Skip to content
2000
Volume 18, Issue 8
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Aim

Deep learning models, such as deep convolutional neural networks (CNNs), have undergone extensive scrutiny in the context of food classification because of their exceptional feature extraction capabilities.

Background

Similarly, ensemble-based learning approaches have exhibited great potential for achieving effective supervised classification.

Objective

We suggest an innovative approach to improve the effectiveness of deep learning-based food classification.

Methods

Our proposal involves a novel deep learning ensemble framework that draws inspiration from the fusion of deep learning models with ensemble learning based on random subspaces. The random subspaces play a role in diversifying the ensemble system in a straightforward but impactful way. Moreover, to enhance the classification accuracy even more, we explore transfer learning, employing the migration of acquired weights from a single classifier to another (namely, CNNs). This approach expedites the process of learning.

Results

Results from experiments conducted using well-established food datasets illustrate that the suggested deep learning ensemble system delivers competitive performance compared to state-of-the-art techniques, as evidenced by its classification accuracy.

Conclusion

The amalgamation of deep learning and ensemble learning holds substantial promise for dependable food categorization.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558310306240911071501
2024-09-19
2025-09-28
Loading full text...

Full text loading...

References

  1. WangGang HoiemD. ForsythD. Learning image similarity from Flickr groups using fast kernel machines.IEEE Trans. Pattern Anal. Mach. Intell.201234112177218810.1109/TPAMI.2012.29 22997127
    [Google Scholar]
  2. GhamisiP. PlazaJ. ChenY. LiJ. PlazaA.J. Advanced spectral classifiers for hyperspectral images: A review.IEEE Geosci. Remote Sens. Mag.20175183210.1109/MGRS.2016.2616418
    [Google Scholar]
  3. FauvelM. BenediktssonJ.Ó.A. ChanussotJ. SveinssonJ.R. Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles.IEEE Trans. Geosci. Remote Sens.200846113804381410.1109/TGRS.2008.922034
    [Google Scholar]
  4. TarabalkaY. FauvelM. ChanussotJ. BenediktssonJ.A. SVM and MRF based method for accurate classification of hyperspectral images.IEEE Geosci. Remote Sens. Lett.20107473674010.1109/LGRS.2010.2047711
    [Google Scholar]
  5. SrinivasU. ChenY. MongaV. NasrabadiN. TranT. Exploiting sparsity in hyperspectral image classification via graphical models.IEEE Geosci. Remote Sens. Lett.201210350550910.1109/LGRS.2012.2211858
    [Google Scholar]
  6. HeL. LiY. LiX. WuW. Spectral–spatial classification of hyperspectral images via spatial translation-invariant wavelet-based sparse representation.IEEE Trans. Geosci. Remote Sens.20155352696271210.1109/TGRS.2014.2363682
    [Google Scholar]
  7. ChenY. NasrabadiN.M. TranT.D. Hyperspectral image classification using dictionary-based sparse representation.IEEE Trans. Geosci. Remote Sens.201149103973398510.1109/TGRS.2011.2129595
    [Google Scholar]
  8. GhamisiP. MaggioriE. LiS. SouzaR. TarablakaY. MoserG. De GiorgiA. FangL. ChenY. ChiM. SerpicoS.B. BenediktssonJ.A. New frontiers in spectral-spatial hyperspectral image classification: the latest advances based on mathematical morphology, markov random fields, segmentation, sparse representation, and deep learning.IEEE Geosci. Remote Sens. Mag.201863104310.1109/MGRS.2018.2854840
    [Google Scholar]
  9. KrizhevskyA. SutskeverI. HintonG.E. ImageNet classification with deep convolutional neural networks.Adv. Neural Inf. Process. Syst.20126010971105
    [Google Scholar]
  10. DengL. HintonG. KingsburyB. New types of deep neural network learning for speech recognition and related applications: an overview2013 IEEE International Conference on Acoustics, Speech and Signal Processing 26-31 May 2013, Vancouver, BC, Canada, 2013, pp. 8599-8603.10.1109/ICASSP.2013.6639344
    [Google Scholar]
  11. ZhangL. ZhangL. DuB. Deep learning for remote sensing data: A technical tutorial on the state of the art.IEEE Geosci. Remote Sens. Mag.201642224010.1109/MGRS.2016.2540798
    [Google Scholar]
  12. ChenY. LinZ. ZhaoX. WangG. GuY. Deep learning-based classification of hyperspectral data.IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.2014762094210710.1109/JSTARS.2014.2329330
    [Google Scholar]
  13. ZhongP. GongZ. LiS. SchönliebC.B. Learning to diversify deep belief networks for hyperspectral image classification.IEEE Trans. Geosci. Remote Sens.20175563516353010.1109/TGRS.2017.2675902
    [Google Scholar]
  14. YueJ. ZhaoW. MaoS. LiuH. Spectral–spatial classification of hyperspectral images using deep convolutional neural networks.Remote Sens. Lett.20156646847710.1080/2150704X.2015.1047045
    [Google Scholar]
  15. MouL. GhamisiP. ZhuX.X. Deep recurrent neural networks for hyperspectral image classification.IEEE Trans. Geosci. Remote Sens.20175573639365510.1109/TGRS.2016.2636241
    [Google Scholar]
  16. SinghalV. AggarwalH.K. TariyalS. MajumdarA. Discriminative robust deep dictionary learning for hyperspectral image classification.IEEE Trans. Geosci. Remote Sens.20175595274528310.1109/TGRS.2017.2704590
    [Google Scholar]
  17. HuW. HuangY. WeiL. ZhangF. LiH. Deep convolutional neural networks for hyperspectral image classification.J. Sens.20152015Jan11210.1155/2015/258619
    [Google Scholar]
  18. LiW. WuG. ZhangF. DuQ. Hyperspectral image classification using deep pixel-pair features.IEEE Trans. Geosci. Remote Sens.201755284485310.1109/TGRS.2016.2616355
    [Google Scholar]
  19. ChenY. JiangH. LiC. JiaX. GhamisiP. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks.IEEE Trans. Geosci. Remote Sens.201654106232625110.1109/TGRS.2016.2584107
    [Google Scholar]
  20. FariaF.A. dos SantosJ.A. RochaA. TorresR.S. A framework for selection and fusion of pattern classifiers in multimedia recognition.Pattern Recognit. Lett.201439526410.1016/j.patrec.2013.07.014
    [Google Scholar]
  21. LeCunY. BengioY. HintonG. Deep learning.Nature2015521755343644410.1038/nature14539 26017442
    [Google Scholar]
  22. SimonyanK. ZissermanA. Very deep convolutional networks for large-scale image recognitionarXiv 1409.15562014
    [Google Scholar]
  23. GirshickR. DonahueJ. DarrellT. MalikJ. Rich feature hierarchies for accurate object detection and semantic segmentationarXiv 1311.2524201410.1109/CVPR.2014.81
    [Google Scholar]
  24. KimY. Convolutional neural networks for sentence classificationarXiv:1408.58822014
    [Google Scholar]
  25. GoodfellowI. BengioY. CourvilleA. Deep Learning.Cambridge, MA, USAMIT Press2016
    [Google Scholar]
  26. IoffeS. SzegedyC. Batch normalization: Accelerating deep network training by reducing internal covariate shiftarXiv:1502.031672015
    [Google Scholar]
  27. ShinH.C. Deep convolutional neural networks for computer aided detection: CNN architectures, dataset characteristics and transfer learningAvailable from: https://iplab.dmi.unict.it/UNICTFD1200/#:~:text=The%20UNICT%2DFD1200%20dataset%20is,of%20geometric%20and%20photometric%20variabilities10.1109/TMI.2016.2528162(accessed on 16-8-2024)
  28. GalloI. Image and text fusion for UPMC food-101 using BERT and CNNsIEEEAvailable from: http://artelab.dista.uninsubria.it/res/research/papers/2020/2020-IVCNZ-Gallo-Food101.pdf(accessed on 16-8-2024)2020
    [Google Scholar]
  29. LuminiA. NanniL. Deep learning and transfer learning features for plankton classification.Ecol. Inform.201951334310.1016/j.ecoinf.2019.02.007
    [Google Scholar]
  30. TahirG.A. LooC.K. A comprehensive survey of image-based food recognition and volume estimation methods for dietary assessmentHealthcareMDPI16769
    [Google Scholar]
  31. XiaJ. Dalla MuraM. ChanussotJ. DuP. HeX. Random subspace ensemble for hyperspectral image classification with extended morphological attribute profiles.IEEE Trans. Geosci. Remote Sens.20155394768478610.1109/TGRS.2015.2409195
    [Google Scholar]
  32. BhattacharyaU. ChaudhuriB.B. A majority voting scheme for multiresolution recognition of handprinted numeralsSeventh International Conference on Document Analysis and Recognition 06-06 August 2003, Edinburgh, UK, 2003, pp. 16-20.10.1109/ICDAR.2003.1227620
    [Google Scholar]
  33. BenediktssonJ.A. PalmasonJ.A. SveinssonJ.R. Classification of hyperspectral data from urban areas based on extended morphological profiles.IEEE Trans. Geosci. Remote Sens.200543348049110.1109/TGRS.2004.842478
    [Google Scholar]
  34. XiaJ. GhamisiP. YokoyaN. IwasakiA. Random Forest ensembles and extended multiextinction profiles for hyperspectral image classification.IEEE Trans. Geosci. Remote Sens.201856120221610.1109/TGRS.2017.2744662
    [Google Scholar]
  35. BiY. The impact of diversity on the accuracy of evidential classifier ensembles.Int. J. Approx. Reason.201253458460710.1016/j.ijar.2011.12.011
    [Google Scholar]
  36. ShippC.A. KunchevaL.I. Relationships between combination methods and measures of diversity in combining classifiers.Inf. Fusion20023213514810.1016/S1566‑2535(02)00051‑9
    [Google Scholar]
  37. ChenY. WangY. GuY. HeX. GhamisiP. JiaX. Deep learning ensemble for hyperspectral image classification.IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.20191261882189710.1109/JSTARS.2019.2915259
    [Google Scholar]
  38. PengM. LiuY. KhanA. AhmedB. SarkerS.K. GhadiY.Y. BhattiU.A. Al-RazganM. AliY.A. Crop monitoring using remote sensing land use and land change data: Comparative analysis of deep learning methods using pre-trained CNN models.Big Data Res.20243610044810.1016/j.bdr.2024.100448
    [Google Scholar]
  39. BhattiU.A. BhattiM.A. TangH. SyamM.S. AwwadE.M. SharafM. GhadiY.Y. Global production patterns: Understanding the relationship between greenhouse gas emissions, agriculture greening and climate variability.Environ. Res.202424511804910.1016/j.envres.2023.118049 38169167
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558310306240911071501
Loading
/content/journals/rascs/10.2174/0126662558310306240911071501
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test