Skip to content
2000
image of Enhanced Removal of Rhodamine B Dye from Aqueous Solution byAdsorption Using ZSM-5 Mesopores

Abstract

Introduction

ZSM-5 with mesopores (mesoZSM-5) was prepared using a hydrothermal method. The samples were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and nitrogen adsorption/desorption at 77 K. The materials were then evaluated for the adsorption of bulk rhodamine B dye from aqueous solution.

Methods

ZSM-5 with mesopores (mesoZSM-5) was prepared using a hydrothermal method. The samples were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and nitrogen adsorption/desorption at 77 K. The materials were evaluated for the adsorption of rhodamine B dye molecules from aqueous solution.

Results

The prepared mesoZSM-5 was highly crystalline and contained mesopores primarily 15-50 nm in diameter. The material exhibited enhanced adsorption of rhodamine B dye, with a capacity 5.7 times higher than that of conventional ZSM-5.

Discussion

MesoZSM-5 maintained an MFI topology and high mesoporosity. The presence of mesopores addressed the issue of blockage during the diffusion and transport of bulk molecules such as rhodamine B dye.

Conclusion

MesoZSM-5 was successfully prepared using a hydrothermal method. The enhanced adsorption of rhodamine B dye demonstrated the critical role of mesopores in facilitating bulk molecular reactions and adsorption activities in zeolites.

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204405162250903112339
2025-10-02
2026-01-02
Loading full text...

Full text loading...

References

  1. Kärger J. Ruthven D.M. Diffusion in Zeolites and Other Microporous Materials. New York Wiley 1992
    [Google Scholar]
  2. Weisz P.B. Zeolites-new horizons in catalysis. Chemtech 1973 3 498 505
    [Google Scholar]
  3. Post M.F.M. In: Van Bekkum H, Flamigen EM, Jansen JC. Intruduction to zeolite science and practice. Stud. Surf. Sci. Catal. 1991 58 391 444 10.1016/S0167‑2991(08)63609‑5
    [Google Scholar]
  4. van Donk S. Janssen A.H. Bitter J.H. de Jong K.P. Generation, characterization, and impact of mesopores in zeolite catalysts. Catal. Rev., Sci. Eng. 2003 45 2 297 319 10.1081/CR‑120023908
    [Google Scholar]
  5. Tao Y. Kanoh H. Abrams L. Kaneko K. Mesopore-modified zeolites: Preparation, characterization, and applications. Chem. Rev. 2006 106 3 896 910 10.1021/cr040204o 16522012
    [Google Scholar]
  6. Pérez-Ramírez J. Christensen C.H. Egeblad K. Christensen C.H. Groen J.C. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev. 2008 37 11 2530 2542 10.1039/b809030k 18949124
    [Google Scholar]
  7. Hartmann M. Thommes M. Schwieger W. Hierarchically-ordered zeolites: A critical assessment. Adv. Mater. Interfaces 2021 8 4 2001841 10.1002/admi.202001841
    [Google Scholar]
  8. Thommes M. Kaneko K. Neimark A.V. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015 87 9-10 1051 1069 10.1515/pac‑2014‑1117
    [Google Scholar]
  9. Groen J.C. Moulijn J.A. Pérez-Ramírez J. Desilication: On the controlled generation of mesoporosity in MFI zeolites. J. Mater. Chem. 2006 16 22 2121 2131 10.1039/B517510K
    [Google Scholar]
  10. Madsen C. Madsen C. Jacobsen C.J.H. Nanosized zeolite crystals—convenient control of crystal size distribution by confined space synthesis. Chem. Commun. 1999 673-674 8 673 674 10.1039/a901228a
    [Google Scholar]
  11. Schmidt I. Madsen C. Jacobsen C.J.H. Confined space synthesis. A novel route to nanosized zeolites. Inorg. Chem. 2000 39 11 2279 2283 10.1021/ic991280q 12526485
    [Google Scholar]
  12. Tao Y. Kanoh H. Kaneko K. Uniform mesopore-donated zeolite y using carbon aerogel templating. J. Phys. Chem. B 2003 107 40 10974 10976 10.1021/jp0356822
    [Google Scholar]
  13. Kim S.S. Shah J. Pinnavaia T.J. Colloid-imprinted carbons as templates for the nanocasting synthesis of mesoporous zsm-5 zeolite. Chem. Mater. 2003 15 8 1664 1668 10.1021/cm021762r
    [Google Scholar]
  14. Tao Y. Kanoh H. Kaneko K. ZSM-5 monolith of uniform mesoporous channels. J. Am. Chem. Soc. 2003 125 20 6044 6045 10.1021/ja0299405 12785820
    [Google Scholar]
  15. Tao Y. Kanoh H. Hanzawa Y. Kaneko K. Template synthesis and characterization of mesoporous zeolites. Colloids Surf. A Physicochem. Eng. Asp. 2004 241 1-3 75 80 10.1016/j.colsurfa.2004.04.013
    [Google Scholar]
  16. Wang H. Pinnavaia T.J. MFI zeolite with small and uniform intracrystal mesopores. Angew. Chem. Int. Ed. 2006 45 45 7603 7606 10.1002/anie.200602595 17044104
    [Google Scholar]
  17. Corma A. Fornes V. Rey F. Delaminated zeolites: An efficient support for enzymes. Adv. Mater. 2002 14 1 71 74 10.1002/1521‑4095(20020104)14:1<71:AID‑ADMA71>3.0.CO;2‑W
    [Google Scholar]
  18. Holland B.T. Abrams L. Stein A. Dual templating of macroporous silicates with zeolitic microporous frameworks. J. Am. Chem. Soc. 1999 121 17 4308 4309 10.1021/ja990425p
    [Google Scholar]
  19. Christensen C.H. Johannsen K. Schmidt I. Christensen C.H. Catalytic benzene alkylation over mesoporous zeolite single crystals: Improving activity and selectivity with a new family of porous materials. J. Am. Chem. Soc. 2003 125 44 13370 13371 10.1021/ja037063c 14583028
    [Google Scholar]
  20. Fang Y. Hu H. An ordered mesoporous aluminosilicate with completely crystalline zeolite wall structure. J. Am. Chem. Soc. 2006 128 33 10636 10637 10.1021/ja061182l 16910631
    [Google Scholar]
  21. Kuvatova R.Z. Travkina O.S. Kutepov B.I. Synthesis of micro/mesoporous zeolite ZSM-5 using a natural aluminosilicate. Catal. Ind. 2021 13 2 99 104 10.1134/S2070050421020070
    [Google Scholar]
  22. White R.J. Fischer A. Goebel C. Thomas A. A sustainable template for mesoporous zeolite synthesis. J. Am. Chem. Soc. 2014 136 7 2715 2718 10.1021/ja411586h 24397534
    [Google Scholar]
  23. Fukasawa T. Otsuka K. Murakami T. Ishigami T. Fukui K. Synthesis of zeolites with hierarchical porous structures using a microwave heating method. Colloid Interface Sci. Commun. 2021 42 100430 10.1016/j.colcom.2021.100430
    [Google Scholar]
  24. Mao D. Hou M. Liu J. Yin C. Synthesis of hierarchical ZSM-5 submicron spheres for catalytic cracking. ChemistrySelect 2022 7 46 202203093 10.1002/slct.202203093
    [Google Scholar]
  25. Javdani A. Ahmadpour J. Yaripour F. Modified seed-induced synthesis of ZSM-5 aggregates and their catalytic performance in methanol to propylene conversion: Co-effect of ball milling and alkaline treatment of seed. Adv. Powder Technol. 2023 34 10 104184 10.1016/j.apt.2023.104184
    [Google Scholar]
  26. Nguyen T.A. Juang R.S. Treatment of waters and wastewaters containing sulfur dyes: A review. Chem. Eng. J. 2013 219 109 117 10.1016/j.cej.2012.12.102
    [Google Scholar]
  27. Singh S. Parveen N. Gupta H. Adsorptive decontamination of rhodamine-B from water using banana peel powder: A biosorbent. Environ Technol Innov 2018 12 189 195 10.1016/j.eti.2018.09.001
    [Google Scholar]
  28. Garg V.K. Kumar R. Gupta R. Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste: A case study of Prosopis cineraria. Dyes Pigments 2004 62 1 1 10 10.1016/j.dyepig.2003.10.016
    [Google Scholar]
  29. Shahnawaz Khan M. Khalid M. Shahid M. What triggers dye adsorption by metal organic frameworks? The current perspectives. Mater Adv 2020 1 6 1575 1601 10.1039/D0MA00291G
    [Google Scholar]
  30. Ptaszkowska-Koniarz M. Goscianska J. Pietrzak R. Removal of rhodamine B from water by modified carbon xerogels. Colloids Surf. A Physicochem. Eng. Asp. 2018 543 109 117 10.1016/j.colsurfa.2018.01.057
    [Google Scholar]
  31. Shen K. Gondal M.A. Removal of hazardous Rhodamine dye from water by adsorption onto exhausted coffee ground. J. Saudi Chem. Soc. 2017 21 S120 S127 10.1016/j.jscs.2013.11.005
    [Google Scholar]
  32. Farhan AM Zaghair AM Abdullah HI Adsorption study of rhodamine–B dye on plant (citrus leaves). Baghdad Science J 2022 19 4 0838 10.21123/bsj.2022.19.4.0838
    [Google Scholar]
  33. Zhang W. Wen L. Wang W. Xiang W. Lai C. Enhanced adsorption and photodegradation of rhodamine B by BiFeO3 nanoparticles functionalized yeast composite: Synthesis, performance, and mechanism. J. Water Process Eng. 2024 68 106296 10.1016/j.jwpe.2024.106296
    [Google Scholar]
  34. Khan T.A. Dahiya S. Ali I. Use of kaolinite as adsorbent: Equilibrium, dynamics and thermodynamic studies on the adsorption of Rhodamine B from aqueous solution. Appl. Clay Sci. 2012 69 58 66 10.1016/j.clay.2012.09.001
    [Google Scholar]
  35. Amalina F. Abd Razak A.S. Krishnan S. Zularisam A.W. Nasrullah M. A review of eco-sustainable techniques for the removal of Rhodamine B dye utilizing biomass residue adsorbents. Phys. Chem. Earth Parts ABC 2022 128 103267 10.1016/j.pce.2022.103267
    [Google Scholar]
  36. Khamparia S. Jaspal D. Investigation of adsorption of Rhodamine B onto a natural adsorbent Argemone mexicana. J. Environ. Manage. 2016 183 Pt 3 786 793 10.1016/j.jenvman.2016.09.036 27652579
    [Google Scholar]
  37. He H. Chai K. Wu T. Qiu Z. Wang S. Hong J. Adsorption of rhodamine B from simulated waste water onto kaolin-bentonite composites. Materials 2022 15 12 4058 10.3390/ma15124058 35744117
    [Google Scholar]
  38. Gao J. Chen T. Annamalai K.P. Tao Y. Adding mesopores to silicalite-1 with graphene oxide templating. Recent Innov. Chem. Eng. 2016 9 1 38 42 10.2174/2405520408666160920122802
    [Google Scholar]
  39. Brunauer S. Emmett P.H. Teller E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938 60 2 309 319 10.1021/ja01269a023
    [Google Scholar]
  40. Argauer R.J. Landolt G.R. Crystalline zeolite zsm-5 and method of preparing the same. US Patent 3702886A 1972
    [Google Scholar]
  41. Wu E.L. Lawton S.L. Olson D.H. Rohrman A.C. Kokotailo G.T. ZSM-5-type materials. Factors affecting crystal symmetry. J. Phys. Chem. 1979 83 21 2777 2781 10.1021/j100484a019
    [Google Scholar]
  42. Deng L. Ma Y. Zai T. Atom-economic synthesis of zeolites. J. Am. Chem. Soc. 2024 146 42 29115 29122 10.1021/jacs.4c11264 39388379
    [Google Scholar]
  43. Tao Y. Tanaka H. Ohkubo T. Kanoh H. Kaneko K. Pore structures of ZSM-5 synthesized in the mesopore spaces of a carbon aerogel. Adsorpt. Sci. Technol. 2003 21 2 199 203 10.1260/026361703769013925
    [Google Scholar]
  44. Cheng Z.L. Li Y. Liu Z. Study on adsorption of rhodamine B onto Beta zeolites by tuning SiO2/Al2O3 ratio. Ecotoxicol. Environ. Saf. 2018 148 585 592 10.1016/j.ecoenv.2017.11.005 29127821
    [Google Scholar]
  45. Cheng W.Y. Li N. Pan Y.Z. Jin L.H. The adsorption of Rhodamine B in water by modified zeolites. Mod. Appl. Sci. 2016 10 5 67 76 10.5539/mas.v10n5p67
    [Google Scholar]
  46. Kuśmierek K. Fronczyk J. Świątkowski A. Adsorptive removal of Rhodamine B dye from aqueous solutions using mineral materials as low-cost adsorbents. Water Air Soil Pollut. 2023 234 8 531 10.1007/s11270‑023‑06511‑5
    [Google Scholar]
  47. Ho Y.S. McKay G. Sorption of dye from aqueous solution by peat. Chem. Eng. J. 1998 70 2 115 124 10.1016/S0923‑0467(98)00076‑1
    [Google Scholar]
  48. Cheung C.W. Porter J.F. McKay G. Elovich equation and modified second-order equation for sorption of cadmium ions onto bone char. J. Chem. Technol. Biotechnol. 2000 75 11 963 970 10.1002/1097‑4660(200011)75:11<963:AID‑JCTB302>3.0.CO;2‑Z
    [Google Scholar]
  49. Fathy N. El-Khouly S. Ahmed S. El-Nabarawy T. Tao Y. Superior adsorption of cationic dye on novel bentonite/carbon composites. Asia-Pac. J. Chem. Eng. 2021 16 1 2586 10.1002/apj.2586
    [Google Scholar]
  50. Gao J. Tao Y. Synthesis and characterization of small-mesopore-added silicalite-1 zeolites using single wall carbon nanohorn templating. Adsorption 2016 22 8 1059 1063 10.1007/s10450‑016‑9809‑6
    [Google Scholar]
  51. Yang L. Ying J. Liu Z. Synthesis of core/shell cobalt-doped rutile TiO 2 nanorods for MB degradation under visible light. RSC Advances 2025 15 13 10144 10149 10.1039/D4RA08773A 40176824
    [Google Scholar]
  52. Zhao Z.C. Wang K. Chang L. Construction of S-scheme MIL-101(Fe)/Bi2MoO6 heterostructures for enhanced catalytic activities towards tetracycline hydrochloride photodegradation and nitrogen photofixation. Sol. Energy 2023 264 112042 10.1016/j.solener.2023.112042
    [Google Scholar]
  53. Barrer R.M. Hydrothermal Chemistry of Zeolites. United States Academic Press 1982
    [Google Scholar]
  54. Otsuka H. Kubo K. Piña-Salazar E.Z. Colloid-chemical fabrication of graphene-oxide-wrapped zeolite crystals. Next Materials 2025 8 100903 10.1016/j.nxmate.2025.100903
    [Google Scholar]
  55. Yuan K. Li Q. Ni W. Analysis of the structural and environmental impacts of hydrophilic ZSM-5 molecular sieve on loess. Constr. Build. Mater. 2023 366 130248 10.1016/j.conbuildmat.2022.130248
    [Google Scholar]
  56. Li Y. Yu J. Emerging applications of zeolites in catalysis, separation and host–guest assembly. Nat. Rev. Mater. 2021 6 12 1156 1174 10.1038/s41578‑021‑00347‑3
    [Google Scholar]
/content/journals/rice/10.2174/0124055204405162250903112339
Loading
/content/journals/rice/10.2174/0124055204405162250903112339
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: mesopore ; mesoporosity ; MFI topology ; Adsorption ; ZSM-5 ; micropore ; rhodamine B
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test