Skip to content
2000
Volume 18, Issue 8
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Globally, cardiovascular disease (CVD) continues to be a major cause of death. Advancements in Artificial Intelligence (AI) in recent times present revolutionary opportunities for the diagnosis, treatment, and prevention of this condition. In this paper, we review mainly the applications of AI in CVDs with its limitations and challenges. Artificial intelligence (AI) algorithms can quickly and precisely analyze medical images, such as CT scans, X-rays, and ECGs, helping with early and more accurate identification of a variety of CVD diseases. To identify those who are at a high risk of getting CVD, AI models can also analyze patient data. This allows for early intervention and preventive measures. AI systems are also capable of analyzing complicated medical data to provide individualized therapy recommendations based on the requirements and traits of each patient. During patient meetings, AI-powered solutions can also help healthcare practitioners by offering real-time insights and recommendations, which may improve treatment outcomes. Machine learning (ML), which is a branch of AI and computer sciences, has also been employed to uncover complex interactions among clinical variables, leading to more accurate predictive models for major adverse cardiovascular events (MACE) like combining clinical data with stress test results has improved the detection of myocardial ischemia, enhancing the ability to predict future cardiovascular outcomes. In this paper, we will focus on the current AI applications in different CVDs. Also, precision medicine, and targeted therapy for these cardiovascular problems will be discussed.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558348090241210063629
2024-12-30
2025-11-01
Loading full text...

Full text loading...

References

  1. GoldsboroughE.III OsujiN. BlahaM.J. Assessment of Cardiovascular Disease Risk.Endocrinol. Metab. Clin. North Am.202251348350910.1016/j.ecl.2022.02.005 35963625
    [Google Scholar]
  2. YasminF. ShahS.M.I. NaeemA. ShujauddinS.M. JabeenA. KazmiS. SiddiquiS.A. KumarP. SalmanS. HassanS.A. DasariC. ChoudhryA.S. MustafaA. ChawlaS. LakH.M. Artificial intelligence in the diagnosis and detection of heart failure: the past, present, and future.Rev. Cardiovasc. Med.20212241095111310.31083/j.rcm2204121 34957756
    [Google Scholar]
  3. ChenM. DecaryM. Artificial intelligence in healthcare: An essential guide for health leaders.Healthc. Manage. Forum2020331101810.1177/0840470419873123 31550922
    [Google Scholar]
  4. PastorinoR. De VitoC. MigliaraG. GlockerK. BinenbaumI. RicciardiW. BocciaS. Benefits and challenges of Big Data in healthcare: an overview of the European initiativesEur. J. Public Health201929Suppl. 3232710.1093/eurpub/ckz16831738444
    [Google Scholar]
  5. DilsizianS.E. SiegelE.L. Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment.Curr. Cardiol. Rep.201416144110.1007/s11886‑013‑0441‑8 24338557
    [Google Scholar]
  6. KulkarniP. MahadevappaM. ChilakamarriS. The Emergence of Artificial Intelligence in Cardiology: Current and Future Applications.Curr. Cardiol. Rev.2022183e19112119812410.2174/1573403X17666211119102220 34802407
    [Google Scholar]
  7. MathurP. SrivastavaS. XuX. MehtaJ.L. Artificial Intelligence, Machine Learning, and Cardiovascular Disease.Clin. Med. Insights Cardiol20201410.1177/1179546820927404 32952403
    [Google Scholar]
  8. YanY. ZhangJ.W. ZangG.Y. PuJ. The primary use of artificial intelligence in cardiovascular diseases: what kind of potential role does artificial intelligence play in future medicine?J. Geriatr. Cardiol.2019168585591 31555325
    [Google Scholar]
  9. SunX. YinY. YangQ. HuoT. Artificial intelligence in cardiovascular diseases: diagnostic and therapeutic perspectives.Eur. J. Med. Res.202328124210.1186/s40001‑023‑01065‑y 37475050
    [Google Scholar]
  10. AliA. HuB. RamahiO. Intelligent detection of cracks in metallic surfaces using a waveguide sensor loaded with metamaterial elements.Sensors2015155114021141610.3390/s150511402 25988871
    [Google Scholar]
  11. YadavA.K. BanerjeeS.K. DasB. ChaudharyK. Editorial: Systems Biology and Omics Approaches for Understanding Complex Disease Biology.Front. Genet.20221389681810.3389/fgene.2022.896818 35495146
    [Google Scholar]
  12. KrittanawongC. ZhangH. WangZ. AydarM. KitaiT. Artificial Intelligence in Precision Cardiovascular Medicine.J. Am. Coll. Cardiol.201769212657266410.1016/j.jacc.2017.03.571 28545640
    [Google Scholar]
  13. MintzY. BrodieR. Introduction to artificial intelligence in medicine.Minim. Invasive Ther. Allied Technol.2019282738110.1080/13645706.2019.1575882
    [Google Scholar]
  14. StuckeyT. MeineF. McMinnT. DeptaJ.P. BennettB. McGarryT. CarrollW. SuhD. SteuterJ.A. RobertsM. GillinsH.R. LangeE. FathiehF. BurtonT. KhosousiA. ShadforthI. SandersW.E.Jr RabbatM.G. Development and validation of a machine learned algorithm to IDENTIFY functionally significant coronary artery disease.Front. Cardiovasc. Med.2022995614710.3389/fcvm.2022.956147 36119746
    [Google Scholar]
  15. LinA. KolossváryM. MotwaniM. IšgumI. Maurovich-HorvatP. SlomkaP.J. DeyD. Artificial Intelligence in Cardiovascular Imaging for Risk Stratification in Coronary Artery Disease.Radiol. Cardiothorac. Imaging202131e20051210.1148/ryct.2021200512 33778661
    [Google Scholar]
  16. BatkoK. ŚlęzakA. The use of Big Data Analytics in healthcare.J. Big Data202291310.1186/s40537‑021‑00553‑4 35013701
    [Google Scholar]
  17. JayatilakeS.M.D.A.C. GanegodaG.U. Involvement of Machine Learning Tools in Healthcare Decision Making.J. Healthc. Eng.2021202112010.1155/2021/6679512 33575021
    [Google Scholar]
  18. DenaxasS.C. MorleyK.I. Big biomedical data and cardiovascular disease research: opportunities and challenges.Eur. Heart J. Qual. Care Clin. Outcomes20151191610.1093/ehjqcco/qcv005 29474568
    [Google Scholar]
  19. SimI. Two Ways of Knowing: Big Data and Evidence-Based Medicine.Ann. Intern. Med.2016164856256310.7326/M15‑2970 26809201
    [Google Scholar]
  20. HemingwayH. AsselbergsF.W. DaneshJ. DobsonR. ManiadakisN. MaggioniA. van ThielG.J.M. CroninM. BrobertG. VardasP. AnkerS.D. GrobbeeD.E. DenaxasS. Big data from electronic health records for early and late translational cardiovascular research: challenges and potential.Eur. Heart J.201839161481149510.1093/eurheartj/ehx487 29370377
    [Google Scholar]
  21. LaneyD. 3D data management: Controlling data volume, velocity and varietyMETA Group Research Note20016701
    [Google Scholar]
  22. LeCunY. BengioY. HintonG. Deep learning.Nature2015521755343644410.1038/nature14539 26017442
    [Google Scholar]
  23. EstevaA. RobicquetA. RamsundarB. KuleshovV. DePristoM. ChouK. CuiC. CorradoG. ThrunS. DeanJ. A guide to deep learning in healthcare.Nat. Med.2019251242910.1038/s41591‑018‑0316‑z 30617335
    [Google Scholar]
  24. TripathiG. SinghK. VishwakarmaD.K. Applied convolutional neural network framework for tagging healthcare systems in crowd protest environment.Math. Biosci. Eng.20211868727875710.3934/mbe.2021431 34814320
    [Google Scholar]
  25. SilverioA. CavalloP. De RosaR. GalassoG. Big Health Data and Cardiovascular Diseases: A Challenge for Research, an Opportunity for Clinical Care.Front. Med. (Lausanne)201963610.3389/fmed.2019.00036 30873409
    [Google Scholar]
  26. DeyD. SlomkaP.J. LeesonP. ComaniciuD. ShresthaS. SenguptaP.P. MarwickT.H. Artificial Intelligence in Cardiovascular Imaging.J. Am. Coll. Cardiol.201973111317133510.1016/j.jacc.2018.12.054 30898208
    [Google Scholar]
  27. JohnsonK.W. Torres SotoJ. GlicksbergB.S. ShameerK. MiottoR. AliM. AshleyE. DudleyJ.T. Artificial Intelligence in Cardiology.J. Am. Coll. Cardiol.201871232668267910.1016/j.jacc.2018.03.521 29880128
    [Google Scholar]
  28. ZamzmiG. RajaramanS. HsuL.Y. SachdevV. AntaniS. Real-time echocardiography image analysis and quantification of cardiac indices.Med. Image Anal.20228010243810.1016/j.media.2022.102438 35868819
    [Google Scholar]
  29. TisonG.H. ZhangJ. DellingF.N. DeoR.C. Automated and Interpretable Patient ECG Profiles for Disease Detection, Tracking, and Discovery.Circ. Cardiovasc. Qual. Outcomes2019129e00528910.1161/CIRCOUTCOMES.118.005289 31525078
    [Google Scholar]
  30. RibeiroA.H. RibeiroM.H. PaixãoG.M.M. OliveiraD.M. GomesP.R. CanazartJ.A. FerreiraM.P.S. AnderssonC.R. MacfarlaneP.W. MeiraW.Jr SchönT.B. RibeiroA.L.P. Automatic diagnosis of the 12-lead ECG using a deep neural network.Nat. Commun.2020111176010.1038/s41467‑020‑15432‑4 32273514
    [Google Scholar]
  31. MadaniA. ArnaoutR. MofradM. ArnaoutR. Fast and accurate view classification of echocardiograms using deep learning.NPJ Digit. Med.201811610.1038/s41746‑017‑0013‑1 30828647
    [Google Scholar]
  32. SamadM.D. UlloaA. WehnerG.J. JingL. HartzelD. GoodC.W. WilliamsB.A. HaggertyC.M. FornwaltB.K. Predicting Survival From Large Echocardiography and Electronic Health Record Datasets.JACC Cardiovasc. Imaging201912468168910.1016/j.jcmg.2018.04.026 29909114
    [Google Scholar]
  33. NakajimaK. KudoT. NakataT. KisoK. KasaiT. TaniguchiY. MatsuoS. MomoseM. NakagawaM. SaraiM. HidaS. TanakaH. YokoyamaK. OkudaK. EdenbrandtL. Diagnostic accuracy of an artificial neural network compared with statistical quantitation of myocardial perfusion images: a Japanese multicenter study.Eur. J. Nucl. Med. Mol. Imaging201744132280228910.1007/s00259‑017‑3834‑x 28948350
    [Google Scholar]
  34. SuS. HuZ. LinQ. HauW.K. GaoZ. ZhangH. An artificial neural network method for lumen and media-adventitia border detection in IVUS.Comput. Med. Imaging Graph.201757293910.1016/j.compmedimag.2016.11.003
    [Google Scholar]
  35. AbdolmanafiA. DuongL. DahdahN. CherietF. Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography.Biomed. Opt. Express2017821203122010.1364/BOE.8.001203 28271012
    [Google Scholar]
  36. SubramanianM. WojtusciszynA. FavreL. BoughorbelS. ShanJ. LetaiefK.B. PitteloudN. ChouchaneL. Precision medicine in the era of artificial intelligence: implications in chronic disease management.J. Transl. Med.202018147210.1186/s12967‑020‑02658‑5 33298113
    [Google Scholar]
  37. CurrieG. DellesC. Precision Medicine and Personalized Medicine in Cardiovascular Disease.Adv. Exp. Med. Biol.2018106558960510.1007/978‑3‑319‑77932‑4_36 30051409
    [Google Scholar]
  38. JungS. SongS.W. LeeS. KimS.H. AnnS. CheonE.J. YiG. ChoiE.Y. LeeS.H. JooH.C. RyuD.H. LeeS.H. HwangG.S. Metabolic phenotyping of human atherosclerotic plaques: Metabolic alterations and their biological relevance in plaque-containing aorta.Atherosclerosis2018269212810.1016/j.atherosclerosis.2017.11.034 29253644
    [Google Scholar]
  39. DillerG.P. KempnyA. Babu-NarayanS.V. HenrichsM. BridaM. UebingA. LammersA.E. BaumgartnerH. LiW. WortS.J. DimopoulosK. GatzoulisM.A. Machine learning algorithms estimating prognosis and guiding therapy in adult congenital heart disease: data from a single tertiary centre including 10 019 patients.Eur. Heart J.201940131069107710.1093/eurheartj/ehy915 30689812
    [Google Scholar]
  40. BalanescuD.V. MonlezunD.J. DonisanT. BooneD. Cervoni-CuretF. PalaskasN. Lopez-MatteiJ. KimP. IliescuC. BalanescuS.M. A Cancer Paradox: Machine-Learning Backed Propensity-Score Analysis of Coronary Angiography Findings in Cardio-Oncology.J. Invasive Cardiol.20193112126 30611123
    [Google Scholar]
  41. KakadiarisI.A. VrigkasM. YenA.A. KuznetsovaT. BudoffM. NaghaviM. Machine Learning Outperforms ACC/AHA CVD Risk Calculator in MESA.J. Am. Heart Assoc.2018722e00947610.1161/JAHA.118.009476 30571498
    [Google Scholar]
  42. EngelhardtS. SauerzapfS. BrčićA. KarckM. WolfI. De SimoneR. Replicated mitral valve models from real patients offer training opportunities for minimally invasive mitral valve repair.Interact. Cardiovasc. Thorac. Surg.2019291435010.1093/icvts/ivz008 30783681
    [Google Scholar]
  43. EngelhardtS. SauerzapfS. Al-MaisaryS. KarckM. PreimB. WolfI. Elastic mitral valve silicone replica made from 3D-printable molds offer advanced surgical training. Bildverarbeitung für die Medizin 2018: Algorithmen-Systeme-Anwendungen Proceedings des Workshops vom 11 bis 13 März 2018 in Erlangen.Springer2018
    [Google Scholar]
  44. Improving surgical training phantoms by hyperrealism: deep unpaired image-to-image translation from real surgeries21st International Conference, Granada, Spain 2018.10.1007/978‑3‑030‑00928‑1_84
    [Google Scholar]
  45. MazomenosE.B. ChangP.L. RippelR.A. RollsA. HawkesD.J. BicknellC.D. DesjardinsA. RigaC.V. StoyanovD. Catheter manipulation analysis for objective performance and technical skills assessment in transcatheter aortic valve implantation.Int. J. CARS20161161121113110.1007/s11548‑016‑1391‑6 27072837
    [Google Scholar]
  46. KoshimizuH. KojimaR. KarioK. OkunoY. Prediction of blood pressure variability using deep neural networks.Int. J. Med. Inform.202013610406710.1016/j.ijmedinf.2019.104067 31955052
    [Google Scholar]
  47. TsoiK.K.F. ChanN.B. YiuK.K.L. PoonS.K.S. LinB. HoK. Machine learning clustering for blood pressure variability applied to Systolic blood pressure intervention trial (SPRINT) and the Hong Kong community cohort.Hypertension2020762569576
    [Google Scholar]
  48. SeligmanH. PatelS.B. AlloulaA. HowardJ.P. CookC.M. AhmadY. de WaardG.A. PintoM.E. van de HoefT.P. RahmanH. KelshikerM.A. RajkumarC.A. FoleyM. NowbarA.N. MehtaS. ToulemondeM. TangM.X. Al-LameeR. SenS. ColeG. NijjerS. EscanedJ. Van RoyenN. FrancisD.P. Shun-ShinM.J. PetracoR. Development of artificial intelligence tools for invasive Doppler-based coronary microvascular assessment.Eur. Heart J. Digit. Health20234429130110.1093/ehjdh/ztad030 37538145
    [Google Scholar]
  49. RaoS.J. IqbalS.B. IsathA. VirkH.U.H. WangZ. GlicksbergB.S. KrittanawongC. An Update on the Use of Artificial Intelligence in Cardiovascular Medicine.Hearts2024519110410.3390/hearts5010007
    [Google Scholar]
  50. SiontisK.C. NoseworthyP.A. AttiaZ.I. FriedmanP.A. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management.Nat. Rev. Cardiol.202118746547810.1038/s41569‑020‑00503‑2 33526938
    [Google Scholar]
  51. FiorinaL. ChemalyP. CellierJ. SaidM.A. CoquardC. YounsiS. SalernoF. HorvilleurJ. LacotteJ. ManentiV. PlesseA. HenryC. LefebvreB. Artificial intelligence–based electrocardiogram analysis improves atrial arrhythmia detection from a smartwatch electrocardiogram.Eur. Heart J. Digit. Health20245553554110.1093/ehjdh/ztae047 39318690
    [Google Scholar]
  52. D’AgostinoR.B.Sr VasanR.S. PencinaM.J. WolfP.A. CobainM. MassaroJ.M. KannelW.B. General cardiovascular risk profile for use in primary care: the Framingham Heart Study.Circulation2008117674375310.1161/CIRCULATIONAHA.107.699579 18212285
    [Google Scholar]
  53. ShameerK. JohnsonK.W. GlicksbergB.S. DudleyJ.T. SenguptaP.P. Machine learning in cardiovascular medicine: are we there yet?Heart2018104141156116410.1136/heartjnl‑2017‑311198 29352006
    [Google Scholar]
  54. HannunA.Y. RajpurkarP. HaghpanahiM. TisonG.H. BournC. TurakhiaM.P. NgA.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network.Nat. Med.2019251656910.1038/s41591‑018‑0268‑3 30617320
    [Google Scholar]
  55. CortesC. VapnikV. Support-vector networks.Mach. Learn.199520327329710.1007/BF00994018
    [Google Scholar]
  56. LiawA. WienerM. Classification and regression by randomForest.R News2002231822
    [Google Scholar]
  57. MarianA.J. BraunwaldE. Hypertrophic Cardiomyopathy.Circ. Res.2017121774977010.1161/CIRCRESAHA.117.311059 28912181
    [Google Scholar]
  58. SiontisK.C. LiuK. BosJ.M. AttiaZ.I. Cohen-ShellyM. Arruda-OlsonA.M. Zanjirani FarahaniN. FriedmanP.A. NoseworthyP.A. AckermanM.J. Detection of hypertrophic cardiomyopathy by an artificial intelligence electrocardiogram in children and adolescents.Int. J. Cardiol.2021340424710.1016/j.ijcard.2021.08.026 34419527
    [Google Scholar]
  59. KoW.Y. SiontisK.C. AttiaZ.I. CarterR.E. KapaS. OmmenS.R. DemuthS.J. AckermanM.J. GershB.J. Arruda-OlsonA.M. GeskeJ.B. AsirvathamS.J. Lopez-JimenezF. NishimuraR.A. FriedmanP.A. NoseworthyP.A. Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram.J. Am. Coll. Cardiol.202075772273310.1016/j.jacc.2019.12.030 32081280
    [Google Scholar]
  60. ViraniS.S. AlonsoA. AparicioH.J. BenjaminE.J. BittencourtM.S. CallawayC.W. CarsonA.P. ChamberlainA.M. ChengS. DellingF.N. ElkindM.S.V. EvensonK.R. FergusonJ.F. GuptaD.K. KhanS.S. KisselaB.M. KnutsonK.L. LeeC.D. LewisT.T. LiuJ. LoopM.S. LutseyP.L. MaJ. MackeyJ. MartinS.S. MatcharD.B. MussolinoM.E. NavaneethanS.D. PerakA.M. RothG.A. SamadZ. SatouG.M. SchroederE.B. ShahS.H. ShayC.M. StokesA. VanWagnerL.B. WangN.Y. TsaoC.W. Heart Disease and Stroke Statistics—2021 Update.Circulation20211438e254e74310.1161/CIR.0000000000000950 33501848
    [Google Scholar]
  61. BaxtW.G. ShoferF.S. SitesF.D. HollanderJ.E. A neural network aid for the early diagnosis of cardiac ischemia in patients presenting to the emergency department with chest pain.Ann. Emerg. Med.200240657558310.1067/mem.2002.129171 12447333
    [Google Scholar]
  62. McDonaghT.A. MetraM. AdamoM. GardnerR.S. BaumbachA. BöhmM. BurriH. ButlerJ. ČelutkienėJ. ChioncelO. ClelandJ.G.F. CoatsA.J.S. Crespo-LeiroM.G. FarmakisD. GilardM. HeymansS. HoesA.W. JaarsmaT. JankowskaE.A. LainscakM. LamC.S.P. LyonA.R. McMurrayJ.J.V. MebazaaA. MindhamR. MunerettoC. Francesco PiepoliM. PriceS. RosanoG.M.C. RuschitzkaF. Kathrine SkibelundA. de BoerR.A. Christian SchulzeP. AbdelhamidM. AboyansV. AdamopoulosS. AnkerS.D. ArbeloE. AsteggianoR. BauersachsJ. Bayes-GenisA. BorgerM.A. BudtsW. CikesM. DammanK. DelgadoV. DendaleP. DilaverisP. DrexelH. EzekowitzJ. FalkV. FauchierL. FilippatosG. FraserA. FreyN. GaleC.P. GustafssonF. HarrisJ. IungB. JanssensS. JessupM. KonradiA. KotechaD. LambrinouE. LancellottiP. LandmesserU. LeclercqC. LewisB.S. LeyvaF. LinhartA. LøchenM-L. LundL.H. ManciniD. MasipJ. MilicicD. MuellerC. NefH. NielsenJ-C. NeubeckL. NoutsiasM. PetersenS.E. Sonia PetronioA. PonikowskiP. PrescottE. RakishevaA. RichterD.J. SchlyakhtoE. SeferovicP. SenniM. SitgesM. Sousa-UvaM. TocchettiC.G. TouyzR.M. TschoepeC. WaltenbergerJ. AdamoM. BaumbachA. BöhmM. BurriH. ČelutkienėJ. ChioncelO. ClelandJ.G.F. CoatsA.J.S. Crespo-LeiroM.G. FarmakisD. GardnerR.S. GilardM. HeymansS. HoesA.W. JaarsmaT. JankowskaE.A. LainscakM. LamC.S.P. LyonA.R. McMurrayJ.J.V. MebazaaA. MindhamR. MunerettoC. PiepoliM.F. PriceS. RosanoG.M.C. RuschitzkaF. SkibelundA.K. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure.Eur. Heart J.202142363599372610.1093/eurheartj/ehab368 34447992
    [Google Scholar]
  63. RomitiS. VinciguerraM. SaadeW. Anso CortajarenaI. GrecoE. Artificial Intelligence (AI) and Cardiovascular Diseases: An Unexpected Alliance.Cardiol. Res. Pract.202020201810.1155/2020/4972346 32676206
    [Google Scholar]
  64. MedvedofskyD. Mor-AviV. AmzulescuM. Fernández-GolfínC. HinojarR. MonaghanM.J. OtaniK. ReikenJ. TakeuchiM. TsangW. VanoverscheldeJ.L. IndrajithM. WeinertL. ZamoranoJ.L. LangR.M. Three-dimensional echocardiographic quantification of the left-heart chambers using an automated adaptive analytics algorithm: multicentre validation study.Eur. Heart J. Cardiovasc. Imaging2018191475810.1093/ehjci/jew328 28159984
    [Google Scholar]
  65. OrtizJ. GhefterC.G.M. SilvaC.E.S. SabbatiniR.M.E. One-year mortality prognosis in heart failure: A neural network approach based on echocardiographic data.J. Am. Coll. Cardiol.19952671586159310.1016/0735‑1097(95)00385‑1 7594090
    [Google Scholar]
  66. JanuaryC.T. WannL.S. CalkinsH. ChenL.Y. CigarroaJ.E. ClevelandJ.C.Jr EllinorP.T. EzekowitzM.D. FieldM.E. FurieK.L. HeidenreichP.A. MurrayK.T. SheaJ.B. TracyC.M. YancyC.W. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: A report of the American college of cardiology/] American heart association task force on clinical practice guidelines and the heart rhythm society in collaboration with the society of thoracic surgeons.Circulation20191402e125e15110.1161/CIR.0000000000000665 30686041
    [Google Scholar]
  67. RaghunathS. Ulloa CernaA.E. JingL. vanMaanenD.P. StoughJ. HartzelD.N. LeaderJ.B. KirchnerH.L. StumpeM.C. HafezA. NemaniA. CarbonatiT. JohnsonK.W. YoungK. GoodC.W. PfeiferJ.M. PatelA.A. DelisleB.P. AlsaidA. BeerD. HaggertyC.M. FornwaltB.K. Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network.Nat. Med.202026688689110.1038/s41591‑020‑0870‑z 32393799
    [Google Scholar]
  68. HaqI.U. ChhatwalK. SanakaK. XuB. Artificial Intelligence in Cardiovascular Medicine: Current Insights and Future Prospects.Vasc. Health Risk Manag.20221851752810.2147/VHRM.S279337 35855754
    [Google Scholar]
  69. SchepartA. BurtonA. DurkinL. FullerA. CharapE. BhambriR. AhmadF.S. Artificial intelligence–enabled tools in cardiovascular medicine: A survey of current use, perceptions, and challenges.Cardiovasc. Digit. Health J.20234310111010.1016/j.cvdhj.2023.04.003 37351333
    [Google Scholar]
  70. AliferisC. SimonG. Overfitting, Underfitting and General Model Overconfidence and Under-Performance Pitfalls and Best Practices in Machine Learning and AI. Artificial Intelligence and Machine Learning in Health Care and Medical Sciences: Best Practices and Pitfalls.ChamSpringer International Publishing202447752410.1007/978‑3‑031‑39355‑6_10
    [Google Scholar]
  71. HassijaV. ChamolaV. MahapatraA. SingalA. GoelD. HuangK. ScardapaneS. SpinelliI. MahmudM. HussainA. Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence.Cognit. Comput.2024161457410.1007/s12559‑023‑10179‑8
    [Google Scholar]
  72. KhanB. FatimaH. QureshiA. KumarS. HananA. HussainJ. Drawbacks of Artificial Intelligence and Their Potential Solutions in the Healthcare Sector202310.1007/s44174‑023‑00063‑2
    [Google Scholar]
  73. ChenR.J. WangJ.J. WilliamsonD.F.K. ChenT.Y. LipkovaJ. LuM.Y. SahaiS. MahmoodF. Algorithmic fairness in artificial intelligence for medicine and healthcare.Nat. Biomed. Eng.20237671974210.1038/s41551‑023‑01056‑8 37380750
    [Google Scholar]
  74. BenganiV. Hybrid learning systems: Integrating traditional machine learning with deep learning techniquesThesis for: BCA2024
    [Google Scholar]
  75. MohammadiS. BaladorA. SinaeiS. FlamminiF. Balancing privacy and performance in federated learning: A systematic literature review on methods and metrics.J. Parallel Distrib. Comput.202419210491810.1016/j.jpdc.2024.104918
    [Google Scholar]
  76. LiN. WangY. WeiP. MinY. YuM. ZhouG. YuanG. SunJ. DaiH. ZhouE. HeW. ShengM. GaoK. ZhengM. SunW. ZhouD. ZhangL. Causal effects of specific gut microbiota on chronic kidney diseases and renal function—a two-sample mendelian randomization study.Nutrients202315236010.3390/nu15020360 36678231
    [Google Scholar]
  77. ZhangJ. GajjalaS. AgrawalP. TisonG.H. HallockL.A. Beussink-NelsonL. LassenM.H. FanE. ArasM.A. JordanC. FleischmannK.E. MeliskoM. QasimA. ShahS.J. BajcsyR. DeoR.C. Fully automated echocardiogram interpretation in clinical practice: Feasibility and diagnostic accuracy.Circulation2018138161623163510.1161/CIRCULATIONAHA.118.034338 30354459
    [Google Scholar]
  78. OlveresJ. GonzálezG. TorresF. Moreno-TagleJ.C. Carbajal-DeganteE. Valencia-RodríguezA. Méndez-SánchezN. Escalante-RamírezB. What is new in computer vision and artificial intelligence in medical image analysis applications.Quant. Imaging Med. Surg.20211183830385310.21037/qims‑20‑1151 34341753
    [Google Scholar]
  79. AkkusZ. AlyY.H. AttiaI.Z. Lopez-JimenezF. Arruda-OlsonA.M. PellikkaP.A. PislaruS.V. KaneG.C. FriedmanP.A. OhJ.K. Artificial intelligence (AI)-empowered echocardiography interpretation: A state-of-the-art review.J. Clin. Med.2021107139110.3390/jcm10071391 33808513
    [Google Scholar]
  80. ParkJ.H. ChoH.E. KimJ.H. WallM.M. SternY. LimH. YooS. KimH.S. ChaJ. Machine learning prediction of incidence of Alzheimer’s disease using large-scale administrative health data.NPJ Digit. Med.2020314610.1038/s41746‑020‑0256‑0 32258428
    [Google Scholar]
  81. HallA. MitchellA.R.J. WoodL. HollandC. Effectiveness of a single lead AliveCor electrocardiogram application for the screening of atrial fibrillation.Medicine20209930e2138810.1097/MD.0000000000021388 32791751
    [Google Scholar]
  82. BahramiM. ForouzanfarM. Sleep apnea detection from single-lead ECG: A comprehensive analysis of machine learning and deep learning algorithms.IEEE Trans. Instrum. Meas.20227111110.1109/TIM.2022.3151947
    [Google Scholar]
  83. SufyanM. ShokatZ. AshfaqU.A. Artificial intelligence in cancer diagnosis and therapy: Current status and future perspective.Comput. Biol. Med.202316510735610.1016/j.compbiomed.2023.107356 37688994
    [Google Scholar]
  84. SardarP. AbbottJ.D. KunduA. AronowH.D. GranadaJ.F. GiriJ. Impact of Artificial Intelligence on interventional cardiology: From decision-making aid to advanced interventional procedure assistance.JACC Cardiovasc. Interv.2019121412931303
    [Google Scholar]
  85. SinghL.K. KhannaM. SinghR. Artificial intelligence based medical decision support system for early and accurate breast cancer prediction.Adv. Eng. Softw.202317510333810.1016/j.advengsoft.2022.103338
    [Google Scholar]
  86. KayodeS. AstonD. Groundbreaking Utilizations of Computerized reasoning in Medical services.Improving Diagnostics, Therapy, and Patient Consideration2023
    [Google Scholar]
  87. KocakoçI.D. The Role of Artificial Intelligence in Health Care. The Impact of Artificial Intelligence on Governance, Economics and Finance.Springer2022Vol. 2189206
    [Google Scholar]
  88. KaurS. SinglaJ. NkenyereyeL. JhaS. PrasharD. JoshiG.P. El-SappaghS. IslamM.S. IslamS.M.R. Medical diagnostic systems using artificial intelligence (ai) algorithms: Principles and perspectives.IEEE Access2020822804922806910.1109/ACCESS.2020.3042273
    [Google Scholar]
  89. HarveyN.C.W. McCloskeyE.V. MitchellP.J. Dawson-HughesB. PierrozD.D. ReginsterJ.Y. RizzoliR. CooperC. KanisJ.A. Mind the (treatment) gap: a global perspective on current and future strategies for prevention of fragility fractures.Osteoporos. Int.20172851507152910.1007/s00198‑016‑3894‑y 28175979
    [Google Scholar]
  90. BarrettM. BoyneJ. BrandtsJ. Brunner-La RoccaH.P. De MaesschalckL. De WitK. DixonL. EurlingsC. FitzsimonsD. GolubnitschajaO. HagemanA. HeemskerkF. HintzenA. HelmsT.M. HillL. HoedemakersT. MarxN. McDonaldK. MertensM. Müller-WielandD. PalantA. PieskJ. PomazanskyiA. RamaekersJ. RuffP. SchüttK. ShekhawatY. SkiC.F. ThompsonD.R. TsirkinA. van der MierdenK. WatsonC. Zippel-SchultzB. Artificial intelligence supported patient self-care in chronic heart failure: a paradigm shift from reactive to predictive, preventive and personalised care.EPMA J.201910444546410.1007/s13167‑019‑00188‑9 31832118
    [Google Scholar]
  91. VoraL.K. GholapA.D. JethaK. ThakurR.R.S. SolankiH.K. ChavdaV.P. Artificial intelligence in pharmaceutical technology and drug delivery design.Pharmaceutics2023157191610.3390/pharmaceutics15071916 37514102
    [Google Scholar]
  92. ChanP.Y. RyanN.P. ChenD. McNeilJ. HopperI. Novel wearable and contactless heart rate, respiratory rate, and oxygen saturation monitoring devices: a systematic review and meta‐analysis.Anaesthesia202277111268128010.1111/anae.15834 35947876
    [Google Scholar]
  93. KoulA. BawaR.K. KumarY. Artificial intelligence techniques to predict the airway disorders illness: a systematic review.Arch. Comput. Methods Eng.202330283186410.1007/s11831‑022‑09818‑4 36189431
    [Google Scholar]
  94. Lopez-JimenezF. AttiaZ. Arruda-OlsonA.M. CarterR. ChareonthaitaweeP. JouniH. Artificial intelligence in cardiology: present and future. Mayo Clinic Proceedings.Elsevier2020
    [Google Scholar]
  95. PontoneG. Weir-McCallJ.R. BaggianoA. Del TortoA. FusiniL. GuglielmoM. MuscogiuriG. GuaricciA.I. AndreiniD. PatelM. NiemanK. AkasakaT. RogersC. NørgaardB.L. BaxJ. RaffG.L. ChinnaiyanK. BermanD. FairbairnT. KoweekL.H. LeipsicJ. Determinants of rejection rate for coronary CT angiography fractional flow reserve analysis.Radiology2019292359760510.1148/radiol.2019182673 31335283
    [Google Scholar]
  96. VercauterenT. UnberathM. PadoyN. NavabN. Cai4cai: the rise of contextual artificial intelligence in computer-assisted interventions.Proc. IEEE2020108119821410.1109/JPROC.2019.2946993 31920208
    [Google Scholar]
  97. Keshavarzi ArshadiA. WebbJ. SalemM. CruzE. Calad-ThomsonS. GhadirianN. Artificial Intelligence for COVID-19 drug discovery and vaccine development.Front. Artif. Intell.2020365
    [Google Scholar]
  98. FiskeA. HenningsenP. BuyxA. Your robot therapist will see you now: Ethical implications of embodied artificial intelligence in psychiatry, psychology, and psychotherapy.J. Med. Internet Res.2019215e1321610.2196/13216 31094356
    [Google Scholar]
  99. KasulaB.Y. Framework development for artificial intelligence integration in healthcare: optimizing patient care and operational efficiency.Transactions on Latest Trends in IoT.2023667783
    [Google Scholar]
  100. LeeH.H.Y. ScottD. Overview of maintenance strategy, acceptable maintenance standard and resources from a building maintenance operation perspective.J. Build. Apprais.2009426927810.1057/jba.2008.46
    [Google Scholar]
  101. MohsenF. Al-SaadiB. AbdiN. KhanS. ShahZ. Artificial intelligence-based methods for precision cardiovascular medicine.J. Pers. Med.2023138126810.3390/jpm13081268 37623518
    [Google Scholar]
  102. LeeS. ChuY. RyuJ. ParkY.J. YangS. KohS.B. Artificial intelligence for detection of cardiovascular-related diseases from wearable devices: A systematic review and meta-analysisYonsei Med. J.202263Suppl.S93S10710.3349/ymj.2022.63.S9335040610
    [Google Scholar]
  103. HuangJ.D. WangJ. RamseyE. LeaveyG. ChicoT.J.A. CondellJ. Applying artificial intelligence to wearable sensor data to diagnose and predict cardiovascular disease: A review.Sensors20222220800210.3390/s22208002 36298352
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558348090241210063629
Loading
/content/journals/rascs/10.2174/0126662558348090241210063629
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): ANN; Artificial intelligence; big data; CNN; CVDs; deep learning; heart failure; machine learning
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test