Skip to content
2000
image of MOFs-Derived Carbon-Based Composites Used as Electromagnetic Wave Absorbing Materials - A Bibliometric Review

Abstract

In recent years, Metal-Organic Frameworks (MOFs) derived carbon-based composites used as Electromagnetic Wave Absorbing Materials (EMAMs) have gained attention because of their rich structure and excellent performance. In this review, the development trend of this research field was analyzed from a macro perspective using the method of bibliometrics. 530 related pieces of literature published between 2015 and 2022 were analyzed as samples from the core collection database of Web of Science. Such analysis covers source journals, keywords, references, citation frequencies, authors, institutions, countries, and published years. With the assistance of the CiteSpace software, visualization results are generated. Statistical analysis found that the 530 articles were published in 100 journals. Carbon topped the journals with 60 papers, while ACS Appl. Mater. Interfaces gets the most average per-paper citations of 117.94. The current research primarily revolves around material composition, microstructure design, performance, and action mechanisms. In addition to keywords related to material structure, such as “Core-shell structure” words related to microwave absorbing mechanism, such as “impedance match” and “interfacial polarization” were also used more frequently in these papers. So far, scholars from 20 countries or regions have participated in the study. China is the first country to investigate this topic since 2015 and has maintained an absolutely dominant position in this field. Several research teams have been established depending on their affiliations in China, and in-depth research is continuing. We hope this review will provide an overview of the current state of research and help researchers quickly understand the progress in the field.

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204424372251015110354
2025-11-05
2026-01-02
Loading full text...

Full text loading...

References

  1. Yang L. Wang Y. Lu Z. Cheng R. Wang N. Li Y. Construction of multi-dimensional NiCo/C/CNT/rGO aerogel by MOF derivative for efficient microwave absorption. Carbon 2023 205 411 421 10.1016/j.carbon.2023.01.057
    [Google Scholar]
  2. Wang B.X. Xu C. Duan G. Xu W. Pi F. Review of broadband metamaterial absorbers: From principles, design strategies, and tunable properties to functional applications. Adv. Funct. Mater. 2023 33 14 2213818 10.1002/adfm.202213818
    [Google Scholar]
  3. Wang X. Wen B. Yang X. Construction of core-shell structural nickel@graphite nanoplate functional particles with high electromagnetic shielding effectiveness. Compos., Part B Eng. 2019 173 106904 10.1016/j.compositesb.2019.106904
    [Google Scholar]
  4. Wu X. Wen B. A cauliflower-shaped nickel @ porous calcium silicate core-shell composite: Preparation and enhanced electromagnetic shielding performance. Compos. Sci. Technol. 2020 199 108343 10.1016/j.compscitech.2020.108343
    [Google Scholar]
  5. Jiang C. Wen B. Construction of 1D heterogeneous Co/C@Ag Nws with tunable electromagnetic wave absorption and shielding performance. Small 2023 19 34 2301760 10.1002/smll.202301760 37162496
    [Google Scholar]
  6. Guo Z. Ren P. Yang F. MOF-derived Co/C and MXene co -decorated cellulose-derived hybrid carbon aerogel with a multi-interface architecture toward absorption-dominated ultra-efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2023 15 5 7308 7318 10.1021/acsami.2c22447 36693013
    [Google Scholar]
  7. Bi Y. Ma M. Jiao Z. Enhancing electromagnetic wave absorption performance of one-dimensional C@Co/N-doped C@PPy composite fibers. Carbon 2022 197 152 162 10.1016/j.carbon.2022.05.061
    [Google Scholar]
  8. Ren S. Yu H. Wang L. State of the art and prospects in metal-organic framework-derived microwave absorption materials. Nano-Micro Lett. 2022 14 1 68 10.1007/s40820‑022‑00808‑6 35217977
    [Google Scholar]
  9. Panahi-Sarmad M. Samsami S. Ghaffarkhah A. MOF-based electromagnetic shields multiscale design: Nanoscale chemistry, microscale assembly, and macroscale manufacturing. Adv. Funct. Mater. 2024 34 43 2304473 10.1002/adfm.202304473
    [Google Scholar]
  10. Wen B. Huan C. Liu P. Zhang Y. Resistance gradient polymeric electromagnetic shielding composites: Preparation and characterization. Polym. Compos. 2019 40 5 1842 1849 10.1002/pc.24945
    [Google Scholar]
  11. Gao D. Guo S. Zhou Y. Absorption-dominant, low-reflection multifunctional electromagnetic shielding material derived from hydrolysate of waste leather scraps. ACS Appl. Mater. Interfaces 2022 14 33 38077 38089 10.1021/acsami.2c10787 35971686
    [Google Scholar]
  12. Li Q. Sun Y. Li G. Yang X. Zuo X. Enhancing interfacial and electromagnetic interference shielding properties of carbon fiber composites via the hierarchical assembly of the MWNT/MOF interphase. Langmuir 2022 38 46 14277 14289 10.1021/acs.langmuir.2c02344 36351284
    [Google Scholar]
  13. Zhou Z. Zhu Q. Liu Y. Zhang Y. Jia Z. Wu G. Construction of self-assembly based tunable absorber: Lightweight, hydrophobic and self-cleaning properties. Nano-Micro Lett. 2023 15 1 137 10.1007/s40820‑023‑01108‑3 37245198
    [Google Scholar]
  14. Hao Y. Leng Z. Yu C. Ultra-lightweight hollow bowl-like carbon as microwave absorber owning broad band and low filler loading. Carbon 2023 212 118156 10.1016/j.carbon.2023.118156
    [Google Scholar]
  15. Xu D. Yang Y. Le K. Bifunctional Cu9S5/C octahedral composites for electromagnetic wave absorption and supercapacitor applications. Chem. Eng. J. 2021 417 129350 10.1016/j.cej.2021.129350
    [Google Scholar]
  16. Li S. Ma T. Chai Z. Graphene-based magnetic composite foam with hierarchically porous structure for efficient microwave absorption. Carbon 2023 207 105 115 10.1016/j.carbon.2023.02.066
    [Google Scholar]
  17. Liu P. Zhang G. Xu H. Synergistic dielectric-magnetic enhancement via phase‐evolution engineering and dynamic magnetic resonance. Adv. Funct. Mater. 2023 33 13 2211298 10.1002/adfm.202211298
    [Google Scholar]
  18. Huang M. Wang L. You W. Che R. Single zinc atoms anchored on MOF‐derived N‐doped carbon shell cooperated with magnetic core as an ultrawideband microwave absorber. Small 2021 17 30 2101416 10.1002/smll.202101416 34159720
    [Google Scholar]
  19. Zhao R. Ma T. Zhao S. Rong H. Tian Y. Zhu G. Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water. Chem. Eng. J. 2020 382 122893 10.1016/j.cej.2019.122893
    [Google Scholar]
  20. Lü Y. Wang Y. Li H. MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 2015 7 24 13604 13611 10.1021/acsami.5b03177 26039802
    [Google Scholar]
  21. Zhang Y. Zhang H.B. Wu X. Deng Z. Zhou E. Yu Z.Z. Nanolayered Cobalt@Carbon hybrids derived from metal–organic frameworks for microwave absorption. ACS Appl. Nano Mater. 2019 2 4 2325 2335 10.1021/acsanm.9b00226
    [Google Scholar]
  22. Ren J. Lyu Y. Liu Z. Ahmad M. Zhang Q. Zhang B. Microwave absorption performance evaluation of carbonized derivatives of Fe3O4@MOF-74 with controllable morphologies. ACS Appl. Electron. Mater. 2022 4 11 5221 5233 10.1021/acsaelm.2c00900
    [Google Scholar]
  23. Wu Y. Lan D. Ren J. Zhang S. A mini review of MOFs derived multifunctional absorbents: From perspective of components regulation. Mater. Today Phys. 2023 36 101178 10.1016/j.mtphys.2023.101178
    [Google Scholar]
  24. Chen J. Wang Y. Liu Y. Fabrication of macroporous magnetic carbon fibers via the cooperative etching-electrospinning technology toward ultra-light microwave absorption. Carbon 2023 208 82 91 10.1016/j.carbon.2023.03.043
    [Google Scholar]
  25. Feng W. Wang Y. Chen J. Metal organic framework-derived CoZn alloy/N-doped porous carbon nanocomposites: Tunable surface area and electromagnetic wave absorption properties. J. Mater. Chem. C Mater. Opt. Electron. Devices 2018 6 1 10 18 10.1039/C7TC03784H
    [Google Scholar]
  26. Zhang X. Tian X.L. Qin Y. Conductive metal–organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption. ACS Nano 2023 17 13 12510 12518 10.1021/acsnano.3c02170 37350557
    [Google Scholar]
  27. Huang W. Wang S. Yang X. Temperature induced transformation of Co@C nanoparticle in 3D hierarchical core-shell nanofiber network for enhanced electromagnetic wave adsorption. Carbon 2022 195 44 56 10.1016/j.carbon.2022.04.019
    [Google Scholar]
  28. Wu Y. Tan S. Zhang T. Zhou M. Fang G. Ji G. Alkali and ion exchange co-modulation strategies to design magnetic-dielectric synergistic nano-absorbers for tailoring microwave absorption. Nano Res. 2023 16 7 8522 8532 10.1007/s12274‑023‑5799‑3
    [Google Scholar]
  29. Tao J. Xu L. Jin H. Selective coding dielectric genes based on proton tailoring to improve microwave absorption of MOFs. Adv Powder Mater 2023 2 1 100091 10.1016/j.apmate.2022.100091
    [Google Scholar]
  30. Wang Q. Liu J. Li Y. Lou Z. Li Y. A literature review of MOF derivatives of electromagnetic wave absorbers mainly based on pyrolysis. Int. J. Miner. Metall. Mater. 2023 30 3 446 473 10.1007/s12613‑022‑2562‑9
    [Google Scholar]
  31. Zhang S. Liu X. Jia C. Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics. Nano-Micro Lett. 2023 15 1 204 10.1007/s40820‑023‑01179‑2 37624447
    [Google Scholar]
  32. Jia Z. Zhang X. Gu Z. Wu G. MOF-derived Ni-Co bimetal/porous carbon composites as electromagnetic wave absorber. Adv. Compos. Hybrid Mater. 2023 6 1 28 10.1007/s42114‑022‑00615‑y
    [Google Scholar]
  33. Wang S. Ke X. Zhong S. Bimetallic zeolitic imidazolate frameworks-derived porous carbon-based materials with efficient synergistic microwave absorption properties: The role of calcining temperature. RSC Advances 2017 7 73 46436 46444 10.1039/C7RA08882E
    [Google Scholar]
  34. Yu W. Liu B. Zhao X. Ultralight MOF-derived Ni3S2@N,S-codoped graphene aerogels for high-performance microwave absorption. Nanomaterials 2022 12 4 655 10.3390/nano12040655 35214984
    [Google Scholar]
  35. Shu R. Wu J. Yang X. Fabrication of Co/C composites derived from Co-based metal organic frameworks with broadband and efficient electromagnetic absorption. Compos., Part A Appl. Sci. Manuf. 2023 173 107677 10.1016/j.compositesa.2023.107677
    [Google Scholar]
  36. Jiang C. Wen B. Electromagnetic wave absorption performance and mechanism of Co/C composites derived from different cobalt source ZIF-67: A comparative study. J. Mater. Sci. Mater. Electron. 2022 33 8 5730 5749 10.1007/s10854‑022‑07759‑z
    [Google Scholar]
  37. Huang M. Wang L. Pei K. Multidimension‐controllable synthesis of MOF‐derived Co@N‐doped carbon composite with magnetic‐dielectric synergy toward strong microwave absorption. Small 2020 16 14 2000158 10.1002/smll.202000158 32182407
    [Google Scholar]
  38. Zhu T. Sun Y. Wang Y. A MOF-driven porous iron with high dielectric loss and excellent microwave absorption properties. J. Mater. Sci. Mater. Electron. 2020 31 9 6843 6854 10.1007/s10854‑020‑03244‑7
    [Google Scholar]
  39. Wang K. Chen Y. Tian R. Porous Co–C core–shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces 2018 10 13 11333 11342 10.1021/acsami.8b00965 29533582
    [Google Scholar]
  40. Zeng Q. Wang L. Li X. Double ligand MOF-derived pomegranate-like Ni@C microspheres as high-performance microwave absorber. Appl. Surf. Sci. 2021 538 148051 10.1016/j.apsusc.2020.148051
    [Google Scholar]
  41. Qiu Y. Lin Y. Yang H. Wang L. Wang M. Wen B. Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption. Chem. Eng. J. 2020 383 123207 10.1016/j.cej.2019.123207
    [Google Scholar]
  42. Peng S. Wang S. Hao G. Preparation of magnetic flower-like carbon-matrix composites with efficient electromagnetic wave absorption properties by carbonization of MIL-101(Fe). J. Magn. Magn. Mater. 2019 487 165306 10.1016/j.jmmm.2019.165306
    [Google Scholar]
  43. Yan T. Wang J. Wu Q. Huo S. Duan H. MOF-derived graphitized porous carbon/Fe-Fe3C nanocomposites with broadband and enhanced microwave absorption performance. J. Mater. Sci. Mater. Electron. 2019 30 13 12012 12022 10.1007/s10854‑019‑01558‑9
    [Google Scholar]
  44. Yang Y. Xu D. Lyu L. Synthesis of MOF-derived Fe7S8/C rod-like composites by controlled proportion of carbon for highly efficient electromagnetic wave absorption. Compos., Part A Appl. Sci. Manuf. 2021 142 106246 10.1016/j.compositesa.2020.106246
    [Google Scholar]
  45. Ma J. Liu W. Liang X. Nanoporous TiO2/C composites synthesized from directly pyrolysis of a Ti-based MOFs MIL-125(Ti) for efficient microwave absorption. J. Alloys Compd. 2017 728 138 144 10.1016/j.jallcom.2017.08.274
    [Google Scholar]
  46. Zhang X. Qiao J. Liu C. A MOF-derived ZrO2/C nanocomposite for efficient electromagnetic wave absorption. Inorg. Chem. Front. 2020 7 2 385 393 10.1039/C9QI01259A
    [Google Scholar]
  47. Du X. Zhang L. Guo C. FeCo/graphene nanocomposites for applications as electromagnetic wave-absorbing materials. ACS Appl. Nano Mater. 2022 5 12 18730 18741 10.1021/acsanm.2c04497
    [Google Scholar]
  48. Zhou Y. Zhu L. Wang Y. Yu L. Li X. Rare-Earth metal–organic framework@graphene oxide composites as high-efficiency microwave absorbents. Cryst. Growth Des. 2021 21 5 2668 2679 10.1021/acs.cgd.0c01555
    [Google Scholar]
  49. Zhang X. Tian X. Liu C. MnCo-MOF-74 derived porous MnO/Co/C heterogeneous nanocomposites for high-efficiency electromagnetic wave absorption. Carbon 2022 194 257 266 10.1016/j.carbon.2022.04.001
    [Google Scholar]
  50. Yin P. Wu G. Tang Y. Structure regulation in N-doping biconical carbon frame decorated with CoFe2O4 and (Fe,Ni) for broadband microwave absorption. Chem. Eng. J. 2022 446 136975 10.1016/j.cej.2022.136975
    [Google Scholar]
  51. Hu Q. Yang R. Yang S. Huang W. Zeng Z. Gui X. Metal–organic framework-derived core–shell nanospheres anchored on fe-filled carbon nanotube sponge for strong wideband microwave absorption. ACS Appl. Mater. Interfaces 2022 14 8 10577 10587 10.1021/acsami.1c25019 35188369
    [Google Scholar]
  52. Zhang F. Jia Z. Zhou J. Liu J. Wu G. Yin P. Metal-organic framework-derived carbon nanotubes for broadband electromagnetic wave absorption. Chem. Eng. J. 2022 450 138205 10.1016/j.cej.2022.138205
    [Google Scholar]
  53. Ren Q. Feng T. Song Z. Autogenous and tunable CNTs for enhanced polarization and conduction loss enabling sea urchin-like Co3 ZnC/Co/C composites with excellent microwave absorption performance. ACS Appl. Mater. Interfaces 2022 14 36 41246 41256 10.1021/acsami.2c13064 36045505
    [Google Scholar]
  54. Yi P. Zhang X. Jin L. Regulating pyrolysis strategy to construct CNTs-linked porous cubic Prussian blue analogue derivatives for lightweight and broadband microwave absorption. Chem. Eng. J. 2022 430 132879 10.1016/j.cej.2021.132879
    [Google Scholar]
  55. Zhang F. Yin S. Chen Y. Zheng Q. Wang L. Jiang W. Ligand-directed construction of CNTs-decorated metal carbide/carbon composites for ultra-strong and broad electromagnetic wave absorption. Chem. Eng. J. 2022 433 133586 10.1016/j.cej.2021.133586
    [Google Scholar]
  56. Wang H. Zhao J. Wang Z. Liu P. Bird-nest-like multi-interfacial MXene@SiC NWs@Co/C hybrids with enhanced electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2023 15 3 4580 4590 10.1021/acsami.2c20631 36630693
    [Google Scholar]
  57. Zou Z. Ning M. Lei Z. 0D/1D/2D architectural Co@C/MXene composite for boosting microwave attenuation performance in 2-18 GHz. Carbon 2022 193 182 194 10.1016/j.carbon.2022.03.017
    [Google Scholar]
  58. Xiang Z. Wang X. Zhang X. Self-assembly of nano/microstructured 2D Ti3CNTx MXene-based composites for electromagnetic pollution elimination and Joule energy conversion application. Carbon 2022 189 305 318 10.1016/j.carbon.2021.12.075
    [Google Scholar]
  59. Dai S. Cheng Y. Quan B. Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: A new exploration. Nanoscale 2018 10 15 6945 6953 10.1039/C8NR01244J 29595844
    [Google Scholar]
  60. Quan B. Liang X. Yi H. Thermal conversion of wheat-like metal organic frameworks to achieve MgO/carbon composites with tunable morphology and microwave response. J. Mater. Chem. C Mater. Opt. Electron. Devices 2018 6 43 11659 11665 10.1039/C8TC03628D
    [Google Scholar]
  61. Choi E. Lee J. Kim Y.J. Enhanced stability of Ti3C2Tx MXene enabled by continuous ZIF-8 coating. Carbon 2022 191 593 599 10.1016/j.carbon.2022.02.036
    [Google Scholar]
  62. Wang M. Zhou P. Feng T. Ni-MOF/Ti3C2Tx derived multidimensional hierarchical Ni/TiO2/C nanocomposites with lightweight and efficient microwave absorption. Ceram. Int. 2022 48 16 22681 22690 10.1016/j.ceramint.2022.03.154
    [Google Scholar]
  63. Zhang X. Cheng J. Xiang Z. Cai L. Lu W. A hierarchical Co@ mesoporous C/macroporous C sheet composite derived from bimetallic MOF and oroxylum indicum for enhanced microwave absorption. Carbon 2022 187 477 487 10.1016/j.carbon.2021.11.044
    [Google Scholar]
  64. Ma X. Pan J. Guo H. Ultrathin wood‐derived conductive carbon composite film for electromagnetic shielding and electric heating management. Adv. Funct. Mater. 2023 33 16 2213431 10.1002/adfm.202213431
    [Google Scholar]
  65. Di X. Wang Y. Lu Z. Cheng R. Yang L. Wu X. Heterostructure design of Ni/C/porous carbon nanosheet composite for enhancing the electromagnetic wave absorption. Carbon 2021 179 566 578 10.1016/j.carbon.2021.04.050
    [Google Scholar]
  66. Zhou Y. Zhou W. Ni C. Yan S. Yu L. Li X. “Tree blossom” Ni/NC/C composites as high-efficiency microwave absorbents. Chem. Eng. J. 2022 430 132621 10.1016/j.cej.2021.132621
    [Google Scholar]
  67. Luo J. Li X. Yan W. Shu P. Mei J. RGO supported bimetallic MOFs-derived Co/MnO/porous carbon composite toward broadband electromagnetic wave absorption. Carbon 2023 205 552 561 10.1016/j.carbon.2023.01.056
    [Google Scholar]
  68. Liu L. Wen B. A bead-string Co/C@BNNT nanocomposite: Preparation and tunable electromagnetic wave absorption performance. CrystEngComm 2023 25 11 1657 1668 10.1039/D2CE01680J
    [Google Scholar]
  69. Cao K. Yang X. Zhao R. Xue W. Fabrication of an ultralight Ni-MOF-rGO aerogel with both dielectric and magnetic performances for enhanced microwave absorption: Microspheres with hollow structure grow onto the GO nanosheets. ACS Appl. Mater. Interfaces 2023 15 7 9685 9696 10.1021/acsami.2c22935 36759507
    [Google Scholar]
  70. Lin J. Wu Q. Qiao J. A review on composite strategy of MOF derivatives for improving electromagnetic wave absorption. iScience 2023 26 7 107132 10.1016/j.isci.2023.107132 37456858
    [Google Scholar]
  71. Li Q. Zhao Y. Li X. MOF induces 2D GO to assemble into 3D accordion‐like composites for tunable and optimized microwave absorption performance. Small 2020 16 42 2003905 10.1002/smll.202003905 32996264
    [Google Scholar]
  72. Gao Z. Yang K. Zhao Z. Design principles in MOF-derived electromagnetic wave absorption materials: Review and perspective. Int. J. Miner. Metall. Mater. 2023 30 3 405 427 10.1007/s12613‑022‑2555‑8
    [Google Scholar]
  73. Liu G. Tu J. Wu C. High-yield two-dimensional metal-organic framework derivatives for wideband electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2021 13 17 20459 20466 10.1021/acsami.1c00281 33890473
    [Google Scholar]
  74. Miao P. Chen J. Chen J. Kong J. Chen K.J. Review and perspective of tailorable metal‐organic framework for enhancing microwave absorption. Chin. J. Chem. 2023 41 9 1080 1098 10.1002/cjoc.202200691
    [Google Scholar]
  75. Aria M. Cuccurullo C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetrics 2017 11 4 959 975 10.1016/j.joi.2017.08.007
    [Google Scholar]
  76. Chen C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006 57 3 359 377 10.1002/asi.20317
    [Google Scholar]
  77. Guo R. Hu D. Liu D. Jiang Q. Qiu J. MXene nanomaterials in biomedicine: A bibliometric perspective. Front. Bioeng. Biotechnol. 2023 11 1184275 10.3389/fbioe.2023.1184275 37152656
    [Google Scholar]
  78. Hou J. Yang X. Chen C. Emerging trends and new developments in information science: A document co-citation analysis (2009-2016). Scientometrics 2018 115 2 869 892 10.1007/s11192‑018‑2695‑9
    [Google Scholar]
  79. Chen C. Dubin R. Kim M.C. Emerging trends and new developments in regenerative medicine: A scientometric update (2000 – 2014). Expert Opin. Biol. Ther. 2014 14 9 1295 1317 10.1517/14712598.2014.920813 25077605
    [Google Scholar]
  80. Zhou P. Wang M. Song Z. Guan Y. Wang L. Zhang Q. Coral-like carbon-based composite derived from layered structure Co-MOF-71 with outstanding impedance matching and tunable microwave absorption performance. J. Mater. Sci. Technol. 2022 108 10 17 10.1016/j.jmst.2021.07.047
    [Google Scholar]
  81. Qin L. Liu S. Qin S. Liao L. He M. Yu J. MOF derived porous Ni/Co@C nanocomposite as electromagnetic wave absorber with optimized impedance matching. Compos Commun 2022 33 101196 10.1016/j.coco.2022.101196
    [Google Scholar]
  82. Luo J. Hao G. Xiao L. Hu Y. Jiang W. Boosting electromagnetic wave absorption properties via the sulfidation strategy of Fe/Fe3C/N-doped carbon nanorods hybrids. Ceram. Int. 2022 48 8 11346 11355 10.1016/j.ceramint.2021.12.358
    [Google Scholar]
  83. He P. Ma W. Xu J. Induced crystallization‐controllable nanoarchitectonics of 3D‐ordered hierarchical macroporous Co@N‐doped carbon frameworks for enhanced microwave absorption. Small 2023 19 1 2204649 10.1002/smll.202204649 36354192
    [Google Scholar]
  84. Zheng J He W Hang T Flower-like bimetalorganic framework derived composites with tunable structures for high-efficiency electromagnetic wave absorption. J Colloid Interface Sci 2022 628 Pt B 261 70 10.1016/j.jcis.2022.08.082 35998452
    [Google Scholar]
  85. Li Z. Han X. Ma Y. MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustain. Chem.& Eng. 2018 6 7 8904 8913 10.1021/acssuschemeng.8b01270
    [Google Scholar]
  86. Wu H. Huang F. Wang B. Decorating CoNi alloy-encapsulated carbon nanotube hollow nanocages to enable dielectric loss for highly efficient microwave absorption. ACS Appl. Nano Mater. 2022 5 9 13187 13197 10.1021/acsanm.2c02928
    [Google Scholar]
  87. Liu Z. Chen J. Que M. 2D Ti3C2T MXene/MOFs composites derived CoNi bimetallic nanoparticles for enhanced microwave absorption. Chem. Eng. J. 2022 450 138442 10.1016/j.cej.2022.138442
    [Google Scholar]
  88. Liang X. Wang C. Yu M. Yao Z. Zhang Y. Fe-MOFs derived porous Fe4N@carbon composites with excellent broadband electromagnetic wave absorption properties. J. Alloys Compd. 2022 910 164844 10.1016/j.jallcom.2022.164844
    [Google Scholar]
  89. Liang X. Wang C. Yao Z. A facile synthesis of Fe/C composite derived from Fe-metal organic frameworks: Electromagnetic wave absorption with thin thickness. J. Alloys Compd. 2022 922 166299 10.1016/j.jallcom.2022.166299
    [Google Scholar]
  90. Yang K. Cui Y. Wan L. Zhang Q. Zhang B. MOF-derived magnetic-dielectric balanced Co@ZnO@N-doped carbon composite materials for strong microwave absorption. Carbon 2022 190 366 375 10.1016/j.carbon.2022.01.032
    [Google Scholar]
  91. Miao P. Yu Z. Chen W. Synergetic dielectric and magnetic losses of a core-shell Co/MnO/C nanocomplex toward highly efficient microwave absorption. Inorg. Chem. 2022 61 3 1787 1796 10.1021/acs.inorgchem.1c03749 34991312
    [Google Scholar]
  92. Jin L. Yi P. Wan L. Thickness-controllable synthesis of MOF-derived Ni@N-doped carbon hexagonal nanoflakes with dielectric-magnetic synergy toward wideband electromagnetic wave absorption. Chem. Eng. J. 2022 427 130940 10.1016/j.cej.2021.130940
    [Google Scholar]
  93. Shen Z. Yang H. Liu C. Guo E. Huang S. Xiong Z. Polymetallic MOF-derived corn-like composites for magnetic-dielectric balance to facilitate broadband electromagnetic wave absorption. Carbon 2021 185 464 476 10.1016/j.carbon.2021.09.041
    [Google Scholar]
  94. Wang L. Huang M. Qian X. Confined magnetic‐dielectric balance boosted electromagnetic wave absorption. Small 2021 17 30 2100970 10.1002/smll.202100970 34145736
    [Google Scholar]
  95. Xiang Z. Song Y. Xiong J. Enhanced electromagnetic wave absorption of nanoporous Fe3O4@ carbon composites derived from metal-organic frameworks. Carbon 2019 142 20 31 10.1016/j.carbon.2018.10.014
    [Google Scholar]
  96. Wang L. Du Z. Bai X. Lin Y. Constructing macroporous C/Co composites with tunable interfacial polarization toward ultra-broadband microwave absorption. J. Colloid Interface Sci. 2021 591 76 84 10.1016/j.jcis.2021.01.090 33592527
    [Google Scholar]
  97. Zhao Z. Kou K. Zhang L. Wu H. Optimal particle distribution induced interfacial polarization in bouquet-like hierarchical composites for electromagnetic wave absorption. Carbon 2022 186 323 332 10.1016/j.carbon.2021.10.052
    [Google Scholar]
  98. Tian H. Qiao J. Yang Y. ZIF-67-derived Co/C embedded boron carbonitride nanotubes for efficient electromagnetic wave absorption. Chem. Eng. J. 2022 450 138011 10.1016/j.cej.2022.138011
    [Google Scholar]
  99. Qu H. Zheng P. Wang T. MOF-derived multi-interface carbon-based composites with enhanced polarization loss and efficient microwave absorption. Int. J. Smart Nano Mater. 2022 13 3 465 480 10.1080/19475411.2022.2095456
    [Google Scholar]
  100. Wang Y. Di X. Lu Z. Cheng R. Wu X. Gao P. Controllable heterogeneous interfaces of cobalt/carbon nanosheets/rGO composite derived from metal-organic frameworks for high-efficiency microwave attenuation. Carbon 2022 187 404 414 10.1016/j.carbon.2021.11.027
    [Google Scholar]
  101. Guo L. An Q.D. Xiao Z.Y. N/P-codoped 3D carbonaceous framework loaded Mo-based particles as versatile electromagnetic wave absorber. J. Alloys Compd. 2020 812 152167 10.1016/j.jallcom.2019.152167
    [Google Scholar]
  102. Wang H. Bi H. Liang D. Absorption-dominated electromagnetic shielding and excellent thermal conduction properties of poly(vinylidene fluoride)/] SnBi58/Co-C composites with layered structure. J. Alloys Compd. 2022 921 165998 10.1016/j.jallcom.2022.165998
    [Google Scholar]
  103. Shi C. Fu H. Nie J. Yao S. Preparation of Co/C composites derived from Zn/Co-ZIFs and their microwave absorption properties. J. Electron. Mater. 2023 52 2 1375 1384 10.1007/s11664‑022‑10100‑3
    [Google Scholar]
  104. Li X. Cui E. Xiang Z. Fe@NPC@CF nanocomposites derived from Fe-MOFs/biomass cotton for lightweight and high-performance electromagnetic wave absorption applications. J. Alloys Compd. 2020 819 152952 10.1016/j.jallcom.2019.152952
    [Google Scholar]
  105. Wu Q. Jin H. Chen W. Graphitized nitrogen-doped porous carbon composites derived from ZIF-8 as efficient microwave absorption materials. Mater. Res. Express 2018 5 6 065602 10.1088/2053‑1591/aac67e
    [Google Scholar]
  106. Wang Y. Zhang W. Wu X. Luo C. Liang T. Yan G. Metal-organic framework nanoparticles decorated with graphene: A high-performance electromagnetic wave absorber. J. Magn. Magn. Mater. 2016 416 226 230 10.1016/j.jmmm.2016.04.093
    [Google Scholar]
  107. Wu Q. Wang J. Jin H. MOF-derived rambutan-like nanoporous carbon/nanotubes/Co composites with efficient microwave absorption property. Mater. Lett. 2019 244 138 141 10.1016/j.matlet.2019.02.023
    [Google Scholar]
  108. Liu P. Gao S. Huang W. Ren J. Yu D. He W. Hybrid zeolite imidazolate framework derived N-implanted carbon polyhedrons with tunable heterogeneous interfaces for strong wideband microwave attenuation. Carbon 2020 159 83 93 10.1016/j.carbon.2019.12.021
    [Google Scholar]
  109. Miao P. Cheng K. Li H. Poly(dimethylsilylene)-diacetylene-guided ZIF-based heterostructures for full Ku-band electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2019 11 19 17706 17713 10.1021/acsami.9b03944 31013047
    [Google Scholar]
  110. Liu Z. Yuan J. Li K. Xiong K. Jin S. Wang P. Enhanced electromagnetic wave absorption performance of Co0.5Zn0.5 ZIF-derived binary Co/ZnO and RGO composites. J. Electron. Mater. 2018 47 8 4910 4918 10.1007/s11664‑018‑6358‑7
    [Google Scholar]
  111. Fei Y. Liang M. Zhou T. Chen Y. Zou H. Unique carbon nanofiber@ Co/C aerogel derived bacterial cellulose embedded zeolitic imidazolate frameworks for high-performance electromagnetic interference shielding. Carbon 2020 167 575 584 10.1016/j.carbon.2020.06.013
    [Google Scholar]
  112. Wang L. Bai X. Wen B. Du Z. Lin Y. Honeycomb-like Co/C composites derived from hierarchically nanoporous ZIF-67 as a lightweight and highly efficient microwave absorber. Compos., Part B Eng. 2019 166 464 471 10.1016/j.compositesb.2019.02.054
    [Google Scholar]
  113. Wang X. Guan Y. Zhang R. Facile synthesis of cobalt nanoparticles embedded in a rod-like porous carbon matrix with excellent electromagnetic wave absorption performance. Ceram. Int. 2021 47 1 643 653 10.1016/j.ceramint.2020.08.172
    [Google Scholar]
  114. Song S. Zhang A. Chen L. A novel multi-cavity structured MOF derivative/porous graphene hybrid for high performance microwave absorption. Carbon 2021 176 279 289 10.1016/j.carbon.2021.01.138
    [Google Scholar]
  115. Xian G. Zhang X. Zhu Z. Rhombic dodecahedron Ce–Co/C composites with porous hollow structure for efficient electromagnetic wave absorption. J. Alloys Compd. 2022 919 165866 10.1016/j.jallcom.2022.165866
    [Google Scholar]
  116. Wei S. Chen T. Wang Q. Shi Z. Li W. Chen S. Metal-organic framework derived hollow CoFe@C composites by the tunable chemical composition for efficient microwave absorption. J. Colloid Interface Sci. 2021 593 370 379 10.1016/j.jcis.2021.02.120 33744545
    [Google Scholar]
  117. Xiang Z. Shi Y. Zhu X. Cai L. Lu W. Metal-organic frameworks derived porous hollow Co/C microcubes with improved synergistic effect for high-efficiency microwave absorption. J. Alloys Compd. 2021 887 161413 10.1016/j.jallcom.2021.161413
    [Google Scholar]
  118. Peng C. Zhang Y. Zhang B. MOF-derived jujube pit shaped C/Co composites with hierarchical structure for electromagnetic absorption. J. Alloys Compd. 2020 826 154203 10.1016/j.jallcom.2020.154203
    [Google Scholar]
  119. Wang B. Li S. Huang F. Construction of multiple electron transfer paths in 1D core-shell hetetrostructures with MXene as interlayer enabling efficient microwave absorption. Carbon 2022 187 56 66 10.1016/j.carbon.2021.10.080
    [Google Scholar]
  120. Zhu H. Jiao Q. Fu R. Cu/NC@Co/NC composites derived from core-shell Cu-MOF@Co-MOF and their electromagnetic wave absorption properties. J. Colloid Interface Sci. 2022 613 182 193 10.1016/j.jcis.2021.11.166 35033764
    [Google Scholar]
  121. Yu R. Xia Y. Pei X. Micro-flower like Core-shell structured ZnCo@C@1T-2H-MoS 2 composites for broadband electromagnetic wave absorption and photothermal performance. J. Colloid Interface Sci. 2022 622 261 271 10.1016/j.jcis.2022.01.179 35512590
    [Google Scholar]
  122. Wu X. Ma W. Xu J. Hierarchical multi-core–shell CoNi@Graphite Carbon@Carbon nanoboxes for highly efficient broadband microwave absorption. ACS Appl. Nano Mater. 2022 5 5 7300 7311 10.1021/acsanm.2c01215
    [Google Scholar]
  123. Qiu H. Zhu X. Chen P. Chen Y. Chen G. Min W. Construction of core-shell structured ZnO/C@PPy composite as high-performance dielectric electromagnetic wave absorber. J. Magn. Magn. Mater. 2022 543 168604 10.1016/j.jmmm.2021.168604
    [Google Scholar]
  124. Chen C. Hu Z. Liu S. Tseng H. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opin. Biol. Ther. 2012 12 5 593 608 10.1517/14712598.2012.674507 22443895
    [Google Scholar]
  125. Zhang F. Chen Y. Ren Y. Zheng Q. Wang L. Jiang W. Anionic MOF derived Bimetallic NixCoy@Nano-porous carbon composites toward strong and efficient electromagnetic wave absorption. J. Materiom 2022 8 4 852 862 10.1016/j.jmat.2022.01.002
    [Google Scholar]
  126. Ruan W. Mu C. Wang B. Metal–organic framework derived cobalt phosphosulfide with ultrahigh microwave absorption properties. Nanotechnology 2018 29 40 405703 10.1088/1361‑6528/aad39b 30010614
    [Google Scholar]
  127. Sun X. Lv X. Sui M. Weng X. Li X. Wang J. Decorating MOF-derived nanoporous Co/C in chain-like polypyrrole (PPy) aerogel: A lightweight material with excellent electromagnetic absorption. Materials 2018 11 5 781 10.3390/ma11050781 29751650
    [Google Scholar]
  128. Liu D. Qiang R. Du Y. Wang Y. Tian C. Han X. Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption. J. Colloid Interface Sci. 2018 514 10 20 10.1016/j.jcis.2017.12.013 29227802
    [Google Scholar]
  129. Liu W. Liu J. Yang Z. Ji G. Extended working frequency of ferrites by synergistic attenuation through a controllable carbothermal route based on prussian blue shell. ACS Appl. Mater. Interfaces 2018 10 34 28887 28897 10.1021/acsami.8b09682 30088411
    [Google Scholar]
  130. Peng K. Wang R. Chen H. Prussian blue derived Fe/C anchoring on multiwalled carbon nanotubes forming chain-like efficient electromagnetic wave absorbent. J. Electron. Mater. 2020 49 11 6631 6642 10.1007/s11664‑020‑08402‑5
    [Google Scholar]
  131. Lu S. Meng Y. Wang H. Great enhancement of electromagnetic wave absorption of MWCNTs@] carbonaceous CoO composites derived from MWCNTs-interconnected zeolitic imidazole framework. Appl. Surf. Sci. 2019 481 99 107 10.1016/j.apsusc.2019.03.018
    [Google Scholar]
  132. ur Rehman S Liu J Fang Z Heterostructured TiO2/C/Co from ZIF-67 frameworks for microwaveabsorbing nanomaterials. ACS Appl Nano Mater 2019 2 7 4451 61 10.1021/acsanm.9b00841
    [Google Scholar]
  133. Wang H. Li N. Hu Z. Bennett T.D. Zhao X. Ching W.Y. Structural, electronic, and dielectric properties of a large random network model of amorphous zeolitic imidazolate frameworks and its analogues. J. Am. Ceram. Soc. 2019 102 8 4602 4611 10.1111/jace.16308
    [Google Scholar]
  134. Shu R. Wu Y. Li W. Fabrication of ferroferric oxide-carbon/reduced graphene oxide nanocomposites derived from Fe-based metal-organic frameworks for microwave absorption. Compos. Sci. Technol. 2020 196 108240 10.1016/j.compscitech.2020.108240
    [Google Scholar]
  135. Zhang X. Xian G. Wang J. Evolution of hollow dodecahedron carbon coated FeCo with enhance of electromagnetic properties. Adv. Powder Technol. 2022 33 12 103854 10.1016/j.apt.2022.103854
    [Google Scholar]
  136. Shu R. Li W. Wu Y. Zhang J. Zhang G. Zheng M. Fabrication of nitrogen-doped cobalt oxide/cobalt/] carbon nanocomposites derived from heterobimetallic zeolitic imidazolate frameworks with superior microwave absorption properties. Compos., Part B Eng. 2019 178 107518 10.1016/j.compositesb.2019.107518
    [Google Scholar]
  137. Shu R. Wu Y. Zhang J. Wan Z. Li X. Facile synthesis of nitrogen-doped cobalt/cobalt oxide/carbon/reduced graphene oxide nanocomposites for electromagnetic wave absorption. Compos., Part B Eng. 2020 193 108027 10.1016/j.compositesb.2020.108027
    [Google Scholar]
  138. Li X. Shu R. Wu Y. Zhang J. Wan Z. Fabrication of nitrogen-doped reduced graphene oxide/cobalt ferrite hybrid nanocomposites as broadband electromagnetic wave absorbers in both X and Ku bands. Synth. Met. 2021 271 116621 10.1016/j.synthmet.2020.116621
    [Google Scholar]
  139. Liu P. Gao S. Wang Y. Zhou F. Huang Y. Luo J. Metal-organic polymer coordination materials derived Co/N-doped porous carbon composites for frequency-selective microwave absorption. Compos., Part B Eng. 2020 202 108406 10.1016/j.compositesb.2020.108406
    [Google Scholar]
  140. Liu P. Zhu C. Gao S. Guan C. Huang Y. He W. N-doped porous carbon nanoplates embedded with CoS2 vertically anchored on carbon cloths for flexible and ultrahigh microwave absorption. Carbon 2020 163 348 359 10.1016/j.carbon.2020.03.041
    [Google Scholar]
  141. Song G. Yang K. Gai L. ZIF-67/CMC-derived 3D N-doped hierarchical porous carbon with in-situ encapsulated bimetallic sulfide and Ni NPs for synergistic microwave absorption. Compos., Part A Appl. Sci. Manuf. 2021 149 106584 10.1016/j.compositesa.2021.106584
    [Google Scholar]
  142. Liu P. Gao S. Wang Y. Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption. Carbon 2020 170 503 516 10.1016/j.carbon.2020.08.043
    [Google Scholar]
  143. Chen F. Luo H. Cheng Y. Nickel/Nickel phosphide composite embedded in N-doped carbon with tunable electromagnetic properties toward high-efficiency microwave absorption. Compos., Part A Appl. Sci. Manuf. 2021 140 106141 10.1016/j.compositesa.2020.106141
    [Google Scholar]
  144. Wu N. Zhao B. Liu J. MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv. Compos. Hybrid Mater. 2021 4 3 707 715 10.1007/s42114‑021‑00307‑z
    [Google Scholar]
  145. Zhu L. Liu N. Jiang X. Yu L. Li X. Four novel 3D RE-MOFs based on maleic hydrazide: Syntheses, structural diversity, efficient electromagnetic wave absorption and antibacterial activity properties. Inorg. Chim. Acta 2020 501 119291 10.1016/j.ica.2019.119291
    [Google Scholar]
  146. Zhu L. Zhang Z. Jiang X. Yu L. Li X. The syntheses, efficient electromagnetic wave absorption and antibacterial activity properties of novel 3D Ln-MOFs based on maleic hydrazide. J. Mol. Struct. 2020 1208 127826 10.1016/j.molstruc.2020.127826
    [Google Scholar]
  147. Kang S. Zhang W. Hu Z. Yu J. Wang Y. Zhu J. Porous core-shell zeolitic imidazolate framework-derived Co/NPC@ZnO-decorated reduced graphene oxide for lightweight and broadband electromagnetic wave absorber. J. Alloys Compd. 2020 818 152932 10.1016/j.jallcom.2019.152932
    [Google Scholar]
  148. Qiu H. Zhu X. Chen P. Magnetic dodecahedral CoC-decorated reduced graphene oxide as excellent electromagnetic wave absorber. J. Electron. Mater. 2020 49 2 1204 1214 10.1007/s11664‑019‑07837‑9
    [Google Scholar]
  149. Wang Y. Di X. Wu X. Li X. MOF-derived nanoporous carbon/Co/Co3O4/CNTs/RGO composite with hierarchical structure as a high-efficiency electromagnetic wave absorber. J. Alloys Compd. 2020 846 156215 10.1016/j.jallcom.2020.156215
    [Google Scholar]
  150. Liu W. Duan P.T. Mei C. Melamine-induced formation of carbon nanotubes assembly on metal-organic framework-derived Co/C composites for lightweight and broadband microwave absorption. Dalton Trans. 2021 50 18 10.1039/D1DT00655J
    [Google Scholar]
  151. Qiu Y. Wen B. Yang H. Lin Y. Cheng Y. Jin. MOFs derived Co@C@MnO nanorods with enhanced interfacial polarization for boosting the electromagnetic wave absorption. J. Colloid Interface Sci. 2021 602 242 250 10.1016/j.jcis.2021.06.006 34119761
    [Google Scholar]
  152. Yao Z. Liu F. Xu S. Facile synthesis of La2O3/Co@N-doped carbon nanotubes via Prussian blue analogues toward strong microwave absorption. Carbon 2022 196 763 773 10.1016/j.carbon.2022.05.041
    [Google Scholar]
  153. Guo S. Bao Y. Li Y. Guan H. Lei D. Zhao T. Structure-controlled Ni@N-doped porous carbon/carbon nanotube nanocomposites derived from metal-organic frameworks with excellent microwave absorption performance. J. Alloys Compd. 2022 897 162737 10.1016/j.jallcom.2021.162737
    [Google Scholar]
  154. Wang L. Peng H. Xie W. Microwave pyrolysis-engineered MOFs derivatives for efficient preferential CO oxidation in H2-rich stream. Chem. Eng. Sci. 2022 256 117675 10.1016/j.ces.2022.117675
    [Google Scholar]
  155. Zhang X. Jia Z. Zhang F. MOF-derived NiFe2S4/Porous carbon composites as electromagnetic wave absorber. J. Colloid Interface Sci. 2022 610 610 620 10.1016/j.jcis.2021.11.110 34848054
    [Google Scholar]
  156. Yu Y. Fang Y. Hu Q. Shang X. Tang C. Meng F. Hollow MOF-derived CoNi/C composites as effective electromagnetic absorbers in the X-band and Ku-band. J. Mater. Chem. C Mater. Opt. Electron. Devices 2022 10 3 983 993 10.1039/D1TC04645D
    [Google Scholar]
  157. Gao S. Zhang G. Wang Y. Han X. Huang Y. Liu P. MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption. J. Mater. Sci. Technol. 2021 88 56 65 10.1016/j.jmst.2021.02.011
    [Google Scholar]
  158. Cui Y. Liu Z. Li X. MOF-derived yolk-shell Co@ZnO/Ni@NC nanocage: Structure control and electromagnetic wave absorption performance. J. Colloid Interface Sci. 2021 600 99 110 10.1016/j.jcis.2021.05.015 34010775
    [Google Scholar]
  159. Wu F. Wan L. Li Q. Zhang Q. Zhang B. Ternary assembled MOF-derived composite: Anisotropic epitaxial growth and microwave absorption. Compos., Part B Eng. 2022 236 109839 10.1016/j.compositesb.2022.109839
    [Google Scholar]
  160. Liu W. Liu L. Ji G. Composition design and structural characterization of mof-derived composites with controllable electromagnetic properties. ACS Sustain. Chem.& Eng. 2017 5 9 7961 7971 10.1021/acssuschemeng.7b01514
    [Google Scholar]
  161. Yuan J. Liu Q. Li S. Metal organic framework (MOF)-derived carbonaceous Co3O4/Co microframes anchored on RGO with enhanced electromagnetic wave absorption performances. Synth. Met. 2017 228 32 40 10.1016/j.synthmet.2017.03.020
    [Google Scholar]
  162. Zhang X. Fan Y. Wang J. Enhanced microwave absorption performance of nitrogen-doped porous carbon dodecahedrons composite embedded with ceric dioxide. Adv. Powder Technol. 2022 33 4 103527 10.1016/j.apt.2022.103527
    [Google Scholar]
  163. Green M. Liu Z. Xiang P. Ferric metal-organic framework for microwave absorption. Mater. Today Chem. 2018 9 140 148 10.1016/j.mtchem.2018.06.003
    [Google Scholar]
  164. Wang Y. Li C. Han X. Ultrasmall Mo 2 C nanoparticle-decorated carbon polyhedrons for enhanced microwave absorption. ACS Appl. Nano Mater. 2018 1 9 5366 5376 10.1021/acsanm.8b01479
    [Google Scholar]
  165. Liu W. Tan S. Yang Z. Ji G. Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces 2018 10 37 31610 31622 10.1021/acsami.8b10685 30156105
    [Google Scholar]
  166. Bai H. Yin P. Zhang L. Sun X. Dai J. Influence of pyrolysis temperature on the low-frequency microwave absorption properties of carbon encapsulated nickel/nickel oxide composites. Appl. Phys., A Mater. Sci. Process. 2021 127 11 875 10.1007/s00339‑021‑05032‑4
    [Google Scholar]
  167. Zhang L. Yin P. Wang J. Feng X. Dai J. Low-frequency microwave absorption of MOF-derived Co/] CoO/SrCO3@C composites. Mater. Chem. Phys. 2021 264 124457 10.1016/j.matchemphys.2021.124457
    [Google Scholar]
  168. Zhou J. Guo F. Luo J. Designed 3D heterostructure with 0D/1D/2D hierarchy for low-frequency microwave absorption in the S-band. J. Mater. Chem. C Mater. Opt. Electron. Devices 2022 10 4 1470 1478 10.1039/D1TC04881C
    [Google Scholar]
  169. Feng W. Wang Y. Zou Y. Chen J. Jia D. Zhou Y. ZnO@N-doped porous carbon/Co3ZnC core-shell heterostructures with enhanced electromagnetic wave attenuation ability. Chem. Eng. J. 2018 342 364 371 10.1016/j.cej.2018.02.078
    [Google Scholar]
  170. Liao Q. He M. Zhou Y. Rational construction of Ti3C2Tx/Co-MOF-derived laminated Co/TiO2-C hybrids for enhanced electromagnetic wave absorption. Langmuir 2018 34 51 15854 15863 10.1021/acs.langmuir.8b03238 30508484
    [Google Scholar]
  171. Liu X. Huang Y. Zhao X. Yan J. Zong M. Flexible N-doped carbon fibers decorated with Cu/Cu2O particles for excellent electromagnetic wave absorption. J. Colloid Interface Sci. 2022 616 347 359 10.1016/j.jcis.2022.02.062 35219200
    [Google Scholar]
  172. Zhao H. Han X. Li Z. Reduced graphene oxide decorated with carbon nanopolyhedrons as an efficient and lightweight microwave absorber. J. Colloid Interface Sci. 2018 528 174 183 10.1016/j.jcis.2018.05.046 29852347
    [Google Scholar]
  173. Wang H.Y. Sun X. Wang G.S.A. MXene-modulated 3D crosslinking network of hierarchical flower-like MOF derivatives towards ultra-efficient microwave absorption properties. J. Mater. Chem. A Mater. Energy Sustain. 2021 9 43 24571 24581 10.1039/D1TA06505J
    [Google Scholar]
  174. Pan J. Xia W. Sun X. Improvement of interfacial polarization and impedance matching for two-dimensional leaf-like bimetallic (Co, Zn) doped porous carbon nanocomposites with broadband microwave absorption. Appl. Surf. Sci. 2020 512 144894 10.1016/j.apsusc.2019.144894
    [Google Scholar]
  175. Gao Z. Lan D. Zhang L. Wu H. Simultaneous manipulation of interfacial and defects polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption. Adv. Funct. Mater. 2021 31 50 2106677 10.1002/adfm.202106677
    [Google Scholar]
  176. Liang X. Quan B. Sun Y. Multiple interfaces structure derived from metal-organic frameworks for excellent electromagnetic wave absorption. Part. Part. Syst. Charact. 2017 34 5 1700006 10.1002/ppsc.201700006
    [Google Scholar]
  177. Heng L. Zhang Z. Chen X. Fe/nanoporous carbon hybrid derived from metal–organic framework for highly effective microwave absorption. Appl. Organomet. Chem. 2019 33 8 e4991 10.1002/aoc.4991
    [Google Scholar]
  178. Kong M. Liu X. Jia Z. Wang B. Wu X. Wu G. Porous magnetic carbon CoFe alloys@ZnO@C composites based on Zn/Co-based bimetallic MOF with efficient electromagnetic wave absorption. J. Colloid Interface Sci. 2021 604 39 51 10.1016/j.jcis.2021.07.003 34261018
    [Google Scholar]
  179. Lei L. Yao Z. Zhou J. Hydrangea-like Ni/NiO/C composites derived from metal-organic frameworks with superior microwave absorption. Carbon 2021 173 69 79 10.1016/j.carbon.2020.10.093
    [Google Scholar]
  180. Li L. Li G. Ouyang W. Bimetallic MOFs derived FeM(II)-alloy@C composites with high-performance electromagnetic wave absorption. Chem. Eng. J. 2021 420 127609 10.1016/j.cej.2020.127609
    [Google Scholar]
  181. Li X. Wang Z. Xiang Z. Biconical prisms Ni@C composites derived from metal-organic frameworks with an enhanced electromagnetic wave absorption. Carbon 2021 184 115 126 10.1016/j.carbon.2021.08.025
    [Google Scholar]
  182. Liu G. Liu X. Song Z. Hollow double-shell structured Void@SiO2@Co-C composite for broadband electromagnetic wave absorption. Chem. Eng. J. 2021 417 128093 10.1016/j.cej.2020.128093
    [Google Scholar]
  183. Zeng X. Wu Z. Nie T. Metal/N-doped carbon nanoparticles derived from metal–organic frameworks for electromagnetic wave absorption. ACS Appl. Nano Mater. 2022 5 8 11474 11483 10.1021/acsanm.2c02513
    [Google Scholar]
  184. Chen Q. Su X. Liu X. Bimetallic-doped Zeolitic imidazole framework-derived Cobalt-Nitrogen-Carbon supported on reduced graphene oxide enabling efficient microwave absorption. J. Taiwan Inst. Chem. Eng. 2022 134 104350 10.1016/j.jtice.2022.104350
    [Google Scholar]
  185. Ma J. Zhang X. Liu W. Ji G. Direct synthesis of MOF-derived nanoporous CuO/carbon composites for high impedance matching and advanced microwave absorption. J. Mater. Chem. C Mater. Opt. Electron. Devices 2016 4 48 11419 11426 10.1039/C6TC04048A
    [Google Scholar]
  186. Qiang R. Du Y. Chen D. Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67). J. Alloys Compd. 2016 681 384 393 10.1016/j.jallcom.2016.04.225
    [Google Scholar]
  187. Dai S. Quan B. Zhang B. Liang X. Ji G. Constructing multi-interface Mo2C/Co@C nanorods for a microwave response based on a double attenuation mechanism. Dalton Trans. 2018 47 41 14767 14773 10.1039/C8DT03282C 30294732
    [Google Scholar]
  188. Quan B. Xu G. Yi H. Enhanced electromagnetic wave response of nickel nanoparticles encapsulated in nanoporous carbon. J. Alloys Compd. 2018 769 961 968 10.1016/j.jallcom.2018.08.069
    [Google Scholar]
  189. Zhang X. Zhang S. Zhang K. Interface-induced enhanced electromagnetic wave absorption property of metal-organic frameworks wrapped by graphene sheets. J. Alloys Compd. 2019 780 718 726 10.1016/j.jallcom.2018.11.411
    [Google Scholar]
  190. Zhang X. Zhang X. Wang D. Three dimensional graphene-supported nitrogen-doped carbon nanotube architectures for attenuation of electromagnetic energy. J. Mater. Chem. C Mater. Opt. Electron. Devices 2019 7 38 11868 11878 10.1039/C9TC04191E
    [Google Scholar]
  191. Li J. Tian W. Liu Y. Wu B. Jian X. Deng L. Achieving enhanced microwave absorption performance based on metal/covalent organic frameworks-derived heterostructures. Compos., Part B Eng. 2022 245 110199 10.1016/j.compositesb.2022.110199
    [Google Scholar]
  192. Liu P. Gao S. Zhang G. Huang Y. You W. Che R. Hollow engineering to Co@N‐doped carbon nanocages via synergistic protecting‐etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021 31 27 2102812 10.1002/adfm.202102812
    [Google Scholar]
  193. Wang F. Wang N. Han X. Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon 2019 145 701 711 10.1016/j.carbon.2019.01.082
    [Google Scholar]
  194. Wu H. Tian R. Huang F. Constructing ohmic contact on hollow carbon nanocages to enhance conduction loss enabling high-efficient microwave absorption. Carbon 2022 196 552 561 10.1016/j.carbon.2022.05.029
    [Google Scholar]
  195. Gao T. Zhao R. Li Y. Sub‐nanometer Fe clusters confined in carbon nanocages for boosting dielectric polarization and broadband electromagnetic wave absorption. Adv. Funct. Mater. 2022 32 31 2204370 10.1002/adfm.202204370
    [Google Scholar]
  196. Sun M. Wang D. Xiong Z. Multi-dimensional Ni@C-CoNi composites with strong magnetic interaction toward superior microwave absorption. J. Mater. Sci. Technol. 2022 130 176 183 10.1016/j.jmst.2022.05.016
    [Google Scholar]
  197. Wang L. Wen B. Yang H. Qiu Y. He N. Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber. Compos., Part A Appl. Sci. Manuf. 2020 135 105958 10.1016/j.compositesa.2020.105958
    [Google Scholar]
  198. Wang Y. Di X. Gao X. Wu X. Design of MOF-derived hierarchical Co@C@RGO composite with controllable heterogeneous interfaces as a high-efficiency microwave absorbent. Nanotechnology 2020 31 39 395710 10.1088/1361‑6528/ab97d1 32470960
    [Google Scholar]
  199. Wang Y. Li X. Han X. Ternary Mo2C/Co/C composites with enhanced electromagnetic waves absorption. Chem. Eng. J. 2020 387 124159 10.1016/j.cej.2020.124159
    [Google Scholar]
  200. Ge C. Wang L. Liu G. Wang L. Xu K. Wang W. MOFs-derived flaky carbonyl iron/Co@C core-shell composites for thin thickness and broadband microwave absorption materials. J. Alloys Compd. 2021 886 161097 10.1016/j.jallcom.2021.161097
    [Google Scholar]
  201. Qiu H. Zhu X. Chen P. Li N. Zhu X. Synthesis of ternary core-shell structured ZnOC@CoC@PAN for high-performance electromagnetic absorption. J. Alloys Compd. 2021 868 159260 10.1016/j.jallcom.2021.159260
    [Google Scholar]
  202. Thi Q.V. Lee Y. Cho H.Y. Core-shell architecture of Ni-Co MOF wrapped by a heterogeneous FeBTC@PPy layer for high-performance EMI shielding. Synth. Met. 2021 281 116929 10.1016/j.synthmet.2021.116929
    [Google Scholar]
  203. Li S. Tian X. Wang J. Design and synthesis of core-shell structure 3D-graphene/Fe3O4@N-C composite derived from Fe-MOF as lightweight microwave absorber. Diam Relat Mat 2022 124 108941 10.1016/j.diamond.2022.108941
    [Google Scholar]
  204. Su J. Nie Z. Feng Y. Hollow core–shell structure Co/C@MoSe2 composites for high-performance microwave absorption. Compos., Part A Appl. Sci. Manuf. 2022 162 107140 10.1016/j.compositesa.2022.107140
    [Google Scholar]
  205. Wang Y. Xu J. He P. Construction of Co/C] @MoS2 core-shell nanocubes with enhanced electromagnetic-wave absorption performance. J. Alloys Compd. 2022 905 164080 10.1016/j.jallcom.2022.164080
    [Google Scholar]
  206. Wen B. Yang H. Lin Y. Ma L. Qiu Y. Hu F. Controlling the heterogeneous interfaces of S, Co co-doped porous carbon nanosheets for enhancing the electromagnetic wave absorption. J. Colloid Interface Sci. 2021 586 208 218 10.1016/j.jcis.2020.10.085 33162048
    [Google Scholar]
  207. Zhao Y. Wang W. Wang J. Constructing multiple heterogeneous interfaces in the composite of bimetallic MOF-derivatives and rGO for excellent microwave absorption performance. Carbon 2021 173 1059 1072 10.1016/j.carbon.2020.11.090
    [Google Scholar]
  208. Luo J. Guo H. Zhou J. Rational construction of heterogeneous interfaces for bimetallic MOFs-derived/rGO composites towards optimizing the electromagnetic wave absorption. Chem. Eng. J. 2022 429 132238 10.1016/j.cej.2021.132238
    [Google Scholar]
  209. Qiu Y. Yang H. Cheng Y. Lin Y. MOFs derived flower-like nickel and carbon composites with controllable structure toward efficient microwave absorption. Compos., Part A Appl. Sci. Manuf. 2022 154 106772 10.1016/j.compositesa.2021.106772
    [Google Scholar]
  210. Huan X. Wang H. Deng W. Integrating multi‐heterointerfaces in a 1D@2D@1D hierarchical structure via autocatalytic pyrolysis for ultra‐efficient microwave absorption performance. Small 2022 18 13 2105411 10.1002/smll.202105411 35138032
    [Google Scholar]
  211. Cui L. Wang Y. Han X. Phenolic resin reinforcement: A new strategy for hollow NiCo@C microboxes against electromagnetic pollution. Carbon 2021 174 673 682 10.1016/j.carbon.2020.10.070
    [Google Scholar]
  212. Li S. Lin L. Yao L. MOFs-derived Co-C@C hollow composites with high-performance electromagnetic wave absorption. J. Alloys Compd. 2021 856 158183 10.1016/j.jallcom.2020.158183
    [Google Scholar]
  213. Li X. Shu R. Wu Y. Li N. Fabrication of Ni/ZnO/C hollow microspheres decorated graphene composites towards high-efficiency electromagnetic wave absorption in the Ku-band. Ceram. Int. 2021 47 17 24372 24383 10.1016/j.ceramint.2021.05.151
    [Google Scholar]
  214. Shen Z. Liu C. Yang H. Xie Y. Zeng Q. Che R. Fabrication of hollow cube dual-semiconductor Ln2O3/] MnO/C nanocomposites with excellent microwave absorption performance. ACS Appl. Mater. Interfaces 2021 13 24 28689 28702 10.1021/acsami.1c06446 34110133
    [Google Scholar]
  215. Yang X. Gao W. Chen J. Co-Ni electromagnetic coupling in hollow Mo2C/NC sphere for enhancing electromagnetic wave absorbing performance. Chin. J. Chem. 2023 41 1 64 74 10.1002/cjoc.202200475
    [Google Scholar]
  216. Qiu H. Zhu X. Chen P. Liu J. Zhu X. Self-etching template method to synthesize hollow dodecahedral carbon capsules embedded with Ni-Co alloy for high-performance electromagnetic microwave absorption. Compos Commun 2020 20 100354 10.1016/j.coco.2020.04.020
    [Google Scholar]
  217. Gao J. Wang H. Zhou Y. Liu Z. He Y. Self-template and in-situ synthesis strategy to construct MnO2/Mn3O4@Ni-Co/GC nanocubes for efficient microwave absorption properties. J. Alloys Compd. 2022 892 162151 10.1016/j.jallcom.2021.162151
    [Google Scholar]
  218. Liu Q. Cao Q. Bi H. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016 28 3 486 490 10.1002/adma.201503149 26588359
    [Google Scholar]
  219. Liu W. Shao Q. Ji G. Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 2017 313 734 744 10.1016/j.cej.2016.12.117
    [Google Scholar]
  220. Qiang R. Du Y. Zhao H. Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A Mater. Energy Sustain. 2015 3 25 13426 13434 10.1039/C5TA01457C
    [Google Scholar]
  221. Shu R. Li W. Wu Y. Zhang J. Zhang G. Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal-organic frameworks for electromagnetic wave absorption in the X-band. Chem. Eng. J. 2019 362 513 524 10.1016/j.cej.2019.01.090
    [Google Scholar]
  222. Zhang X. Ji G. Liu W. Thermal conversion] of an Fe3O4@metal-organic framework: A new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material. Nanoscale 2015 7 30 12932 12942 10.1039/C5NR03176A 26167763
    [Google Scholar]
  223. Liu P. Gao S. Wang Y. Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 2020 381 122653 10.1016/j.cej.2019.122653
    [Google Scholar]
  224. Wang Y.L. Yang S.H. Wang H.Y. Wang G.S. Sun X.B. Yin P.G. Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber. Carbon 2020 167 485 494 10.1016/j.carbon.2020.06.014
    [Google Scholar]
  225. Wang L. Yu X. Li X. Zhang J. Wang M. Che R. MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 2020 383 123099 10.1016/j.cej.2019.123099
    [Google Scholar]
  226. Yin Y. Liu X. Wei X. Yu R. Shui J. Porous CNTs/Co composite derived from zeolitic imidazolate framework: A lightweight, ultrathin, and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 2016 8 50 34686 34698 10.1021/acsami.6b12178 27998119
    [Google Scholar]
  227. Zhang Y. Huang Y. Zhang T. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015 27 12 2049 2053 10.1002/adma.201405788 25689269
    [Google Scholar]
  228. Yan J. Huang Y. Yan Y. Ding L. Liu P. High-performance electromagnetic wave absorbers based on two kinds of nickel-based MOF-Derived Ni@C microspheres. ACS Appl. Mater. Interfaces 2019 11 43 40781 40792 10.1021/acsami.9b12850 31588726
    [Google Scholar]
  229. Wu Z. Pei K. Xing L. Yu X. You W. Che R. Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 2019 29 28 1901448 10.1002/adfm.201901448
    [Google Scholar]
  230. Liao Q. He M. Zhou Y. Highly cuboid-shaped heterobimetallic metal–organic frameworks derived from porous Co/ZnO/C microrods with improved electromagnetic wave absorption capabilities. ACS Appl. Mater. Interfaces 2018 10 34 29136 29144 10.1021/acsami.8b09093 30070478
    [Google Scholar]
  231. Xu X. Ran F. Fan Z. Cactus-inspired bimetallic metal-organic framework-derived 1D-2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance. ACS Appl. Mater. Interfaces 2019 11 14 13564 13573 10.1021/acsami.9b00356 30882206
    [Google Scholar]
  232. Liu P. Gao S. Wang Y. Huang Y. Wang Y. Luo J. Core-shell CoNi@Graphitic carbon decorated on b,n-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation. ACS Appl. Mater. Interfaces 2019 11 28 25624 25635 10.1021/acsami.9b08525 31268285
    [Google Scholar]
  233. Du Y. Liu W. Qiang R. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 2014 6 15 12997 13006 10.1021/am502910d 25050745
    [Google Scholar]
  234. Wen B. Cao M. Lu M. Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 2014 26 21 3484 3489 10.1002/adma.201400108 24648151
    [Google Scholar]
  235. Lv H. Liang X. Ji G. Zhang H. Du Y. Porous three-dimensional flower-like co/coo and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 2015 7 18 9776 9783 10.1021/acsami.5b01654 25881334
    [Google Scholar]
  236. Wen B. Cao M.S. Hou Z.L. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 2013 65 124 139 10.1016/j.carbon.2013.07.110
    [Google Scholar]
  237. Sun H. Che R. You X. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014 26 48 8120 8125 10.1002/adma.201403735 25338951
    [Google Scholar]
  238. Sun D. Zou Q. Wang Y. Wang Y. Jiang W. Li F. Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. Nanoscale 2014 6 12 6557 6562 10.1039/C3NR06797A 24740171
    [Google Scholar]
  239. Zhang X.J. Wang G.S. Cao W.Q. Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces 2014 6 10 7471 7478 10.1021/am500862g 24779487
    [Google Scholar]
  240. Xiang J. Li J. Zhang X. Ye Q. Xu J. Shen X. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers. J. Mater. Chem. A Mater. Energy Sustain. 2014 2 40 16905 16914 10.1039/C4TA03732D
    [Google Scholar]
  241. Li X. Feng J. Du Y. One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A Mater. Energy Sustain. 2015 3 10 5535 5546 10.1039/C4TA05718J
    [Google Scholar]
  242. Tong G. Liu F. Wu W. Du F. Guan J. Rambutan-like Ni/MWCNT heterostructures: Easy synthesis, formation mechanism, and controlled static magnetic and microwave electromagnetic characteristics. J. Mater. Chem. A Mater. Energy Sustain. 2014 2 20 7373 7382 10.1039/c4ta00117f
    [Google Scholar]
  243. Zhang X. Ji G. Liu W. A novel Co/TiO2 nanocomposite derived from a metal–organic framework: Synthesis and efficient microwave absorption. J. Mater. Chem. C Mater. Opt. Electron. Devices 2016 4 9 1860 1870 10.1039/C6TC00248J
    [Google Scholar]
  244. Liang X. Quan B. Ji G. Novel nanoporous carbon derived from metal–organic frameworks with tunable electromagnetic wave absorption capabilities. Inorg. Chem. Front. 2016 3 12 1516 1526 10.1039/C6QI00359A
    [Google Scholar]
  245. Liu W. Pan J. Ji G. Switching the electromagnetic properties of multicomponent porous carbon materials derived from bimetallic metal–organic frameworks: Effect of composition. Dalton Trans. 2017 46 11 3700 3709 10.1039/C7DT00156H 28256670
    [Google Scholar]
  246. Kong L. Yin X. Zhang Y. Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J. Phys. Chem. C 2013 117 38 19701 19711 10.1021/jp4058498
    [Google Scholar]
  247. Quan B. Liang X. Ji G. Strong electromagnetic wave response derived from the construction of dielectric/magnetic media heterostructure and multiple interfaces. ACS Appl. Mater. Interfaces 2017 9 11 9964 9974 10.1021/acsami.6b15788 28248080
    [Google Scholar]
  248. Wang L. Guan Y. Qiu X. Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal-organic framework. Chem. Eng. J. 2017 326 945 955 10.1016/j.cej.2017.06.006
    [Google Scholar]
  249. Liang X Quan B Ji G Tunable dielectric performance derived from the metal–organic framework/reduced graphene oxide hybrid with broadband absorption 2017 5 11 10570 9 10.1021/acssuschemeng.7b02565
  250. Yang Z. Lv H. Wu R. Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation. Nano Res. 2016 9 12 3671 3682 10.1007/s12274‑016‑1238‑z
    [Google Scholar]
  251. Song C. Yin X. Han M. Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 2017 116 50 58 10.1016/j.carbon.2017.01.077
    [Google Scholar]
  252. Wang L. Li X. Li Q. Zhao Y. Che R. Enhanced polarization from hollow cube-like ZnSnO3 wrapped by multiwalled carbon nanotubes: As a lightweight and high-performance microwave absorber. ACS Appl. Mater. Interfaces 2018 10 26 22602 22610 10.1021/acsami.8b05414 29893114
    [Google Scholar]
  253. Zhao H. Cheng Y. Liu W. Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 2019 11 1 24 10.1007/s40820‑019‑0255‑3 34137956
    [Google Scholar]
  254. Wang Y. Gao X. Fu Y. Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding. Compos., Part B Eng. 2019 169 221 228 10.1016/j.compositesb.2019.04.008
    [Google Scholar]
  255. Liu D. Du Y. Xu P. Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption. J. Mater. Chem. C Mater. Opt. Electron. Devices 2019 7 17 5037 5046 10.1039/C9TC00771G
    [Google Scholar]
  256. Wang X. Pan F. Xiang Z. Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 2020 157 130 139 10.1016/j.carbon.2019.10.030
    [Google Scholar]
  257. Xiang Z. Xiong J. Deng B. Rational design of 2D hierarchically laminated Fe3O4@nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. J. Mater. Chem. C Mater. Opt. Electron. Devices 2020 8 6 2123 2134 10.1039/C9TC06526A
    [Google Scholar]
  258. Wang L. Wen B. Bai X. Liu C. Yang H. NiCo alloy/] carbon nanorods decorated with carbon nanotubes for microwave absorption. ACS Appl. Nano Mater. 2019 2 12 7827 7838 10.1021/acsanm.9b01842
    [Google Scholar]
  259. Gao Z. Song Y. Zhang S. Electromagnetic absorbers with Schottky contacts derived from interfacial ligand exchanging metal-organic frameworks. J. Colloid Interface Sci. 2021 600 288 298 10.1016/j.jcis.2021.05.009 34022725
    [Google Scholar]
/content/journals/rice/10.2174/0124055204424372251015110354
Loading
/content/journals/rice/10.2174/0124055204424372251015110354
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test