-50 antibody in Alzheimer’s disease. J. Alzheimers Dis. 2005 8 1 29 41 10.3233/JAD‑2005‑8104 16155347
    [Google Scholar]
  128. Muñoz L.J. Macías C.L. Sierra G.F. Mena R. Earliest stages of tau conformational changes are related to the appearance of a sequence of specific phospho-dependent tau epitopes in Alzheimer’s disease. J. Alzheimers Dis. 2007 12 4 365 375 10.3233/JAD‑2007‑12410 18198423
    [Google Scholar]
  129. Gordon B.A. Blazey T.M. Christensen J. Dincer A. Flores S. Keefe S. Chen C. Su Y. McDade E.M. Wang G. Li Y. Hassenstab J. Aschenbrenner A. Hornbeck R. Jack C.R. Jr Ances B.M. Berman S.B. Brosch J.R. Galasko D. Gauthier S. Lah J.J. Masellis M. Dyck v.C.H. Mintun M.A. Klein G. Ristic S. Cairns N.J. Marcus D.S. Xiong C. Holtzman D.M. Raichle M.E. Morris J.C. Bateman R.J. Benzinger T.L.S. Tau PET in autosomal dominant Alzheimer’s disease: Relationship with cognition, dementia and other biomarkers. Brain 2019 142 4 1063 1076 10.1093/brain/awz019 30753379
    [Google Scholar]
  130. Mattsson N. Insel P.S. Donohue M. Jögi J. Ossenkoppele R. Olsson T. Schöll M. Smith R. Hansson O. Predicting diagnosis and cognition with 18 F‐AV‐1451 tau PET and structural MRI in Alzheimer’s disease. Alzheimers Dement. 2019 15 4 570 580 10.1016/j.jalz.2018.12.001 30639421
    [Google Scholar]
  131. Barthélemy N.R. Li Y. Mathurin J.N. Gordon B.A. Hassenstab J. Benzinger T.L.S. Buckles V. Fagan A.M. Perrin R.J. Goate A.M. Morris J.C. Karch C.M. Xiong C. Allegri R. Mendez P.C. Berman S.B. Ikeuchi T. Mori H. Shimada H. Shoji M. Suzuki K. Noble J. Farlow M. Chhatwal J. Radford G.N.R. Salloway S. Schofield P.R. Masters C.L. Martins R.N. O’Connor A. Fox N.C. Levin J. Jucker M. Gabelle A. Lehmann S. Sato C. Bateman R.J. McDade E. A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer’s disease. Nat. Med. 2020 26 3 398 407 10.1038/s41591‑020‑0781‑z 32161412
    [Google Scholar]
  132. Maia L.F. Kaeser S.A. Reichwald J. Hruscha M. Martus P. Staufenbiel M. Jucker M. Changes in amyloid-β and Tau in the cerebrospinal fluid of transgenic mice overexpressing amyloid precursor protein. Sci. Transl. Med. 2013 5 194 194re2 10.1126/scitranslmed.3006446 23863834
    [Google Scholar]
  133. Carlgren M.N. Andersson E. Janelidze S. Ossenkoppele R. Insel P. Strandberg O. Zetterberg H. Rosen H.J. Rabinovici G. Chai X. Blennow K. Dage J.L. Stomrud E. Smith R. Palmqvist S. Hansson O. Aβ deposition is associated with increases in soluble and phosphorylated tau that precede a positive Tau PET in Alzheimer’s disease. Sci. Adv. 2020 6 16 eaaz2387 10.1126/sciadv.aaz2387 32426454
    [Google Scholar]
  134. At CTAD Tau PET Emerges as Favored Outcome Biomarker for Trials. 2017 Available from: https//www.alzforum.org/news/conference-coverage/ctad-tau-pet-emerges-favored-outcome-biomarker-trials
  135. Sato C. Barthélemy N.R. Mawuenyega K.G. Patterson B.W. Gordon B.A. Balsarotti J.J. Sullivan M. Crisp M.J. Kasten T. Kirmess K.M. Kanaan N.M. Yarasheski K.E. Nigh B.A. Benzinger T.L.S. Miller T.M. Karch C.M. Bateman R.J. Tau kinetics in neurons and the human central nervous system. Neuron 2018 97 6 1284 1298.e7 10.1016/j.neuron.2018.02.015 29566794
    [Google Scholar]
  136. Tatebe H. Kasai T. Ohmichi T. Kishi Y. Kakeya T. Waragai M. Kondo M. Allsop D. Tokuda T. Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzheimer pathology: Pilot case-control studies including patients with Alzheimer’s disease and down syndrome. Mol. Neurodegener. 2017 12 1 63 10.1186/s13024‑017‑0206‑8 28866979
    [Google Scholar]
  137. Thijssen E.H. Joie L.R. Strom A. Fonseca C. Iaccarino L. Wolf A. Spina S. Allen I.E. Cobigo Y. Heuer H. VandeVrede L. Proctor N.K. Lago A.L. Baker S. Sivasankaran R. Kieloch A. Kinhikar A. Yu L. Valentin M.A. Jeromin A. Zetterberg H. Hansson O. Carlgren M.N. Graham D. Blennow K. Kramer J.H. Grinberg L.T. Seeley W.W. Rosen H. Boeve B.F. Miller B.L. Teunissen C.E. Rabinovici G.D. Rojas J.C. Dage J.L. Boxer A.L. Plasma phosphorylated tau 217 and phosphorylated tau 181 as biomarkers in Alzheimer’s disease and frontotemporal lobar degeneration: A retrospective diagnostic performance study. Lancet Neurol. 2021 20 9 739 752 10.1016/S1474‑4422(21)00214‑3 34418401
    [Google Scholar]
  138. Wesseling H. Mair W. Kumar M. Schlaffner C.N. Tang S. Beerepoot P. Fatou B. Guise A.J. Cheng L. Takeda S. Muntel J. Rotunno M.S. Dujardin S. Davies P. Kosik K.S. Miller B.L. Berretta S. Hedreen J.C. Grinberg L.T. Seeley W.W. Hyman B.T. Steen H. Steen J.A. Tau PTM profiles identify patient heterogeneity and stages of alzheimer’s disease. Cell 2020 183 6 1699 1713.e13 10.1016/j.cell.2020.10.029 33188775
    [Google Scholar]
  139. Barthélemy N.R. Horie K. Sato C. Bateman R.J. Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer’s disease. J. Exp. Med. 2020 217 11 e20200861 10.1084/jem.20200861 32725127
    [Google Scholar]
  140. Carlgren M.N. Janelidze S. Palmqvist S. Cullen N. Svenningsson A.L. Strandberg O. Mengel D. Walsh D.M. Stomrud E. Dage J.L. Hansson O. Longitudinal plasma p-tau217 is increased in early stages of Alzheimer’s disease. Brain 2020 143 11 3234 3241 10.1093/brain/awaa286 33068398
    [Google Scholar]
  141. Cullen N.C. Leuzy A. Palmqvist S. Janelidze S. Stomrud E. Pesini P. Sarasa L. Allué J.A. Proctor N.K. Zetterberg H. Dage J.L. Blennow K. Carlgren M.N. Hansson O. Individualized prognosis of cognitive decline and dementia in mild cognitive impairment based on plasma biomarker combinations. Nature Aging 2020 1 1 114 123 10.1038/s43587‑020‑00003‑5 37117993
    [Google Scholar]
  142. Bayoumy S. Verberk I.M.W. Dulk d.B. Hussainali Z. Zwan M. Flier d.v.W.M. Ashton N.J. Zetterberg H. Blennow K. Vanbrabant J. Stoops E. Vanmechelen E. Dage J.L. Teunissen C.E. Clinical and analytical comparison of six Simoa assays for plasma P-tau isoforms P-tau181, P-tau217, and P-tau231. Alzheimers Res. Ther. 2021 13 1 198 10.1186/s13195‑021‑00939‑9 34863295
    [Google Scholar]
  143. Roy S. Banerjee D. Chatterjee I. Natarajan D. Mathew J.C. The role of 18F-flortaucipir (av-1451) in the diagnosis of neurodegenerative disorders. Cureus 2021 13 7 e16644 10.7759/cureus.16644 34458044
    [Google Scholar]
  144. Chiotis K. Savitcheva I. Poulakis K. Aubert S.L. Wall A. Antoni G. Nordberg A. [18F]THK5317 imaging as a tool for predicting prospective cognitive decline in Alzheimer’s disease. Mol. Psychiatry 2021 26 10 5875 5887 10.1038/s41380‑020‑0815‑4 32616831
    [Google Scholar]
  145. Jeong H.J. Lee H. Lee S.Y. Seo S. Park K.H. Lee Y.B. Shin D.J. Kang J.M. Yeon B.K. Kang S.G. Cho J. Seong J.K. Okamura N. Villemagne V.L. Na D.L. Noh Y. [ 18 F]THK5351 PET imaging in patients with mild cognitive impairment. J. Clin. Neurol. 2020 16 2 202 214 10.3988/jcn.2020.16.2.202 32319236
    [Google Scholar]
  146. Tagai K. Ono M. Kubota M. Kitamura S. Takahata K. Seki C. Takado Y. Shinotoh H. Sano Y. Yamamoto Y. Matsuoka K. Takuwa H. Shimojo M. Takahashi M. Kawamura K. Kikuchi T. Okada M. Akiyama H. Suzuki H. Onaya M. Takeda T. Arai K. Arai N. Araki N. Saito Y. Trojanowski J.Q. Lee V.M.Y. Mishra S.K. Yamaguchi Y. Kimura Y. Ichise M. Tomita Y. Zhang M.R. Suhara T. Shigeta M. Sahara N. Higuchi M. Shimada H. High contrast in vivo imaging of tau pathologies in alzheimer’s and non-alzheimer’s disease tauopathies. Neuron 2021 109 1 42 58.e8 10.1016/j.neuron.2020.09.042 33125873
    [Google Scholar]
  147. Aubert S.L. Lemoine L. Chiotis K. Leuzy A. Vieitez R.E. Nordberg A. Tau PET imaging: Present and future directions. Mol. Neurodegener. 2017 12 1 19 10.1186/s13024‑017‑0162‑3 28219440
    [Google Scholar]
  148. Mormino E.C. Toueg T.N. Azevedo C. Castillo J.B. Guo W. Nadiadwala A. Corso N.K. Hall J.N. Fan A. Trelle A.N. Harrison M.B. Hunt M.P. Sha S.J. Deutsch G. James M. Fredericks C.A. Koran M.E. Zeineh M. Poston K. Greicius M.D. Khalighi M. Davidzon G.A. Shen B. Zaharchuk G. Wagner A.D. Chin F.T. Tau PET imaging with 18F-PI-2620 in aging and neurodegenerative diseases. Eur. J. Nucl. Med. Mol. Imaging 2021 48 7 2233 2244 10.1007/s00259‑020‑04923‑7 32572562
    [Google Scholar]
  149. Pascoal T.A. Therriault J. Benedet A.L. Savard M. Lussier F.Z. Chamoun M. Tissot C. Qureshi M.N.I. Kang M.S. Mathotaarachchi S. Stevenson J. Hopewell R. Massarweh G. Soucy J.P. Gauthier S. Neto R.P. 18F-MK-6240 PET for early and late detection of neurofibrillary tangles. Brain 2020 143 9 2818 2830 10.1093/brain/awaa180 32671408
    [Google Scholar]
  150. Leuzy A. Chiotis K. Lemoine L. Gillberg P.G. Almkvist O. Vieitez R.E. Nordberg A. Tau PET imaging in neurodegenerative tauopathies—still a challenge. Mol. Psychiatry 2019 24 8 1112 1134 10.1038/s41380‑018‑0342‑8 30635637
    [Google Scholar]
  151. Cho H. Choi J.Y. Hwang M.S. Kim Y.J. Lee H.M. Lee H.S. Lee J.H. Ryu Y.H. Lee M.S. Lyoo C.H. In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum. Ann. Neurol. 2016 80 2 247 258 10.1002/ana.24711 27323247
    [Google Scholar]
  152. Scheltens P. Strooper D.B. Kivipelto M. Holstege H. Chételat G. Teunissen C.E. Cummings J. Flier d.v.W.M. Alzheimer’s disease. Lancet 2021 397 10284 1577 1590 10.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  153. Braak H. Alafuzoff I. Arzberger T. Kretzschmar H. Tredici D.K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 2006 112 4 389 404 10.1007/s00401‑006‑0127‑z 16906426
    [Google Scholar]
  154. Aschenbrenner A.J. Gordon B.A. Benzinger T.L.S. Morris J.C. Hassenstab J.J. Influence of tau PET, amyloid PET, and hippocampal volume on cognition in Alzheimer disease. Neurology 2018 91 9 e859 e866 10.1212/WNL.0000000000006075 30068637
    [Google Scholar]
  155. Joie L.R. Visani A.V. Baker S.L. Brown J.A. Bourakova V. Cha J. Chaudhary K. Edwards L. Iaccarino L. Janabi M. Segev L.O.H. Miller Z.A. Perry D.C. O’Neil J.P. Pham J. Rojas J.C. Rosen H.J. Seeley W.W. Tsai R.M. Miller B.L. Jagust W.J. Rabinovici G.D. Prospective longitudinal atrophy in Alzheimer’s disease correlates with the intensity and topography of baseline tau-PET. Sci. Transl. Med. 2020 12 524 eaau5732 10.1126/scitranslmed.aau5732 31894103
    [Google Scholar]
  156. Franzmeier N. Neitzel J. Rubinski A. Smith R. Strandberg O. Ossenkoppele R. Hansson O. Ewers M. Weiner M. Aisen P. Petersen R. Jack C.R. Jr Jagust W. Trojanowki J.Q. Toga A.W. Beckett L. Green R.C. Saykin A.J. Morris J. Shaw L.M. Liu E. Montine T. Thomas R.G. Donohue M. Walter S. Gessert D. Sather T. Jiminez G. Harvey D. Donohue M. Bernstein M. Fox N. Thompson P. Schuff N. DeCArli C. Borowski B. Gunter J. Senjem M. Vemuri P. Jones D. Kantarci K. Ward C. Koeppe R.A. Foster N. Reiman E.M. Chen K. Mathis C. Landau S. Cairns N.J. Householder E. Reinwald L.T. Lee V. Korecka M. Figurski M. Crawford K. Neu S. Foroud T.M. Potkin S. Shen L. Kelley F. Kim S. Nho K. Kachaturian Z. Frank R. Snyder P.J. Molchan S. Kaye J. Quinn J. Lind B. Carter R. Dolen S. Schneider L.S. Pawluczyk S. Beccera M. Teodoro L. Spann B.M. Brewer J. Vanderswag H. Fleisher A. Heidebrink J.L. Lord J.L. Petersen R. Mason S.S. Albers C.S. Knopman D. Johnson K. Doody R.S. Meyer J.V. Chowdhury M. Rountree S. Dang M. Stern Y. Honig L.S. Bell K.L. Ances B. Morris J.C. Carroll M. Leon S. Householder E. Mintun M.A. Schneider S. OliverNG A. Griffith R. Clark D. Geldmacher D. Brockington J. Roberson E. Grossman H. Mitsis E. Morrell d.L. Shah R.C. Duara R. Varon D. Greig M.T. Roberts P. Albert M. Onyike C. D’Agostino D. II Kielb S. Galvin J.E. Pogorelec D.M. Cerbone B. Michel C.A. Rusinek H. Leon d.M.J. Glodzik L. Santi D.S. Doraiswamy P.M. Petrella J.R. Wong T.Z. Arnold S.E. Karlawish J.H. Wolk D. Smith C.D. Jicha G. Hardy P. Sinha P. Oates E. Conrad G. Lopez O.L. Oakley M.A. Simpson D.M. Porsteinsson A.P. Goldstein B.S. Martin K. Makino K.M. Ismail M.S. Brand C. Mulnard R.A. Thai G. Ortiz C.M.A. Womack K. Mathews D. Quiceno M. Arrastia R.D. King R. Weiner M. Cook K.M. DeVous M. Levey A.I. Lah J.J. Cellar J.S. Burns J.M. Anderson H.S. Swerdlow R.H. Apostolova L. Tingus K. Woo E. Silverman D.H.S. Lu P.H. Bartzokis G. Radford N.R.G. ParfittH F. Kendall T. Johnson H. Farlow M.R. Hake A.M. Matthews B.R. Herring S. Hunt C. Dyck v.C.H. Carson R.E. MacAvoy M.G. Chertkow H. Bergman H. Hosein C. Black S. Stefanovic B. Caldwell C. Hsiung G.Y.R. Feldman H. Mudge B. Past M.A. Kertesz A. Rogers J. Trost D. Bernick C. Munic D. Kerwin D. Mesulam M.M. Lipowski K. Wu C.K. Johnson N. Sadowsky C. Martinez W. Villena T. Turner R.S. Johnson K. Reynolds B. Sperling R.A. Johnson K.A. Marshall G. Frey M. Yesavage J. Taylor J.L. Lane B. Rosen A. Tinklenberg J. Sabbagh M.N. Belden C.M. Jacobson S.A. Sirrel S.A. Kowall N. Killiany R. Budson A.E. Norbash A. Johnson P.L. Obisesan T.O. Wolday S. Allard J. Lerner A. Ogrocki P. Hudson L. Fletcher E. Carmichael O. Olichney J. DeCarli C. Kittur S. Borrie M. Lee T.Y. Bartha R. Johnson S. Asthana S. Carlsson C.M. Potkin S.G. Preda A. Nguyen D. Tariot P. Fleisher A. Reeder S. Bates V. Capote H. Rainka M. Scharre D.W. Kataki M. Adeli A. Zimmerman E.A. Celmins D. Brown A.D. Pearlson G.D. Blank K. Anderson K. Santulli R.B. Kitzmiller T.J. Schwartz E.S. SinkS K.M. Williamson J.D. Garg P. Watkins F. Ott B.R. Querfurth H. Tremont G. Salloway S. Malloy P. Correia S. Rosen H.J. Miller B.L. Mintzer J. Spicer K. Bachman D. Finger E. Pasternak S. Rachinsky I. Rogers J. Kertesz A. Drost D. Pomara N. Hernando R. Sarrael A. Schultz S.K. Ponto L.L.B. Shim H. Smith K.E. Relkin N. Chaing G. Raudin L. Smith A. Fargher K. Raj B.A. Functional brain architecture is associated with the rate of tau accumulation in Alzheimer’s disease. Nat. Commun. 2020 11 1 347 10.1038/s41467‑019‑14159‑1 31953405
    [Google Scholar]
  157. Jack C.R. Jr Wiste H.J. Schwarz C.G. Lowe V.J. Senjem M.L. Vemuri P. Weigand S.D. Therneau T.M. Knopman D.S. Gunter J.L. Jones D.T. Radford G.J. Kantarci K. Roberts R.O. Mielke M.M. Machulda M.M. Petersen R.C. Longitudinal tau PET in ageing and Alzheimer’s disease. Brain 2018 141 5 1517 1528 10.1093/brain/awy059 29538647
    [Google Scholar]
  158. Wang L. Benzinger T.L. Su Y. Christensen J. Friedrichsen K. Aldea P. McConathy J. Cairns N.J. Fagan A.M. Morris J.C. Ances B.M. Evaluation of Tau imaging in staging Alzheimer disease and revealing interactions between β-amyloid and tauopathy. JAMA Neurol. 2016 73 9 1070 1077 10.1001/jamaneurol.2016.2078 27454922
    [Google Scholar]
  159. Hardy JA Higgins GA Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992 256 5054 184 185 10.1126/science.1566067
    [Google Scholar]
  160. Uddin M.S. Kabir M.T. Rahman M.S. Behl T. Jeandet P. Ashraf G.M. Najda A. Jumah B.M.N. Seedi E.H.R. Daim A.M.M. Revisiting the amyloid cascade hypothesis: From anti-Aβ therapeutics to auspicious new ways for Alzheimer’s disease. Int. J. Mol. Sci. 2020 21 16 5858 10.3390/ijms21165858 32824102
    [Google Scholar]
  161. Cho H. Lee H.S. Choi J.Y. Lee J.H. Ryu Y.H. Lee M.S. Lyoo C.H. Predicted sequence of cortical tau and amyloid-β deposition in Alzheimer disease spectrum. Neurobiol. Aging 2018 68 76 84 10.1016/j.neurobiolaging.2018.04.007 29751288
    [Google Scholar]
  162. Bucci M. Chiotis K. Nordberg A. Alzheimer’s disease profiled by fluid and imaging markers: Tau PET best predicts cognitive decline. Mol. Psychiatry 2021 26 10 5888 5898 10.1038/s41380‑021‑01263‑2 34593971
    [Google Scholar]
  163. Hanseeuw B.J. Betensky R.A. Jacobs H.I.L. Schultz A.P. Sepulcre J. Becker J.A. Cosio D.M.O. Farrell M. Quiroz Y.T. Mormino E.C. Buckley R.F. Papp K.V. Amariglio R.A. Dewachter I. Ivanoiu A. Huijbers W. Hedden T. Marshall G.A. Chhatwal J.P. Rentz D.M. Sperling R.A. Johnson K. Association of amyloid and tau with cognition in preclinical alzheimer disease. JAMA Neurol. 2019 76 8 915 924 10.1001/jamaneurol.2019.1424 31157827
    [Google Scholar]
  164. Schön C. Hoffmann N.A. Ochs S.M. Long-term in vivo imaging of fibrillar tau in the retina of P301S transgenic mice. PLoS One. 2012 7 12 e53547 10.1371/journal.pone.0053547
    [Google Scholar]
  165. Haan d.J. Verbraak F.D. Visser P.J. Bouwman F.H. Retinal thickness in Alzheimer’s disease: A systematic review and meta‐analysis. Alzheimers Dement. 2017 6 1 162 170 10.1016/j.dadm.2016.12.014 28275698
    [Google Scholar]
  166. Chopra N. Wang R. Maloney B. Nho K. Beck J.S. Pourshafie N. Niculescu A. Saykin A.J. Rinaldi C. Counts S.E. Lahiri D.K. MicroRNA-298 reduces levels of human amyloid-β precursor protein (APP), β-site APP-converting enzyme 1 (BACE1) and specific tau protein moieties. Mol. Psychiatry 2021 26 10 5636 5657 10.1038/s41380‑019‑0610‑2 31942037
    [Google Scholar]
  167. Ho W.L. Leung Y. Tsang A.W. So K.F. Chiu K. Chang R.C. Review: Tauopathy in the retina and optic nerve: Does it shadow pathological changes in the brain? Mol. Vis. 2012 18 2700 2710 23170062
    [Google Scholar]
  168. Conrad C. Vianna C. Freeman M. Davies P. A polymorphic gene nested within an intron of the tau gene: Implications for Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2002 99 11 7751 7756 10.1073/pnas.112194599 12032355
    [Google Scholar]
  169. Ashton N.J. Ide M. Schöll M. Blennow K. Lovestone S. Hye A. Zetterberg H. No association of salivary total tau concentration with Alzheimer’s disease. Neurobiol. Aging 2018 70 125 127 10.1016/j.neurobiolaging.2018.06.014 30007161
    [Google Scholar]
  170. Pekeles H. Qureshi H.Y. Paudel H.K. Schipper H.M. Gornistky M. Chertkow H. Development and validation of a salivary tau biomarker in Alzheimer’s disease. Alzheimers Dement. 2018 10 1 53 60 10.1016/j.dadm.2018.03.003 30623019
    [Google Scholar]
  171. Frisoni G.B. Fox N.C. Jack C.R. Jr Scheltens P. Thompson P.M. The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 2010 6 2 67 77 10.1038/nrneurol.2009.215 20139996
    [Google Scholar]
  172. Vogt N.M. Hunt J.F. Adluru N. Dean D.C. III Johnson S.C. Asthana S. Yu J.P.J. Alexander A.L. Bendlin B.B. Cortical microstructural alterations in mild cognitive impairment and alzheimer’s disease dementia. Cereb. Cortex 2020 30 5 2948 2960 10.1093/cercor/bhz286 31833550
    [Google Scholar]
  173. Fox N.C. Warrington E.K. Rossor M.N. Serial magnetic resonance imaging of cerebral atrophy in preclinical Alzheimer’s disease. Lancet 1999 353 9170 2125 10.1016/S0140‑6736(99)00496‑1 10382699
    [Google Scholar]
  174. Dickerson B.C. Stoub T.R. Shah R.C. Sperling R.A. Killiany R.J. Albert M.S. Hyman B.T. Blacker D. Morrell d.L. Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults. Neurology 2011 76 16 1395 1402 10.1212/WNL.0b013e3182166e96 21490323
    [Google Scholar]
  175. Armstrong R.A. Syed A.B. Alzheimer’s disease and the eye. Ophthalmic Physiol. Opt. 1996 16 s1 Suppl. 1 S2 S8 10.1111/j.1475‑1313.1996.95001344.x 8796193
    [Google Scholar]
  176. Morgia L.C. Cisneros R.F.N. Koronyo Y. Hannibal J. Gallassi R. Cantalupo G. Sambati L. Pan B.X. Tozer K.R. Barboni P. Provini F. Avanzini P. Carbonelli M. Pelosi A. Chui H. Liguori R. Baruzzi A. Hamaoui K.M. Sadun A.A. Carelli V. Melanopsin retinal ganglion cell loss in Alzheimer disease. Ann. Neurol. 2016 79 1 90 109 10.1002/ana.24548 26505992
    [Google Scholar]
  177. Khalil M. Teunissen C.E. Otto M. Piehl F. Sormani M.P. Gattringer T. Barro C. Kappos L. Comabella M. Fazekas F. Petzold A. Blennow K. Zetterberg H. Kuhle J. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 2018 14 10 577 589 10.1038/s41582‑018‑0058‑z 30171200
    [Google Scholar]
  178. Yuan A. Rao M.V. Veeranna Nixon R.A. Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harb. Perspect. Biol. 2017 9 4 a018309 10.1101/cshperspect.a018309 28373358
    [Google Scholar]
  179. Khalil M. Pirpamer L. Hofer E. Voortman M.M. Barro C. Leppert D. Benkert P. Ropele S. Enzinger C. Fazekas F. Schmidt R. Kuhle J. Serum neurofilament light levels in normal aging and their association with morphologic brain changes. Nat. Commun. 2020 11 1 812 10.1038/s41467‑020‑14612‑6 32041951
    [Google Scholar]
  180. Zetterberg H. Skillbäck T. Mattsson N. Trojanowski J.Q. Portelius E. Shaw L.M. Weiner M.W. Blennow K. Association of cerebrospinal fluid neurofilament light concentration with alzheimer disease progression. JAMA Neurol. 2016 73 1 60 67 10.1001/jamaneurol.2015.3037 26524180
    [Google Scholar]
  181. Mattsson N. Andreasson U. Zetterberg H. Blennow K. Association of plasma neurofilament light with neurodegeneration in patients with alzheimer disease. JAMA Neurol. 2017 74 5 557 566 10.1001/jamaneurol.2016.6117 28346578
    [Google Scholar]
  182. Gleerup H.S. Simonsen A.H. Høgh P. The added value of cerebrospinal fluid neurofilament light chain to existing diagnostic methods and biomarkers in a mixed memory clinic cohort of consecutive patients. J. Alzheimers Dis. Rep. 2022 6 1 121 127 10.3233/ADR‑210047 35530115
    [Google Scholar]
  183. Bridel C. Wieringen v.W.N. Zetterberg H. Tijms B.M. Teunissen C.E. Cermeño A.J.C. Andreasson U. Axelsson M. Bäckström D.C. Bartos A. Bjerke M. Blennow K. Boxer A. Brundin L. Burman J. Christensen T. Fialová L. Forsgren L. Frederiksen J.L. Gisslén M. Gray E. Gunnarsson M. Hall S. Hansson O. Herbert M.K. Jakobsson J. Krut J.J. Janelidze S. Johannsson G. Jonsson M. Kappos L. Khademi M. Khalil M. Kuhle J. Landén M. Leinonen V. Logroscino G. Lu C.H. Lycke J. Magdalinou N.K. Malaspina A. Mattsson N. Meeter L.H. Mehta S.R. Modvig S. Olsson T. Paterson R.W. Santiago P.J. Piehl F. Pijnenburg Y.A.L. Pyykkö O.T. Ragnarsson O. Rojas J.C. Christensen R.J. Sandberg L. Scherling C.S. Schott J.M. Sellebjerg F.T. Simone I.L. Skillbäck T. Stilund M. Sundström P. Svenningsson A. Tortelli R. Tortorella C. Trentini A. Troiano M. Turner M.R. Swieten v.J.C. Vågberg M. Verbeek M.M. Villar L.M. Visser P.J. Wallin A. Weiss A. Wikkelsø C. Wild E.J. Diagnostic value of cerebrospinal fluid neurofilament light protein in neurology. JAMA Neurol. 2019 76 9 1035 1048 10.1001/jamaneurol.2019.1534 31206160
    [Google Scholar]
  184. Gala I.I. Lleo A. Karydas A. Staffaroni A.M. Zetterberg H. Sivasankaran R. Grinberg L.T. Spina S. Kramer J.H. Ramos E.M. Coppola G. Joie L.R. Rabinovici G.D. Perry D.C. Tempini G.M.L. Seeley W.W. Miller B.L. Rosen H.J. Blennow K. Boxer A.L. Rojas J.C. Plasma tau and neurofilament light in frontotemporal lobar degeneration and alzheimer disease. Neurology 2021 96 5 e671 e683 10.1212/WNL.0000000000011226 33199433
    [Google Scholar]
  185. Ashton N.J. Leuzy A. Lim Y.M. Troakes C. Hortobágyi T. Höglund K. Aarsland D. Lovestone S. Schöll M. Blennow K. Zetterberg H. Hye A. Increased plasma neurofilament light chain concentration correlates with severity of post-mortem neurofibrillary tangle pathology and neurodegeneration. Acta Neuropathol. Commun. 2019 7 1 5 10.1186/s40478‑018‑0649‑3 30626432
    [Google Scholar]
  186. Preische O. Schultz S.A. Apel A. Kuhle J. Kaeser S.A. Barro C. Gräber S. Buletta K.E. LaFougere C. Laske C. Vöglein J. Levin J. Masters C.L. Martins R. Schofield P.R. Rossor M.N. Radford G.N.R. Salloway S. Ghetti B. Ringman J.M. Noble J.M. Chhatwal J. Goate A.M. Benzinger T.L.S. Morris J.C. Bateman R.J. Wang G. Fagan A.M. McDade E.M. Gordon B.A. Jucker M. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nat. Med. 2019 25 2 277 283 10.1038/s41591‑018‑0304‑3 30664784
    [Google Scholar]
  187. Minoshima S. Mosci K. Cross D. Thientunyakit T. Brain [F-18]FDG PET for clinical dementia workup: Differential diagnosis of alzheimer’s disease and other types of dementing disorders. Semin. Nucl. Med. 2021 51 3 230 240 10.1053/j.semnuclmed.2021.01.002 33546814
    [Google Scholar]
  188. Zetterberg H. Bendlin B.B. Biomarkers for Alzheimer’s disease—preparing for a new era of disease-modifying therapies. Mol. Psychiatry 2021 26 1 296 308 10.1038/s41380‑020‑0721‑9 32251378
    [Google Scholar]
  189. Chen M.K. Mecca A.P. Naganawa M. Finnema S.J. Toyonaga T. Lin S. Najafzadeh S. Ropchan J. Lu Y. McDonald J.W. Michalak H.R. Nabulsi N.B. Arnsten A.F.T. Huang Y. Carson R.E. Dyck v.C.H. Assessing synaptic density in alzheimer disease with synaptic vesicle glycoprotein 2a positron emission tomographic imaging. JAMA Neurol. 2018 75 10 1215 1224 10.1001/jamaneurol.2018.1836 30014145
    [Google Scholar]
  190. Li S. Cai Z. Zhang W. Holden D. Lin S. Finnema S.J. Shirali A. Ropchan J. Carre S. Mercier J. Carson R.E. Nabulsi N. Huang Y. Synthesis and in vivo evaluation of [18F]UCB-J for PET imaging of synaptic vesicle glycoprotein 2A (SV2A). Eur. J. Nucl. Med. Mol. Imaging 2019 46 9 1952 1965 10.1007/s00259‑019‑04357‑w 31175396
    [Google Scholar]
  191. Constantinescu C.C. Tresse C. Zheng M. Gouasmat A. Carroll V.M. Mistico L. Alagille D. Sandiego C.M. Papin C. Marek K. Seibyl J.P. Tamagnan G.D. Barret O. Development and in vivo preclinical imaging of fluorine-18-labeled synaptic vesicle protein 2a (SV2A) pet tracers. Mol. Imaging Biol. 2019 21 3 509 518 10.1007/s11307‑018‑1260‑5 30084043
    [Google Scholar]
  192. Portelius E. Olsson B. Höglund K. Cullen N.C. Kvartsberg H. Andreasson U. Zetterberg H. Sandelius Å. Shaw L.M. Lee V.M.Y. Irwin D.J. Grossman M. Weintraub D. Plotkin C.A. Wolk D.A. McCluskey L. Elman L. McBride J. Toledo J.B. Trojanowski J.Q. Blennow K. Cerebrospinal fluid neurogranin concentration in neurodegeneration: Relation to clinical phenotypes and neuropathology. Acta Neuropathol. 2018 136 3 363 376 10.1007/s00401‑018‑1851‑x 29700597
    [Google Scholar]
  193. Kvartsberg H. Duits F.H. Ingelsson M. Andreasen N. Öhrfelt A. Andersson K. Brinkmalm G. Lannfelt L. Minthon L. Hansson O. Andreasson U. Teunissen C.E. Scheltens P. Flier d.V.W.M. Zetterberg H. Portelius E. Blennow K. Cerebrospinal fluid levels of the synaptic protein neurogranin correlates with cognitive decline in prodromal Alzheimer’s disease. Alzheimers Dement. 2015 11 10 1180 1190 10.1016/j.jalz.2014.10.009 25533203
    [Google Scholar]
  194. Vos D.A. Jacobs D. Struyfs H. Fransen E. Andersson K. Portelius E. Andreasson U. Surgeloose D.D. Hernalsteen D. Sleegers K. Robberecht C. Broeckhoven V.C. Zetterberg H. Blennow K. Engelborghs S. Vanmechelen E. C‐terminal neurogranin is increased in cerebrospinal fluid but unchanged in plasma in Alzheimer’s disease. Alzheimers Dement. 2015 11 12 1461 1469 10.1016/j.jalz.2015.05.012 26092348
    [Google Scholar]
  195. Bălașa A.F. Chircov C. Grumezescu A.M. Body fluid biomarkers for alzheimer’s disease—an up-to-date overview. Biomedicines 2020 8 10 421 10.3390/biomedicines8100421 33076333
    [Google Scholar]
  196. Król-Grzymała A. Sienkiewicz-Szłapka E. Fiedorowicz E. Rozmus D. Cieślińska A. Grzybowski A. Tear biomarkers in alzheimer’s and parkinson’s diseases, and multiple sclerosis: Implications for diagnosis (systematic review). Int. J. Mol. Sci. 2022 23 17 10123 10.3390/ijms231710123 36077520
    [Google Scholar]
  197. Kalló G. Emri M. Varga Z. Changes in the chemical barrier composition of tears in Alzheimer’s disease reveal potential tear diagnostic biomarkers. PLoS One. 2016 11 6 e0158000 10.1371/journal.pone.0158000
    [Google Scholar]
  198. Carro E. Bartolomé F. Pareja B.F. Galende A. Molina J.A. Ortiz P. Calero M. Rabano A. Cantero J.L. Orive G. Early diagnosis of mild cognitive impairment and Alzheimer’s disease based on salivary lactoferrin. Alzheimers Dement. 2017 8 1 131 138 10.1016/j.dadm.2017.04.002 28649597
    [Google Scholar]
  199. Bakhtiari S. Can salivary acetylcholinesterase be a diagnostic biomarker for alzheimer? J. Clin. Diagn. Res. 11 1 ZC58 ZC60 10.7860/JCDR/2017/21715.9192
    [Google Scholar]
  200. Blanco G.A. Bautista P.C. Oger C. Vigor C. Galano J.M. Durand T. Ibáñez M.N. Baquero M. Vento M. Pericás C.C. Reliable determination of new lipid peroxidation compounds as potential early Alzheimer Disease biomarkers. Talanta 2018 184 193 201 10.1016/j.talanta.2018.03.002 29674032
    [Google Scholar]
  201. Lee H.S. Kim I. Chung C.B. Increased urinary level of oxidized nucleosides in patients with mild-to-moderate Alzheimer’s disease. Clin. Biochem. 2007 40 13-14 936 938 10.1016/j.clinbiochem.2006.11.021 17692303
    [Google Scholar]
  202. Bautista P.C. Tirle T. Nogueroles L.M. Vento M. Baquero M. Pericás C.C. Oxidative damage of dna as early marker of alzheimer’s disease. Int. J. Mol. Sci. 2019 20 24 6136 10.3390/ijms20246136 31817451
    [Google Scholar]
  203. Monte L.d.S.M. Wands J.R. The AD7c-NTP neuronal thread protein biomarker for detecting Alzheimer’s disease. J. Alzheimers Dis. 2001 3 3 345 353 10.3233/JAD‑2001‑3310 12214056
    [Google Scholar]
  204. Lv S. Zhou X. Li Y. Zhang S. Wang Y. Jia S. Niu X. Wang L. Peng D. the association between plasma α-synuclein (α-syn) protein, urinary alzheimer-associated neuronal thread protein (ad7c-ntp), and apolipoprotein epsilon 4 (apoe ε4) alleles and cognitive decline in 60 patients with alzheimer’s disease compared with 28 age-matched normal individuals. Med. Sci. Monit. 2021 27 e932998 10.12659/MSM.932998 34312362
    [Google Scholar]
  205. Takae K. Hata J. Ohara T. Yoshida D. Shibata M. Mukai N. Hirakawa Y. Kishimoto H. Tsuruya K. Kitazono T. Kiyohara Y. Ninomiya T. Albuminuria increases the risks for both alzheimer disease and vascular dementia in community‐dwelling japanese elderly: The hisayama study. J. Am. Heart Assoc. 2018 7 2 e006693 10.1161/JAHA.117.006693 29353232
    [Google Scholar]
  206. Yang W. Chauhan A. Mehta S. Mehta P. Gu F. Chauhan V. Trichostatin A increases the levels of plasma gelsolin and amyloid beta-protein in a transgenic mouse model of Alzheimer’s disease. Life Sci. 2014 99 1-2 31 36 10.1016/j.lfs.2014.01.064 24486299
    [Google Scholar]
  207. Agbemenyah H.Y. Balboa A.R.C. Burkhardt S. Delalle I. Fischer A. Insulin growth factor binding protein 7 is a novel target to treat dementia. Neurobiol. Dis. 2014 62 135 143 10.1016/j.nbd.2013.09.011 24075854
    [Google Scholar]
  208. Rentsendorj A. Sheyn J. Fuchs D.T. Daley D. Salumbides B.C. Schubloom H.E. Hart N.J. Li S. Hayden E.Y. Teplow D.B. Black K.L. Koronyo Y. Hamaoui K.M. A novel role for osteopontin in macrophage-mediated amyloid-β clearance in Alzheimer’s models. Brain Behav. Immun. 2018 67 163 180 10.1016/j.bbi.2017.08.019 28860067
    [Google Scholar]
  209. Musunuri S. Khoonsari P.E. Mikus M. Increased levels of extracellular microvesicle markers and decreased levels of endocytic/exocytic proteins in the Alzheimer’s disease brain. J. Alzheimers Dis. 2016 54 4 1671 1686 10.3233/JAD‑160271 27636840
    [Google Scholar]
  210. Badhwar A. Haqqani A.S. Biomarker potential of brain‐secreted extracellular vesicles in blood in Alzheimer’s disease. Alzheimers Dement. 2020 12 1 e12001 10.1002/dad2.12001 32211497
    [Google Scholar]
  211. Haar d.v.H.J. Burgmans S. Jansen J.F.A. Osch v.M.J.P. Buchem v.M.A. Muller M. Hofman P.A.M. Verhey F.R.J. Backes W.H. Blood brain barrier leakage in patients with early Alzheimer disease. Radiology 2016 281 2 527 535 10.1148/radiol.2016152244 27243267
    [Google Scholar]
  212. Sadik N. Cruz L. Gurtner A. Extracellular RNAS: A new awareness of old perspectives. Methods Mol. Biol. 2018 1740 1 15 10.1007/978‑1‑4939‑7652‑2_1
    [Google Scholar]
  213. Yan Z. Zhou Z. Wu Q. Chen Z.B. Koo E.H. Zhong S. Presymptomatic increase of an extracellular rna in blood plasma associates with the development of alzheimer’s disease. Curr. Biol. 2020 30 10 1771 1782.e3 10.1016/j.cub.2020.02.084 32220323
    [Google Scholar]
  214. Ebert M.S. Sharp P.A. Roles for microRNAs in conferring robustness to biological processes. Cell 2012 149 3 515 524 10.1016/j.cell.2012.04.005 22541426
    [Google Scholar]
  215. Dong H. Li J. Huang L. Chen X. Li D. Wang T. Hu C. Xu J. Zhang C. Zen K. Xiao S. Yan Q. Wang C. Zhang C.Y. Serum MicroRNA profiles serve as novel biomarkers for the diagnosis of alzheimer’s disease. Dis. Markers 2015 2015 1 11 10.1155/2015/625659 26078483
    [Google Scholar]
  216. Kenny A. McArdle H. Calero M. Rabano A. Madden S. Adamson K. Forster R. Spain E. Prehn J. Henshall D. Medina M. Mateos J.E. Engel T. Elevated plasma microRNA-206 levels predict cognitive decline and progression to dementia from mild cognitive impairment. Biomolecules 2019 9 11 734 10.3390/biom9110734 31766231
    [Google Scholar]
  217. Gratuze M. Leyns C.E.G. Holtzman D.M. New insights into the role of TREM2 in Alzheimer’s disease. Mol. Neurodegener. 2018 13 1 66 10.1186/s13024‑018‑0298‑9 30572908
    [Google Scholar]
  218. Molinuevo J.L. Ayton S. Batrla R. Bednar M.M. Bittner T. Cummings J. Fagan A.M. Hampel H. Mielke M.M. Mikulskis A. O’Bryant S. Scheltens P. Sevigny J. Shaw L.M. Soares H.D. Tong G. Trojanowski J.Q. Zetterberg H. Blennow K. Current state of Alzheimer’s fluid biomarkers. Acta Neuropathol. 2018 136 6 821 853 10.1007/s00401‑018‑1932‑x 30488277
    [Google Scholar]
  219. Calvet S.M. Kleinberger G. Caballero A.M.Á. Brendel M. Rominger A. Alcolea D. Fortea J. Lleó A. Blesa R. Gispert J.D. Valle S.R. Antonell A. Rami L. Molinuevo J.L. Brosseron F. Traschütz A. Heneka M.T. Struyfs H. Engelborghs S. Sleegers K. Broeckhoven V.C. Zetterberg H. Nellgård B. Blennow K. Crispin A. Ewers M. Haass C. sTREM 2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early‐stage Alzheimer’s disease and associate with neuronal injury markers. EMBO Mol. Med. 2016 8 5 466 476 10.15252/emmm.201506123 26941262
    [Google Scholar]
  220. Elahi F.M. Casaletto K.B. Joie L.R. Walters S.M. Harvey D. Wolf A. Edwards L. Contreras R.W. Karydas A. Cobigo Y. Rosen H.J. DeCarli C. Miller B.L. Rabinovici G.D. Kramer J.H. Plasma biomarkers of astrocytic and neuronal dysfunction in early‐ and late‐onset Alzheimer’s disease. Alzheimers Dement. 2020 16 4 681 695 10.1016/j.jalz.2019.09.004 31879236
    [Google Scholar]
  221. Shen X.N. Niu L.D. Wang Y.J. Cao X.P. Liu Q. Tan L. Zhang C. Yu J.T. Inflammatory markers in Alzheimer’s disease and mild cognitive impairment: A meta-analysis and systematic review of 170 studies. J. Neurol. Neurosurg. Psychiatry 2019 90 5 590 598 10.1136/jnnp‑2018‑319148 30630955
    [Google Scholar]
  222. Zhou R. Ji B. Kong Y. Qin L. Ren W. Guan Y. Ni R. PET imaging of neuroinflammation in alzheimer’s disease. Front. Immunol. 2021 12 739130 10.3389/fimmu.2021.739130 34603323
    [Google Scholar]
  223. Buccellato F.R. D’Anca M. Fenoglio C. Scarpini E. Galimberti D. Role of oxidative damage in alzheimer’s disease and neurodegeneration: From pathogenic mechanisms to biomarker discovery. Antioxidants 2021 10 9 1353 10.3390/antiox10091353 34572985
    [Google Scholar]
  224. Calvani R. Picca A. Guerra F. Junior C.H. Bucci C. Marzetti E. Circulating extracellular vesicles: Friends and foes in neurodegeneration. Neural Regen. Res. 2022 17 3 534 542 10.4103/1673‑5374.320972 34380883
    [Google Scholar]
  225. Jia L. Qiu Q. Zhang H. Chu L. Du Y. Zhang J. Zhou C. Liang F. Shi S. Wang S. Qin W. Wang Q. Li F. Wang Q. Li Y. Shen L. Wei Y. Jia J. Concordance between the assessment of Aβ42, T‐tau, and P‐T181‐tau in peripheral blood neuronal‐derived exosomes and cerebrospinal fluid. Alzheimers Dement. 2019 15 8 1071 1080 10.1016/j.jalz.2019.05.002 31422798
    [Google Scholar]
  226. Mikuła E. Recent advancements in electrochemical biosensors for alzheimers disease biomarkers detection. Curr. Med. Chem. 2021 28 20 4049 4073 10.2174/1875533XMTExqMzkj0 33176635
    [Google Scholar]
  227. Gaubert S. Raimondo F. Houot M. Corsi M.C. Naccache L. Sitt D.J. Hermann B. Oudiette D. Gagliardi G. Habert M.O. Dubois B. Fallani V.D.F. Bakardjian H. Epelbaum S. EEG evidence of compensatory mechanisms in preclinical Alzheimer’s disease. Brain 2019 142 7 2096 2112 10.1093/brain/awz150 31211359
    [Google Scholar]
  228. Blennow K. Zetterberg H. The past and the future of alzheimer’s disease fluid biomarkers. J. Alzheimers Dis. 2018 62 3 1125 1140 10.3233/JAD‑170773
    [Google Scholar]
  229. Teunissen C.E. Verberk I.M.W. Thijssen E.H. Vermunt L. Hansson O. Zetterberg H. Flier d.v.W.M. Mielke M.M. Campo d.M. Blood-based biomarkers for Alzheimer’s disease: Towards clinical implementation. Lancet Neurol. 2022 21 1 66 77 10.1016/S1474‑4422(21)00361‑6 34838239
    [Google Scholar]
/content/journals/rrct/10.2174/0115748871331138250114052615
Loading
/content/journals/rrct/10.2174/0115748871331138250114052615
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test